
MATH685Z — Mathematical Models in Financial Economics

Topic 5 – Investment, consumption and endowment

Key question How to choose the best strategy for transforming

wealth invested at time t = 0 into wealth at t = 1, with possible

endowment and a portion of wealth being consumed at time t = 0?

Measure of performance – expected utility criterion

Let u(W,ω) represent the utility of amount W , P be a probability

measure on Ω, with P(ω) > 0 for all ω ∈ Ω.

u : R × Ω → R is a function such that W → u(W,ω) is differentiable,

concave and strictly increasing for each ω ∈ Ω, ω is the state and

Eu(V1) =
∑
ω∈Ω

P(ω)u(V1(ω), ω).

In most applications, it suffices for u to depend on W only.
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Assumptions

• Uncertainty – listing of all basic events or states that could occur

and their probabilities; sample space is Ω = {ω1, · · · , ωK}; each

state ω ∈ Ω occurs with a positive probability P(ω).

• Securities – contracts for a future delivery of cash, contingent

on the prevailing state

• Endowments – cash that the traders receive from sources other

than trading.

• There is a finite number N of endogenous securities (all securi-

ties are created by traders, no entities outside the model).
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Payouts of the securities

D =

⎛⎜⎝ d1(ω1) · · · dN(ω1)
· · · · · ·

d1(ωK) · · · dN(ωK)

⎞⎟⎠
dn is a random variable defined on the sample space Ω,1 ≤ n ≤ N .

• There are a finite number I of traders. At time 0, traders know

only the set of possible states Ω, and at time T they know the

prevailing state ω ∈ Ω.

• All traders are price takers. They determine their demands and

supplies of securities without paying attention to the impact that

their actions on the ultimate market prices of securities.
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• Endowment process

At time 0, trader i receives an endowment ei(0). At time T ,

he receives the endowment ei(T, ω) contingent on the prevailing

state ω.

ei = {ei(0), ei(T)} is the endowment process of trader i.

• Consumption process

The uncertain terminal endowments and payouts of securities

introduce uncertainty into the consumption at time T .

� At time 0, given security prices P1, · · · , PN , each trader i faces

constraints on consumption imposed by her endowment process

ei = {ei(0), ei(T)}.
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Budget set

For an endowment process ei and security prices

P = (P1, · · · , PN)

the budget set B(ei, P) of trader i is the subset of the consumption

set X such that c ∈ B(ei, P) iff there are numbers θ1, · · · , θN such

that

c(0) = ei(0) −
N∑
n=1

θnPn

c(T) = ei(T) +
N∑
n=1

θndn.

θ = (θ1 · · · θN) is called the trading strategy.

The consumption process {c(0), c(T)} is said to be generated by the

endowment process ei and the trading strategy θ.
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Example K = 2, N = 4

D =

(
100 40 60 120
100 0 40 80

)
P = (50 4 22 44).

A trader has the endowment process

e(0) = 9, e(T, ω1) = 10, e(T, ω2) = 20.

The consumption set X = R3. A consumption process {c(0), c(T, ω1),

c(T, ω2)} belongs to the trader’s budget set iff the following system

of equations

−50θ1 − 4θ2 − 22θ3 − 44θ4 = c(0) − 9

100θ1 + 40θ2 + 60θ3 + 120θ4 = c(T, ω1) − 10

100θ1 + 40θ3 + 80θ4 = c(T, ω2) − 20

has a solution θ1, θ2, θ3 and θ4. The solvability condition may dictate

certain condition on the consumption process.
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Portfolio optimization

Assume that there are N risky assets and single riskfree asset.

Let H denote the set of all trading strategies, H = RN+1. Let v ∈ R

be a specified scalar representing the initial wealth at t = 0.

Optimal portfolio problem:

maximize
H ∈ H Eu(V1)

subject to V0 = v

Since V1 = B1V
∗
1 and V ∗

1 = V ∗
0 +G∗, the above is the same as

maximize E[u(B1[v+H1ΔS∗
1 + · · · +HNΔS∗

N ])]. (1)

Here, B1 is the money market account at t = 1, with B0 = 1, V ∗
1 is

the discount value process.
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Theorem If there exists an optimal solution of the portfolio prob-

lem (2), then there are no arbitrage opportunities.

Proof We prove by contradiction. Suppose Ĥ is an optimal solu-

tion and H is an arbitrage opportunity. Write H̃ = Ĥ +H, then

v+
N∑
n=1

H̃nΔS∗
n = v+

N∑
n=1

ĤnΔS∗
n +

N∑
n=1

HnΔS∗
n ≥ v+

N∑
n=1

ĤnΔS∗
n.

↑
H is an arbitrage opportunity

The inequality is strict for at least one ω ∈ Ω.

Since u is strictly increasing in wealth and P(ω) > 0 for all ω ∈ Ω,

the objective value in (1) is strictly greater under H̃ than under Ĥ.

