
MATH685Z — Mathematical Models in Financial Economics

Topic 4 – Valuation of contingent claims

4.1 Single-period securities models

4.2 Fundamental Theorem of Asset Pricing

4.3 Valuation of contingent claims and compute markets
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4.1 Single-period securities models

• The initial prices of M risky securities, denoted by S1(0), · · · , SM(0),

are positive scalars that are known at t = 0.

• Their values at t = 1 are random variables, which are defined

with respect to a sample space Ω = {ω1, ω2, · · · , ωK} of K pos-

sible outcomes (or states of the world).

• At t = 0, the investors know the list of all possible outcomes,

but which outcome does occur is revealed only at the end of the

investment period t = 1.

• A probability measure P satisfying P(ω) > 0, for all ω ∈ Ω, is

defined on Ω.

• We use S to denote the price process {S(t) : t = 0,1}, where

S(t) is the row vector S(t) = (S1(t) S2(t) · · ·SM(t)).
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Example

3 risky assets with initial time-0 price vector

S(0) = (S1(0) S2(0) S3(0)) = (1 2 3).

At time 1, there are 2 possible states of the world:

ω1 = Hang Seng index is at or above 22,000

ω2 = Hang Seng index falls below 22,000.

If ω1 occurs, then

S(1;ω1) = (1.2 2.1 3.4);

otherwise, ω2 occurs and

S(1;ω2) = (0.8 1.9 2.9).
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• The possible values of the asset price process at t = 1 are listed

in the following K × M matrix

S(1;Ω) =

⎛
⎜⎜⎜⎝

S1(1;ω1) S2(1;ω1) · · · SM(1;ω1)
S1(1;ω2) S2(1;ω2) · · · SM(1;ω2)

· · · · · · · · · · · ·
S1(1;ωK) S2(1;ωK) · · · SM(1;ωK)

⎞
⎟⎟⎟⎠ .

• Since the assets are limited liability securities, the entries in

S(1;Ω) are non-negative scalars.

• Existence of a strictly positive riskless security or bank account,

whose value is denoted by S0. Without loss of generality, we

take S0(0) = 1 and the value at time 1 to be S0(1) = 1 + r,

where r ≥ 0 is the deterministic interest rate over one period.
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• We define the discounted price process by

S∗(t) = S(t)/S0(t), t = 0,1,

that is, we use the riskless security as the numeraire or account-

ing unit.

• The payoff matrix of the discounted price processes of the M

risky assets and the riskless security can be expressed in the form

Ŝ∗(1;Ω) =

⎛
⎜⎜⎜⎝

1 S∗
1(1;ω1) · · · S∗

M(1;ω1)
1 S∗

1(1;ω2) · · · S∗
M(1;ω2)

· · · · · · · · · · · ·
1 S∗

1(1;ωK) · · · S∗
M(1;ωK)

⎞
⎟⎟⎟⎠ .
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Trading strategies

• An investor adopts a trading strategy by selecting a portfolio of

the M assets at time 0.

• The number of units of asset m held in the portfolio from t = 0

to t = 1 is denoted by hm, m = 0,1, · · · , M .

• The scalars hm can be positive (long holding), negative (short

selling) or zero (no holding).

• An investor is endowed with an initial endowment V0 at time

0 to set up the trading portfolio. How to choose the portfolio

holding hm of the assets such that the expected portfolio value

at time 1 is maximized?
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Portfolio value process

• Let V = {Vt : t = 0,1} denote the value process that represents

the total value of the portfolio over time. It is seen that

Vt = h0S0(t) +
M∑

m=1

hmSm(t), t = 0,1.

• Let G be the random variable that denotes the total gain gen-

erated by investing in the portfolio. We then have

G = h0r +
M∑

m=1

hmΔSm, ΔSm = Sm(1) − Sm(0).
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Account balancing

• If there is no withdrawal or addition of funds within the invest-

ment horizon (self-financing trading strategy), then

V1 = V0 + G.

• Suppose we use the bank account as the numeraire, and define

the discounted value process by V ∗
t = Vt/S0(t) and discounted

gain by G∗ = V ∗
1 − V ∗

0 , we then have

V ∗
t = h0 +

M∑
m=1

hmS∗
m(t), t = 0,1;

G∗ = V ∗
1 − V ∗

0 =
M∑

m=1

hmΔS∗
m.

There is no contribution from the riskfree asset to the dis-

counted gain.
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Dominant trading strategies

A trading strategy is characterized by the asset holding in the port-

folio. A trading strategy H is said to be dominant if there exists

another trading strategy Ĥ such that

V0 = V̂0 and V1(ω) > V̂1(ω) for all ω ∈ Ω.

• Suppose H dominates Ĥ, we define a new trading strategy H̃ =

H − Ĥ. Let Ṽ0 and Ṽ1 denote the portfolio value of H̃ at t = 0

and t = 1, respectively. We then have Ṽ0 = 0 and Ṽ1(ω) > 0 for

all ω ∈ Ω.

• This trading strategy is dominant since it dominates the strategy

which starts with zero value and does no investment at all.
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Asset span

• Consider the two risky securities whose discounted payoff vectors

are

S∗
1(1) =

⎛
⎜⎝ 1

2
3

⎞
⎟⎠ and S∗

2(1) =

⎛
⎜⎝ 3

1
2

⎞
⎟⎠ .

• The payoff vectors are used to form the payoff matrix

S∗(1) =

⎛
⎜⎝ 1 3

2 1
3 2

⎞
⎟⎠ .

• Let the current discounted prices be represented by the row

vector S∗(0) = (1 2).
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• We write h as the column vector whose entries are the weights

of the securities in the portfolio. The trading strategy is char-

acterized by specifying h. The current portfolio value and the

discounted portfolio payoff are given by S∗(0)h and S∗(1)h, re-

spectively.

• The set of all portfolio payoffs via different holding of securities

is called the asset span S. The asset span is seen to be the

column space of the payoff matrix S∗(1), which is the subspace

in R
K spanned by the columns of S∗(1). Here, K is the number

of possible states in the sample space Ω.
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asset span = column space of S∗(1)
= span(S∗

1(1) · · ·S∗
M(1))

Recall that

column rank = dimension of column space

= number of independent columns.

It is well known that number of independent columns = number of

independent rows, so column rank = row rank = rank ≤ min(K, M).

• In the above numerical example, the asset span consists of all

vectors of the form h1

⎛
⎜⎝ 1

2
3

⎞
⎟⎠ + h2

⎛
⎜⎝ 3

1
2

⎞
⎟⎠, where h1 and h2 are

scalars.
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Redundant security and complete model

• If the discounted terminal payoff vector of an added security lies

inside S, then its payoff can be expressed as a linear combination

of S∗
1(1) and S∗

2(1). In this case, it is said to be a redundant

security . The added security is said to be replicable by some

combination of existing securities.

• A securities model is said to be complete if every payoff vector

lies inside the asset span. That is, all new securities can be

replicated by existing securities. This occurs if and only if the

dimension of the asset span equals the number of possible states,

that is, the asset span becomes the whole RK.
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Given the securities model with 4 risky securities and 3 possible

states of world:

S∗(1;Ω) =

⎛
⎜⎝ 1 2 3 4

2 3 5 7
3 5 8 11

⎞
⎟⎠ , S∗(0) = (1 2 4 7).

asset span = span(S∗
1(1), S

∗
2(1)), which has dimension = 2 < 3 =

number of possible states. Hence, the securities model is not com-

plete! For example

S∗
β(1;Ω) =

⎛
⎜⎝ 1

2
4

⎞
⎟⎠

does not lie in the asset span of the securities model. There is no

solution to ⎛
⎜⎝1 2 3 4
2 3 5 7
3 5 8 11

⎞
⎟⎠

⎛
⎜⎜⎜⎝

h1
h2
h3
h4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝1
2
4

⎞
⎟⎠ .
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Pricing problem

Given a new security that is replicable by existing securities, its price

with reference to a given securities model is given by the cost of

setting up the replicating portfolio.

Consider a new security with discounted payoff at t = 1 as given by

S∗
α(1;Ω) =

⎛
⎜⎝ 5

8
13

⎞
⎟⎠ ,

which is seen to be

S∗
α(1;Ω) = S∗

2(1;Ω) + S∗
3(1;Ω) = S∗

1(1;Ω) + 2S∗
2(1;Ω).

This new security is redundant. Unfortunately, the price of this

security can be either

S∗
2(0) + S∗

3(0) = 6 or S∗
1(0) + 2S∗

2(0) = 5.

There are two possible prices, so the law of one price does NOT

hold.
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Question

How to modify S∗(0) such that the law of one price hold?

Note that S∗
3(1;Ω) = S∗

1(1;Ω)+S∗
2(1;Ω) and S∗

4(1;Ω) = S∗
1(1;Ω)+

S∗
3(1;Ω), both the third and fourth security are redundant securities.

To achieve the law of one price, we modify S∗
3(0) and S∗

4(0) such

that

S∗
3(0) = S∗

1(0) + S∗
2(0) = 3 and S∗

4(0) = 2S∗
1(0) + S∗

2(0) = 4.

Conjecture

If there are no redundant securities, then the law of one price

holds. Mathematically, non-existence of redundant securities means

S∗(1;Ω) has full column rank. That is, column rank = number of

columns. This gives a sufficient condition for “law of one price”.
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Example

A gambler pays a bet of $10 with the Jockey Club. The payoff of

the bet is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$25 if Horse A wins in the first race
$40 if Horse B wins in the second race
$160 if both horses win in their respective race
0 if none of the above

.

This can be visualized as a security with S(0) = 10 and S(1) =

(25 40 160)T .

Suppose the gambler places the same betting game with an illegal

market maker , the initial betting amount required

is $9.5 only (representing 5% discount). This is a violation of the

law of one price.

How to take arbitrage? Buy the bet at $9.5 and sell the bet at

$10? Can that be done? Why does 5% discount exist? What are

the risks faced by the gambler when he deals with the illegal market

maker.
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Law of one price (pricing of securities that lie in the asset

span)

1. The law of one price states that all portfolios with the same

payoff have the same price.

2. Consider two portfolios with different portfolio weights h and h′.
Suppose these two portfolios have the same discounted payoff,

that is, S∗(1)h = S∗(1)h′, then the law of one price infers that

S∗(0)h = S∗(0)h′.

3. The trading strategy h is obtained by solving

S∗(1)h = S∗
α(1).

Solution exists if S∗
α(1) lies in the asset span. Uniqueness of so-

lution is equivalent to null space of S∗(1) having zero dimension.

There is only one trading strategy that replicates the security

with discounted terminal payoff S∗
α(1). In this case, the law of

one price always holds.
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Law of one price and dominant trading strategy

If the law of one price fails, then it is possible to have two trad-

ing strategies h and h′ such that S∗(1)h = S∗(1)h′ but S∗(0)h >

S∗(0)h′.

Let G∗(ω) and G∗′(ω) denote the respective discounted gain corre-

sponding to the trading strategies h and h′. We then have G∗′(ω) >

G∗(ω) for all ω ∈ Ω, so there exists a dominant trading strategy. The

corresponding dominant trading strategy is h′ − h so that V0 < 0

but V ∗
1 (ω) = 0 for all ω ∈ Ω.

Hence, the non-existence of dominant trading strategy implies the

law of one price. However, the converse statement does not hold.

[See later numerical example.]
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Pricing functional

• Given a discounted portfolio payoff x that lies inside the asset

span, the payoff can be generated by some linear combination of

the securities in the securities model. We have x = S∗(1)h for

some h ∈ RM . Existence of the solution h is guaranteed since x

lies in the asset span, or equivalently, x lies in the column space

of S∗(1).

• The current value of the portfolio is S∗(0)h, where S∗(0) is the

initial price vector.