Hence, Ĥ cannot be an optimal solution.
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Remark

If there exists an optimal solution to (1), then there exists a risk

neutral probability measure.

Theorem If (H, v) is a solution of the optimal portfolio problem,

then a risk neutral probability measure exists, which is related to

the optimal solution V1(ω) as follows:

Q(ω) =
P(ω)B1(ω)u′(V1(ω), ω)

E[B1u′(V1)]
, ω ∈ Ω, (2)

Remark

Eq. (2) gives the relation between Q(ω) and the optimal solution

V1(ω) for any utility function u. Recall that Q(ω) depends only on

S∗(0) and S∗(1;ω) but not u. In case when Q is not unique, this

would imply multiple optimal solutions for any given u.
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Proof Rewrite the objective function E[u(V1)] as

Eu(V1) =
∑
ω∈Ω

P(ω)u(B1(ω)[v +H1ΔS∗
1(ω) + · · · +HNΔS∗

N(ω)]), ω).

The first order necessary condition is

0 =
∂

∂Hn
Eu(V1)

=
∑
ω∈Ω

P(ω)u′(B1(ω)[v+H1ΔS∗
1(ω) + · · · +HnΔS∗

N(ω)], ω)B1(ω)ΔS∗
n(ω)

= E[B1u
′(V1)ΔS∗

n], n = 1, · · · , N.
On the other hand, a risk neutral probability measure must satisfy

0 = EQ[ΔS∗
n] =

∑
ω∈Ω

Q(ω)ΔS∗
n(ω), n = 1, · · · , N.
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From the first order condition, we may write

(P (ω1)B1(ω1)u
′(V1(ω1)) · · ·P (ωK)B1(ωK)u′(V1(ωK)))

S︷ ︸︸ ︷⎛⎝ S∗
1(1;ω1) · · · S∗

N(1;ω1)
... ...

S∗
1(1;ωK) · · · S∗

N(1;ωK)

⎫⎬⎭
= E[B1u

′(V1)](S
∗
1(0) · · ·S∗

N(0)),

and the risk neutral probability values satisfy

(Q1(ω1) · · ·Q(ωK))S = (S∗
1(0) · · ·S∗

N(0)).

Assuming that a right inverse of S exists (not necessarily unique),

then we can deduce the following relation between Q(ω) and u′(V1(ω))

as follow

Q(ω) =
P(ω)B1(ω)u′(V1(ω))

E[B1u′(V1)]
, ω ∈ Ω.

Note that P(ω)B1(ω)u′(V1(ω))/E[Bu′(V1)] > 0 for all ω ∈ Ω since u

is strictly increasing and

K∑
k=1

P(ω)B1(ω)u′(V1(ω))

E[B1u′(V1)]
= 1.
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1. Converse of the above theorem: if there exists a risk neutral

measure Q, then does the optimal portfolio problem have a so-

lution?

2. The direct solution of the non-linear system

E[B1u
′(V1)ΔS∗

n] = 0, n = 1,2, · · · , N
for H is complicated. How to find some convenient mean to get

around it?

Definition
A securities market is said to be viable if there exists a function

u : R × Ω → R and an initial wealth v such that W → u(W,ω) is

concave and strictly increasing for each ω ∈ Ω and the corresponding

optimal portfolio problem has an optimal solution H.

Theorem The securities market model is viable iff there exists a

risk neutral probability measure Q.
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Proof “⇒” part is shown by eq. (2). We only need to consider

“⇐” part. It suffices to show by assuming the existence of a risk neu-

tral probability measure, cleverly select u and v, then demonstrate

the existence of the optimal solution to the portfolio problem.

Now, we choose u(W,ω) = W
Q(ω)

P(ω)B1(ω)
while v will be arbitrary.

For an arbitrary (H1, · · · , HN), we have

E[u(B1{v+H1ΔS∗
1 + · · · +HNΔS∗

N}, ω)]

= ΣP(ω)B1(ω){v+H1ΔS∗
1 + · · · +HNΔS∗

N}Q(ω)/[P(ω)B1(ω)]

= ΣQ(ω){v +H1ΔS∗
1 + · · · +HNΔS∗

N}
= v+H1EQ[ΔS∗

1] + · · · +HNEQ[ΔS∗
N ] = v.