• We may consider S∗(0)h as a pricing functional F(x) on the

payoff x. If the law of one price holds, then the pricing functional

is single-valued. Furthermore, it is a linear functional, that is,

F(α1x1 + α2x2) = α1F(x1) + α2F(x2)

for any scalars α1 and α2 and payoffs x1 and x2.
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Arrow security and state price

• Let ek denote the kth coordinate vector in the vector space RK,

where ek assumes the value 1 in the kth entry and zero in all

other entries. The vector ek can be considered as the discounted

payoff vector of a security, and it is called the Arrow security of

state k. This Arrow security has unit payoff when state k occurs

and zero payoff otherwise.

• Suppose the securities model is complete (all Arrow securities

lie in the asset span) and the law of one price holds, then the

pricing functional F assigns unique value to each Arrow security.

We write sk = F(ek), which is called the state price of state k.

Note that state price must be non-negative. Take

S∗
α(1) =

⎛
⎜⎝ α1

...
αK

⎞
⎟⎠ =

K∑
k=1

αkek, then

S∗
α(0) = F(S∗

α(1)) = F

⎛
⎝ K∑

k=1

αkek

⎞
⎠ =

K∑
k=1

αkF(ek) =
K∑

k=1

αksk.
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Summary

Given a securities model endowed with S∗(1;Ω) and S∗(0), can

we find a trading strategy to form a portfolio that replicates a new

security S∗
α(1;Ω) (also called a contingent claim) that is outside the

universe of the M available risky securities in the securities model?

Replication means the terminal payoff of the replicating portfolio

matches with that of the contingent claim under all scenarios of

occurrence of the state of the world at t = 1.

1. Formation of the replicating portfolio is possible if we have ex-

istence of solution h to the following system

S∗(1;Ω)h = S∗
α(1;Ω).
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This is equivalent to the fact that “S∗
α(1;Ω) lies in the asset span

(column space) of S∗(1;Ω)”. The solution h is the corresponding

trading strategy. Note that h may not be unique.

Completeness of securities model

If all contingent claims are replicable, then the securities model is

said to be complete. This is equivalent to

dim(asset span) = K = number of possible states,

that is, asset span = R
K. In this case, solution h always exists.
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2. Uniqueness of trading strategy

If h is unique, then there is only one trading strategy that gen-

erates the replicating portfolio. This occurs when the columns

of S∗(1;Ω) are independent. Equivalently, column rank = M

and all securities are non-redundant. Mathematically, this is

equivalent to observe that the homogeneous system

S∗(1;Ω)h = 0

admits only the trivial zero solution. In other words, the dimen-

sion of the null space of S∗(1;Ω) is zero.

When we have unique solution h, the initial cost of setting up

the replicating portfolio (price at time 0) as given by S∗(0)h is

unique. In this case, law of one price holds.
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Matrix properties of S∗(1) that are related to financial economics

concepts

The securities model is endowed with

(i) discounted terminal payoff matrix =
(
S∗

1(1) · · · S∗
M(1)

)
, and

(ii) initial price vector; S∗(0) = (S1(0) · · ·SM(0)).

Recall that

column rank ≤ min(K, M)

where K = number of possible states, M = number of risky securi-

ties.

List of terms: redundant securities, complete model, replicating

portfolio, asset holding, asset span, law of one

price, dominant trading strategy
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Given a risky security with the discounted terminal payoff S∗
α(1), we

are interested to explore the existence and uniqueness of solution to

S∗(1)h = S∗
α(1).

Here, h is the asset holding of the portfolio that replicates S∗
α(1).

(i) column rank = K

asset span = RK, so the securities model is complete. Any risky

securities is replicable. In this case, solution h always exists.

(ii) column rank = M (all columns of S∗(1) are independent)

All securities are non-redundant. In this case, h may or may not

exist. However, if h exists, then it must be unique. The price

of any replicable security is unique.

26



(iii) column rank < K

Solution h exists if and only if S∗
α(1) lies in the asset span.

However, there is no guarantee for the uniqueness of solution.

(iv) column rank < M

Existence of redundant securities, so the law of one price may

fail.

To explore “law of one price” and “existence of dominant trading

strategies”, one has to consider the nature of the solution to the

linear system of equations

S∗(0) = xS∗(1).
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Linear pricing measure

We consider securities models with the inclusion of the riskfree se-

curity. A non-negative row vector q = (q(ω1) · · · q(ωK)) is said to be

a linear pricing measure if for every trading strategy we have

V ∗
0 =

K∑
k=1

q(ωk)V
∗
1 (ωk).

Note that q may not be unique, but the same initial price V ∗
0 is always

resulted as there is no dependence of V ∗
0 on the asset holding of the

portfolio. Implicitly, this implies that the law of one price holds.
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1. Suppose we take the holding amount of every risky security to

be zero, thereby h1 = h2 = · · · = hM = 0, then

V ∗
0 = h0 =

K∑
k=1

q(ωk)h0

so that
K∑

k=1

q(ωk) = 1.

2. By taking the security to be the kth Arrow security, we obtain

sk = q(ωk), k = 1,2, · · · , K.

That is, the state price of the kth state is simply q(ωk). This

result is valid given that the securities model includes the riskfree

security.
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• Since we have taken q(ωk) ≥ 0, k = 1, · · · , K, and their sum is

one, we may interpret q(ωk) as a probability measure on the

sample space Ω.

• Note that q(ωk) is not related to the actual probability of oc-

currence of the state k, though the current discounted security

price is given by the expectation of the security payoff one period

later under the linear pricing measure.

• By taking the portfolio weights to be zero except for the mth

security, we have

S∗
m(0) =

K∑
k=1

q(ωk)S
∗
m(1;ωk), m = 1, · · · , M.

In matrix form,

Ŝ
∗
(0) = qŜ∗(1;Ω), q ≥ 0.
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Numerical example

Consider a securities model with 2 risky securities and the riskfree

security, and there are 3 possible states. The current discounted

price vector Ŝ
∗
(0) is (1 4 2) and the discounted payoff matrix

at t = 1 is Ŝ∗(1) =

⎛
⎜⎝ 1 4 3

1 3 2
1 2 4

⎞
⎟⎠. Here, the law of one price holds

since the only solution to Ŝ∗(1)h = 0 is h = 0. This is because

the columns of Ŝ∗(1) are independent so that the dimension of the

nullspace of Ŝ∗(1) is zero.
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The linear pricing probabilities q(ω1), q(ω2) and q(ω3), if exist, should

satisfy the following equations:

1 = q(ω1) + q(ω2) + q(ω3)

4 = 4q(ω1) + 3q(ω2) + 2q(ω3)

2 = 3q(ω1) + 2q(ω2) + 4q(ω3).

Solving the above equations, we obtain q(ω1) = q(ω2) = 2/3 and

q(ω3) = −1/3.

• Since not all the pricing probabilities are non-negative, the linear

pricing measure does not exist for this securities model.
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Existence of dominant trading strategies

• Can we find a trading strategy (h1 h2) such that V ∗
0 = 4h1 +

2h2 = 0 but V ∗
1 (ωk) > 0, k = 1,2,3? This is equivalent to ask

whether there exist h1 and h2 such that 4h1 + 2h2 = 0 and

4h1 + 3h2 > 0

3h1 + 2h2 > 0

2h1 + 4h2 > 0. (A)

• The region is found to be lying on the top right sides above the

two bold lines: (i) 3h1 + 2h2 = 0, h1 < 0 and (ii) 2h1 + 4h2 =

0, h1 > 0. It is seen that all the points on the dotted half line:

4h1 + 2h2 = 0, h1 < 0 represent dominant trading strategies

that start with zero wealth but end with positive wealth with

certainty.
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The region above the two bold lines represents trading strategies

that satisfy inequalities (A). The trading strategies that lie on the

dotted line: 4h1 + 2h2 = 0, h1 < 0 are dominant trading strategies.
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• Suppose the initial discounted price vector is changed from

(4 2) to (3 3), the new set of linear pricing probabilities will

be determined by

1 = q(ω1) + q(ω2) + q(ω3)

3 = 4q(ω1) + 3q(ω2) + 2q(ω3)

3 = 3q(ω1) + 2q(ω2) + 4q(ω3),

which is seen to have the solution: q(ω1) = q(ω2) = q(ω3) =

1/3. Now, all the pricing probabilities have non-negative values,

the row vector q = (1/3 1/3 1/3) represents a linear pricing

measure.

• The line 3h1+ 3h2 = 0 always lies outside the region above the

two bold lines.

• We cannot find (h1 h2) such that 3h1+3h2 = 0 together with

h1 and h2 satisfying all these inequalities.
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Theorem

There exists a linear pricing measure if and only if there are no

dominant trading strategies.

The above linear pricing measure theorem can be seen to be a direct

consequence of the Farkas Lemma.

Farkas Lemma

There does not exist h ∈ RM such that

Ŝ∗(1;Ω)h > 0 and Ŝ
∗
(0)h = 0

if and only if there exists q ∈ RK such that

Ŝ
∗
(0) = qŜ∗(1;Ω) and q ≥ 0.
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4.2 Fundamental Theorem of Asset Pricing

• An arbitrage opportunity is some trading strategy that has the

following properties: (i) V ∗
0 = 0, (ii) V ∗

1 (ω) ≥ 0 and EV ∗
1 (ω) > 0,

where E is the expectation under the actual probability measure

P .

• The existence of a dominant strategy requires a portfolio with

initial zero wealth to end up with a strictly positive wealth in all

states.

• The existence of a dominant trading strategy implies the exis-

tence of an arbitrage opportunity, but the converse is not nec-

essarily true.
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Risk neutral probability measure

A probability measure Q on Ω is a risk neutral probability measure

if it satisfies

(i) Q(ω) > 0 for all ω ∈ Ω, and

(ii) EQ[ΔS∗
m] = 0, m = 1, · · · , M , where EQ denotes the expectation

under Q.

Note that EQ[ΔS∗
m] = 0 is equivalent to S∗

m(0) =
K∑

k=1

Q(ωk)S
∗
m(1;ωk).

• In financial markets with no arbitrage opportunities, every in-

vestor should use such risk neutral probability measure (though

not necessarily unique) to find the fair value of a portfolio, ir-

respective to the risk preference of the investor (independent

of the assessment of the probabilities of occurrence of different

states).
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Fundamental Theorem of Asset Pricing

No arbitrage opportunities exist if and only if there exists a risk

neutral probability measure Q.

• The proof of the Theorem requires the Separating Hyperplane

Theorem.

• The Separating Hyperplane Theorem states that if A and B are

two non-empty disjoint convex sets in a vector space V , then

they can be separated by a hyperplane.
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The hyperplane (represented by a line in R2) separates the two con-

vex sets A and B in R2. A set C is convex if any convex combination

λx + (1 − λ)y,0 ≤ λ ≤ 1, of a pair of vectors x and y in C also lies

in C.
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The hyperplane [f , α] separates the sets A and B in Rn if there exists

α such that f · x ≥ α for all x ∈ A and f · y < α for all y ∈ B.

For example, the hyperplane

⎡
⎢⎣

⎛
⎜⎝ 1

1
1

⎞
⎟⎠ ,0

⎤
⎥⎦ separates the two disjoint

convex sets A =

⎧⎪⎨
⎪⎩

⎛
⎜⎝ x1

x2
x3

⎞
⎟⎠ : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

⎫⎪⎬
⎪⎭

and B =

⎧⎪⎨
⎪⎩

⎛
⎜⎝ x1

x2
x3

⎞
⎟⎠ : x1 < 0, x2 < 0, x3 < 0

⎫⎪⎬
⎪⎭ in R3.
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Proof of Theorem

“⇐ part”.

Assume that a risk neutral probability measure Q exists, that is,

Ŝ
∗
(0) = πŜ∗(1;Ω), where π = (Q(ω1) · · ·Q(ωK)). Consider a trad-

ing strategy h = (h0 h1 · · · hM)T ∈ R
M+1 such that Ŝ∗(1;Ω)h ≥

0 in all ω ∈ Ω and with strict inequality in at least one state.

Now consider Ŝ
∗
(0)h = πŜ∗(1;Ω)h, it is seen that Ŝ

∗
(0)h > 0 since

all entries in π are strictly positive and entries in Ŝ∗(1;Ω)h are either

zero or strictly positive. It is then impossible to have Ŝ(0)h = 0

and S∗(1;Ω)h ≥ 0 in all ω ∈ Ω, with strict inequality in at least one

state. Hence, no arbitrage opportunities exist.
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“⇒ part”.

First, we define the subset U in RK+1 which consists of vectors of

the form

⎛
⎜⎜⎜⎜⎝

−Ŝ
∗
(0)h

Ŝ
∗
(1;ω1)h

...

Ŝ
∗
(1;ωK)h

⎞
⎟⎟⎟⎟⎠, where Ŝ

∗
(1;ωk) is the kth row in Ŝ∗(1;Ω)

and h ∈ RM+1 represents a trading strategy. This subset is seen to

be a subspace. The convexity property of U is obvious.

Consider another subset R
K+1
+ defined by

R
K+1
+ = {x = (x0 x1 · · ·xK)T ∈ R

K+1 : xi ≥ 0 for all 0 ≤ i ≤ K},
which is a convex set in R

K+1.

We claim that the non-existence of arbitrage opportunities implies

that U and R
K+1
+ can only have the zero vector in common.
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Assume the contrary, suppose there exists a non-zero vector x ∈
U ∩ R

K+1
+ . Since there is a trading strategy vector h associated

with every vector in U , it suffices to show that the trading strategy

h associated with x always represents an arbitrage opportunity.

We consider the following two cases: −Ŝ
∗
(0)h = 0 or −Ŝ

∗
(0)h > 0.

(i) When Ŝ
∗
(0)h = 0, since x 
= 0 and x ∈ RK+1

+ , then the entries

Ŝ(1;ωk)h, k = 1,2, · · ·K, must be all greater than or equal to

zero, with at least one strict inequality. In this case, h is seen

to represent an arbitrage opportunity.

(ii) When Ŝ
∗
(0)h < 0, all the entries Ŝ(1;ωk)h, k = 1,2, · · · , K must

be all non-negative. Correspondingly, h represents a dominant

trading strategy and in turns h is an arbitrage opportunity.
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Since U ∩ RK+1
+ = {0}, by the Separating Hyperplane Theorem,

there exists a hyperplane that separates the pair of disjoint convex

sets: R
K+1
+ \{0} and U . This hyperplane must go through the origin,

so its equation is of the form [f,0]. Let f ∈ R
K+1 be the normal

to this hyperplane, then we have f · x > f · y, for all x ∈ R
K+1
+ \{0}

and y ∈ U .

[Remark: We may have f · x < f · y, depending on the orienta-

tion of the normal vector f . However, the final conclusion remains

unchanged.]
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Since U is a linear subspace so that a negative multiple of y ∈ U

also belongs to U . Note that f · x > f · y and f · x > f · (−y) both

holds only if f · y = 0 for all y ∈ U .

We have f ·x > 0 for all x in R
K+1
+ \{0}. This requires all entries in f

to be strictly positive. Note that if at least one of the components

(say, the ith component) of f is zero or negative, then we choose x

to be the ith coordinate vector. This gives f · x ≤ 0, a violation of

f · x > 0.
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From f · y = 0, we have

−f0Ŝ
∗
(0)h +

K∑
k=1

fkŜ
∗
(1;ωk)h = 0

for all h ∈ R
M+1, where fj, j = 0,1, · · · , K are the entries of f . We

then deduce that

Ŝ
∗
(0) =

K∑
k=1

Q(ωk)Ŝ
∗
(1;ωk), where Q(ωk) = fk/f0.

Consider the first component in the vectors on both sides of the

above equation. They both correspond to the current price and

discounted payoff of the riskless security, and all are equal to one.

We then obtain

1 =
K∑

k=1

Q(ωk).
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We obtain the risk neutral probabilities Q(ωk), k = 1, · · · , K, whose

sum is equal to one and they are all strictly positive since fj > 0, j =

0,1, · · · , K.

Remark

Corresponding to each risky asset,

S∗
m(0) =

K∑
k=1

Q(ωk)S
∗
m(1;ωk), m = 1,2, · · · , M.

Hence, the current price of any one of risky securities in the securities

model is given by the expectation of the discounted payoff under

the risk neutral measure Q.
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Equivalent martingale measure

• The risk neutral probability measure Q is commonly called the

equivalent martingale measure. “Equivalent” refers to the equiv-

alence between the physical measure P and martingale measure

Q [observing P(ω) > 0 ⇔ Q(ω) > 0 for all ω ∈ Ω]∗. The lin-

ear pricing measure falls short of this equivalence property since

q(ω) can be zero.

∗P and Q may not agree on the assignment of probability values to individual
events, but they always agree as to which events are possible or impossible.
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• Martingale property is defined for adapted stochastic processes∗.
In the context of one-period model, given the information on the

set of possible outcomes at t = 0,

S∗
m(0) = EQ[S∗

m(1;Ω)] =
K∑

k=1

S∗
m(1;ωk)Q(ωk). (1)

The discounted security price S∗
m(t) is said to be a martingale†

under Q.

∗A stochastic process is adapted to a filtration with respect to a measure. Say
S∗

m is adapted to F = {Ft; t = 0,1, · · · , T}, then S∗
m(t) is Ft-measurable.

†Martingale property with respect to Q and F:

S∗
m(t) = EQ[S∗

m(s + t)|Ft] for all t ≥ 0, s ≥ 0.
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Martingale property of discounted portfolio value (assuming the ex-

istence of Q)

• Let V ∗
1 (Ω) denote the discounted payoff of a replicating port-

folio. Since V ∗
1 (Ω) = Ŝ∗(1;Ω)h for some trading strategy h, by

Eq. (1),

V ∗
0 = (S∗

0(0) · · ·S∗
M(0))h

= (EQ[S∗
0(1;Ω)] · · ·EQ[S∗

M(1;Ω)])h

=
M∑

m=0

⎡
⎣ K∑

k=1

S∗
m(1;ωk)Q(ωk)

⎤
⎦ hm

=
K∑

k=1

⎡
⎣ M∑

m=0

S∗
m(1;ωk)Q(ωk)hm

⎤
⎦ = EQ[V ∗

1 (Ω)].

• The equivalent martingale measure Q is not necessarily unique.

Since “absence of arbitrage opportunities ” implies “law of one

price”, the expectation value EQ[V ∗
1 (Ω)] is single-valued under

all equivalent martingale measures.
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Calculation of the risk neutral measures

Consider the earlier securities model with the riskfree security and

only one risky security, where Ŝ(1;Ω) =

⎛
⎜⎝ 1 4

1 3
1 2

⎞
⎟⎠ and Ŝ(0) =

(1 3). The risk neutral probability measure

π = (Q(ω1) Q(ω2) Q(ω3)),

if exists, will be determined by the following system of equations

(Q(ω1) Q(ω2) Q(ω3))

⎛
⎜⎝ 1 4

1 3
1 2

⎞
⎟⎠ = (1 3).

Since there are more unknowns than the number of equations, the

solution is not unique. The solution is found to be π = (λ 1 −
2λ λ), where λ is a free parameter. In order that all risk neutral

probabilities are all strictly positive, we must have 0 < λ < 1/2.
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Under market completeness, if the set of risk neutral measures is

non-empty, then it must be a singleton.

Under market completeness, column rank of Ŝ(1;Ω) equals the num-

ber of states. Since column rank = row rank, then all rows of

Ŝ(1;Ω) are independent. If solution exists for

qŜ∗(1;Ω) = S∗(0),

then it must be unique.

Suppose we add the second risky security with discounted payoff

S∗
2(1) =

⎛
⎜⎝ 3

2
4

⎞
⎟⎠ and current discounted value S∗

2(0) = 3. With this

new addition, the securities model becomes complete.

With the new equation 3Q(ω1)+2Q(ω2)+4Q(ω3) = 3 added to the

system, this new securities model is seen to have the unique risk

neutral measure (1/3 1/3 1/3).
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Subspace of discounted gains

Let W be a subspace in RK which consists of discounted gains

corresponding to some trading strategy h. Note that W is spanned

by the set of vectors representing discounted gains of the risky

securities.

In the above securities model, the discounted gains of the first and

second risky securities are

⎛
⎜⎝ 4

3
2

⎞
⎟⎠ −

⎛
⎜⎝ 3

3
3

⎞
⎟⎠ =

⎛
⎜⎝ 1

0
−1

⎞
⎟⎠ and

⎛
⎜⎝ 3

2
4

⎞
⎟⎠ −

⎛
⎜⎝ 3

3
3

⎞
⎟⎠ =

⎛
⎜⎝ 0

−1
1

⎞
⎟⎠, respectively.

The discounted gain subspace is given by

W =

⎧⎪⎨
⎪⎩h1

⎛
⎜⎝ 1

0
−1

⎞
⎟⎠ + h2

⎛
⎜⎝ 0

−1
1

⎞
⎟⎠ , where h1 and h2 are scalars

⎫⎪⎬
⎪⎭ .
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For any risk neutral probability measure Q, we have

EQG∗ =
K∑

k=1

Q(ωk)

⎡
⎣ M∑

m=1

hmΔS∗
m(ωk)

⎤
⎦

=
M∑

m=1

hmEQ[ΔS∗
m] = 0.

For any G∗ = (G(ω1) · · ·G(ωK))T ∈ W , we have

πTG∗ = 0, where π = (Q(ω1) · · ·Q(ωK))T .

The risk neutral probability vector π must lie in the orthogonal

complement W⊥.
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Characterization of the set of neutral measures

Since the sum of risk neutral probabilities must be one and all prob-

ability values must be positive, the risk neutral probability vector π

must lie in the following subset

P+ = {y ∈ R
K : y1+y2+· · ·+yK = 1 and yk > 0, k = 1, · · ·K}.

Let R denote the set of all risk neutral measures, then R = P+∩W⊥.

In the above numerical example, W⊥ is the line through the origin

in R3 which is perpendicular to (1 0 −1) and (0 −1 1). The

line should assume the form λ(1 1 1) for some scalar λ. We

obtain the risk neutral probability vector π = (1/3 1/3 1/3).
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4.3 Valuation of contingent claims and complete markets

• A contingent claim can be considered as a random variable Y

that represents a terminal payoff whose value depends on the

occurrence of a particular state ωk, where ωk ∈ Ω.

• Suppose the holder of the contingent claim is promised to receive

the preset contingent payoff, how much should the writer of such

contingent claim charge at t = 0 so that the price is fair to both

parties.

• Consider the securities model with the riskfree security whose

values at t = 0 and t = 1 are S0(0) = 1 and S0(1) = 1.1,

respectively, and a risky security with S1(0) = 3 and S1(1) =⎛
⎜⎝ 4.4

3.3
2.2

⎞
⎟⎠.
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The set of t = 1 payoffs that can be generated by certain trading

strategy is given by h0

⎛
⎜⎝ 1.1

1.1
1.1

⎞
⎟⎠ + h1

⎛
⎜⎝ 4.4

3.3
2.2

⎞
⎟⎠ for some scalars h0 and

h1.

For example, the contingent claim

⎛
⎜⎝ 5.5

4.4
3.3

⎞
⎟⎠ can be generated by the

trading strategy: h0 = 1 and h1 = 1, while the other contingent

claim

⎛
⎜⎝ 5.5

4.0
3.3

⎞
⎟⎠ cannot be generated by any trading strategy associ-

ated with the given securities model.
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A contingent claim Y is said to be attainable if there exists some

trading strategy h, called the replicating portfolio, such that V1 = Y

for all possible states occurring at t = 1.

The price at t = 0 of the replicating portfolio is given by

V0 = h0S0(0) + h1S1(0) = 1 × 1 + 1 × 3 = 4.

Suppose there are no arbitrage opportunities (equivalent to the ex-

istence of a risk neutral probability measure), then the law of one

price holds and so V0 is unique.
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• Consider a given attainable contingent claim Y which is gen-

erated by certain trading strategy. The associated discounted

gain G∗ of the trading strategy is given by G∗ =
M∑

m=1

hmΔS∗
m.

Now, suppose a risk neutral probability measure Q associated

with the securities model exists, we have

V0 = EQV ∗
0 = EQ[V ∗

1 − G∗].

Since EQ[G∗] = 0 and V ∗
1 = Y/S0(1), we obtain

V0 = EQ[Y/S0(1)].

• Recall that the existence of the risk neutral probability measure

implies the law of one price. Does EQ[Y/S0(1)] assume the same

value for every risk neutral probability measure Q?
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This must be true by virtue of the law of one price since we cannot

have two different values for V0 corresponding to the same contin-

gent claim Y .

Risk neutral valuation principle:

The price at t = 0 of an attainable claim Y is given by the expec-

tation under any risk neutral measure Q of the discounted value of

the contingent claim.

Actually, there exists a stronger result: If EQ[Y/S0(1)] takes the

same value for every Q, then the contingent claim Y is attainable.

Corollary

If the risk neutral measure is unique, then for any contingent claim

Y, EQ[Y ∗] takes the same value for any Q (actually single Q). Hence,

any contingent claim is attainable so the market is complete.
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State prices

Suppose we take Y to be the following contingent claim: Y ∗ =

Y/S0(1) equals one if ω = ωk for some ωk ∈ Ω and zero otherwise.

This is just the Arrow security ek corresponding to the state ωk. We

then have

EQ[Y/S0(1)] = πek = Q(ωk).

The price of the Arrow security with discounted payoff ek is called

the state price for state ωk ∈ Ω. The state price for ωk is equal to

the risk neutral probability for the same state.

Any contingent claim Y can be written as a linear combination

of these basic Arrow securities. Suppose Y ∗ = Y/S0(1) =
K∑

k=1

αkek,

then the price at t = 0 of the contingent claim is equal to
K∑

k=1

αkQ(ωk).
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Example

Suppose

Y ∗ =

⎛
⎜⎝ 5

4
3

⎞
⎟⎠ and Ŝ∗(1;Ω) =

⎛
⎜⎝ 1 4

1 3
1 2

⎞
⎟⎠ ,

Y ∗ is seen to be attainable. We have seen that the risk neutral

probability is given by

π = (λ 1 − 2λ λ), where 0 < λ < 1/2.

The price at t = 0 of the contingent claim is given by

V0 = 5λ + 4(1 − 2λ) + 3λ = 4,

which is independent of λ. This verifies the earlier claim that

EQ[Y/S0(1)] assumes the same value for any risk neutral measure

Q.
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Complete markets

Recall that a securities model is complete if every contingent claim

Y lies in the asset span, that is, Y can be generated by some trading

strategy.

Consider the augmented terminal payoff matrix

Ŝ(1;Ω) =

⎛
⎜⎝ S0(1;ω1) S1(1;ω1) · · · SM(1;ω1)

... ... ...
S0(1;ωK) S1(1;ωK) · · · SM(1;ωK)

⎞
⎟⎠ ,

Y always lies in the asset span if and only if the column space of

Ŝ(1;Ω) is equal to R
K.

• Since the dimension of the column space of Ŝ(1;Ω) cannot be

greater than M +1, a necessary condition for market complete-

ness is that M + 1 ≥ K.
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• When Ŝ(1;Ω) has independent columns and the asset span is

the whole RK, then M + 1 = K. Now, the trading strategy

that generates Y must be unique since there are no redundant

securities. In this case, any contingent claim is replicable and

its price is unique.

• When the asset span is the whole R
K but some securities are

redundant, the trading strategy that generates Y would not be

unique.

• However, the price at t = 0 of the contingent claim is unique

under arbitrage pricing, independent of the chosen trading strat-

egy. This is a consequence of the law of one price, which holds

since a risk neutral measure exists.

• Non-existence of redundant securities is a sufficient but not nec-

essary condition for the law of one price.
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Non-attainable contingent claim

A non-attainable contingent claim cannot be priced using arbitrage

pricing theory. However, we may specify an interval (V−(Y ), V+(Y ))

where a reasonable price at t = 0 of the contingent claim should lie.

The lower and upper bounds are given by

V+(Y ) = inf{EQ[Ỹ /S0(1)] : Ỹ ≥ Y and Ỹ is attainable}
V−(Y ) = sup{EQ[Ỹ /S0(1)] : Ỹ ≤ Y and Ỹ is attainable}.

Here, V+(Y ) is the minimum value among all prices of attainable

contingent claims that dominate the non-attainable claim Y , while

V−(Y ) is the maximum value among all prices of attainable contin-

gent claims that are dominated by Y .
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Suppose V (Y ) > V+(Y ), then an arbitrageur can lock in riskless

profit by selling the contingent claim to receive V (Y ) and use V+(Y )

to construct the replicating portfolio that generates the attainable

Ỹ . The upfront positive gain is V (Y ) − V+(Y ).

How to solve for V+(Y )? Let R = W⊥ ∩ P+ denote the set of risk

neutral measures, with dim W⊥ = J. Let {Q1, · · · , QJ} denote the

set of independent basis vectors of R. Suppose Ỹ is attainable, and

write λ = EQ[Ỹ ∗], where Ỹ ∗ = Y/S0(1), then

λ = QT
j Ỹ

∗
, j = 1,2, · · · , J.

Procedure

Minimize λ ∈ R such that Ỹ ∗ ≥ Y ∗ and λ = QT
j Ỹ ∗, j = 1, · · · , J.

Remark: Since QT
j Ỹ ∗ assumes the same value for all j, by a previous

theorem, Ỹ is attainable.
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Example

Take Ŝ∗(1;Ω) =

⎛
⎜⎝1 2 6 9
1 3 3 7
1 6 12 19

⎞
⎟⎠, the sum of the first 3 columns

gives the fourth column. The first column corresponds to the dis-

counted terminal payoff of the riskfree security under the 3 possible

states of the world. The third risky security is a redundant security.

Let S∗(0) = (1 2 3 k). We observe that solution to

(1 2 3 k) = (π1 π2 π3)

⎛
⎜⎝1 2 6 9
1 3 3 7
1 6 12 19

⎞
⎟⎠ (1)

exists if and only if k = 6. That is, S3(0) = S0(0) + S1(0) + S2(0).

When k 
= 6, the law of one price does not hold. The last equation:

9π1 + 7π2 + 19π3 = k 
= 6 is inconsistent with the first 3 equations.
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We consider the linear system

S∗(0) = πŜ∗(1;Ω),

solution exists if and only if S∗(0) lies in the row space of Ŝ∗(1;Ω).

Uniqueness follows if the rows of Ŝ∗(1;Ω) are independent.

Since

S∗
3(1;Ω) = S∗

0(1;Ω) + S∗
1(1;Ω) + S∗

2(1;Ω),

the third risky security is replicable by holding one unit of each of

the riskfree security and the first two risky securities. The initial

price must observe the same relation in order that the law of one

price holds.

Here, we have redundant securities. Actually, one may show that

the law of one price holds if and only if we have existence of solution

to the linear system. In this example, when k = 6, we obtain

π =
(
1

2

2

3
− 1

6

)
.

This is not a risk neutral measure nor a linear pricing measure.
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Consider another example

(1 2 3 6) = (π1 π2 π3)

⎛
⎜⎝1 2 3 6
1 3 4 8
1 6 6 14

⎞
⎟⎠ ,

where the number of non-redundant securities is only 2. Note that

S∗
2(1;Ω) = S∗

0(1;Ω) + S∗
1(1;Ω) and

S∗
3(1;Ω) = S∗

0(1;Ω) + S∗
1(1;Ω) + S∗

2(1;Ω),

and the initial prices have been set such that

S∗
2(0) = S∗

0(0) + S∗
1(0) and S∗

3(0) = S∗
0(0) + S∗

1(0) + S∗
2(0),

so we expect to have the existence of solution.

However, since 2 = number of non-redundant securities < number

of states = 3, we do not have uniqueness of solution. Indeed, we

obtain

(π1 π2 π3) = (1 0 0) + t(3 − 4 1), t any value.
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In terms of linear algebra, we have existence of solution if the equa-

tions are consistent. Consider the present example, we have

π1 + π2 + π3 = 1

2π1 + 3π2 + 6π3 = 2

3π1 + 4π2 + 7π3 = 3

6π1 + 8π2 + 14π3 = 6

Note that the last two redundant equations are consistent.

Alternatively, we can interpret that the row vector S∗(0) = (1 2 3 6)

lies in the row space of Ŝ(1;Ω), which is spanned by {(1 2 3 6),

(0 1 1 2)}.
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Pricing of attainable contingent claims

Let V ∗
1 (1;Ω) denote the value of the attainable contingent claim.

Suppose the associated trading strategy to generate the replicating

portfolio is h, then

V ∗
1 = Ŝ∗(1;Ω)h.

The initial cost of setting up the replicating portfolio is

V ∗
0 = S(0)h.

Assuming π exists, where S(0) = πŜ(1;Ω) so that

V ∗
0 = πŜ(1;Ω)h = πV ∗

1 (1;Ω)

=
K∑

k=1

πkV ∗
1 (1;ωk), independent of h.

Even π is not a risk neutral measure or linear pricing measure, the

above pricing relation remains valid. Suppose π is not unique, do

we have different values for V ∗
0 ?

72



Using the same S(0) and Ŝ(1;Ω) as shown in equation (1), we

consider the contingent claim

⎛
⎜⎝ 5

7
13

⎞
⎟⎠. The claim is attainable by

holding one unit of the first risky security and second risky security.

Its price is seen to be

S∗
1(0) + S∗

2(0) = 2 + 3 = 5.

Applying the formula:

V ∗(0) =
3∑

k=1

πkV (1;ωk)

= 5(1 + 3t) + 7(−4t) + 13t = 5, independent of t.

This is not surprising. This is consistent with the law of one price.
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How to relate the existence of solution to

πS∗(1) = S(0) (A)

and the law of one price?

1. Suppose solution to (A) exists, let h and h′ be two trading

strategies such that their discounted terminal payoffs are the

same. That is,

S∗(1)h = V = V ′ = S∗(1)h′.
We then have

πS∗(1)(h − h′) = 0

⇒ S(0)(h − h′) = 0 ⇒ V0 = V ′
0.
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2. Suppose solution to (A) does not exist for some S(0), that is,

there exists S(0) that does not lie in the row space of S∗(1).
This implies dim(row space of S∗(1)) < M , where M is the

number of securities = number of columns in S∗(1).

Recall that

dim(null space of S∗(1)) + rank(S∗(1)) = M

so that dim(null space of S∗(1)) > 0.

Hence, there exists non-zero solution h to

S∗(1)h = 0.
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Furthermore, since row space = orthogonal complement of null

space, any of these non-zero solution h cannot be orthogonal to

S(0). Otherwise, this leads to contradiction as S(0) does not lie in

the row space.

Let h = h1−h2, where h1 
= h2, then there exist two distinct trading

strategies such that

S∗(1)h1 = S∗(1)h2.

The two strategies have the same discounted terminal payoff under

all states of the world. However, their initial prices are unequal since

S(0)h1 
= S(0)h2,

by virtue of the property: S(0)h 
= 0. Hence, the law of one price

does not hold.
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Financial Economics Linear Algebra: πS∗(1) = S(0)

law of one price

absence of 
dominant strategy

absence of 
arbitrage

exists

0

> 0

Remark The securities model contains the riskfree asset.
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Summary Arbitrage opportunity

A self-financing trading strategy is requiring no initial investment,

having no probability of negative value at expiration, and yet having

some possibility of a positive terminal portfolio value.

• Commonly it is assumed that there are no arbitrage opportuni-

ties in well functioning and competitive financial markets.

1. absence of arbitrage opportunities

⇒ absence of dominant trading strategies

⇒ law of one price
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2. absence of arbitrage opportunities ⇔ existence of risk neutral

measure

absence of dominant trading strategies ⇔ existence of linear

pricing measure.

3. The state prices are non-negative when a linear pricing mea-

sure exists and they become strictly positive when a risk neutral

measure exists.

4. Under the absence of arbitrage opportunities, the risk neutral

valuation principle can be applied to find the fair price of an

attainable contingent claim.
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