Hence, every vector (H1, · · · , HN) with the same initial wealth v

gives rise to the same objective function. That is, all such trading

strategies are optimal. Hence, the theorem is true by this clever

choice of utility function.
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Example Consider the following discounted price process

n S∗
n(0) S∗

n(1)
ω1 ω2 ω3

1 6 6 8 4
2 10 13 9 8

Solve for the risk neutral probability measure

6 = 6Q(ω1) + 8Q(ω2) + 4Q(ω3)

10 = 13Q(ω1) + 9Q(ω2) + 8Q(ω3)

1 = Q(ω1) +Q(ω2) +Q(ω3)

we obtain the unique solution:

(Q(ω1) Q(ω2) Q(ω3)) = (1/3 1/3 1/3).
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Suppose we choose the utility function: u(W ) = − exp(−W ) so that

u′(W ) = exp(−W ). The necessary conditions:

E[B1u
′(V1)ΔS∗

n] = 0, n = 1,2, · · · , N,
become the following system of non-linear algebraic equations

0 = P(ω1) exp
{
−10

9
(v+ 0H1 + 3H2)

}
10

9
· 0

+ P(ω2) exp
{
−10

9
(v+ 2H1 −H2)

}
10

9
· 2

+ P(ω3) exp
{
−10

9
(v − 2H2 − 2H2)

}
10

9
(−2)

0 = P(ω1) exp
{
−10

9
(v+ 0H1 + 3H2)

}
10

9
(3)

+ P(ω2) exp
{
−10

9
(v+ 2H1 −H2)

}
10

9
(−1)

+ P(ω3) exp
{
−10

9
(v − 2H1 − 2H2)

}
10

9
(−2).

It is quite complicated to solve for H1 and H2.
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More efficient computational technique

The objective function H → Eu(V1) can be viewed as the composi-

tion of two functions:

H → V1 (maps trading strategies into random variables)

V1 → Eu(V1) (maps random variables into real numbers)

Two-step process

1. Identify the optimal random variable V1, the value of V1 that

maximizes Eu(V1) over the subset of feasible random variables.

2. Compute the trading strategy H that generates this V1. This is

related to the solution of a linear system of equations.
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For step one, we need to specify the subset of feasible random

variables correctly and conveniently.

If the securities model is complete (every contingent claim lies in

the asset span), the subset is simply

Wv = {W ∈ R
K : EQ[W/B1] = v}.

Wv is called the set of attainable wealths.

(i) Under any trading strategy H with V0 = v, one has EQ[V1/B1] =

v by the risk neutral valuation principle.

(ii) For any contingent claim W ∈ Wv, there exists a trading strategy

H such that V0 = v and V1 = W .
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Solution of the first subproblem

maximize Eu(W )

subject to W ∈ Wv

When the model is complete, the Lagrangian formulation is

maximize Eu(W ) − λ{EQ[W/B1] − v}.
Introducing L = Q/P (state price density)

Eu(W ) − λ{EQ[W/B1] − v}
= E[u(W ) − λ{LW/B1 − v}]
=

∑
ω
P(ω)[u(W (ω)) − λ{L(ω)W (ω)/B1(ω) − v}].

If W maximizes the above quantity, then the necessary conditions

are (one equation for each ω ∈ Ω)

u′(W (ω)) = λL(ω)/B1(ω), ω ∈ Ω.



Recall the earlier relation between Q and u′(V1), where

Q(ω) =
P(ω)B1(ω)u′(V1(ω), ω)

E[B1u′(V1)]
, ω ∈ Ω,

so that λ is identified as E[B1u
′(Ŵ )], where Ŵ is the optimal solu-

tion.

Let I denote the inverse function corresponding to u′, we then have

W (ω) = I(λL(ω)/B1).

How to compute λ? From the constraint condition: EQ[W/B1] = v,

we obtain

EQ[I(λL/B1)/B1] = v.
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State prices

Assuming no discount effect, let

Q(ωk) = state price of state ωk
= price of the Arrow-Debreu security sk

which pays off $1 if ωk occurs

Q(ωk) = eTkQ = EQ[sk] = E[Lsk]

where L(ω) = Q(ω)/P(ω) is called the state price density (also called

pricing kernel).
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Example Take u(W ) = − exp(−W ) so that u′(W ) = exp(−W ).

We have u′(W ) = i iff W = − ln i so that I(i) = − ln i.

W = − ln(λL/B1) = − lnλ− lnL/B1

To solve for λ, we use

v = −EQ[B−1
1 ln(λL/B1)] = −(lnλ)EQB

−1
1 − EQ[ln(L/B1)/B1].

Hence, the correct value of λ is

λ = exp

⎛⎝−v −EQ[B−1
1 ln(L/B1)]

EQB
−1
1

⎞⎠
so that

W =
v+ EQ[B−1

1 ln(L/B1)]

EQB
−1
1

− ln(L/B1).

It is seen that EQ[W/B1] = v is satisfied.
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Putting back into u(W ) = − exp(−W ), and observing u′ = −u we

have

u(W ) = − exp

⎧⎨⎩−v+ ln(L/B1)EQB
−1
1 − EQ[B−1

1 ln(L/B1)]

EQB
−1
1

⎫⎬⎭ = −λL
B1

so that the optimal value of the objective function is

Eu(W ) = −λE[L/B1] = −λEQB−1
1 .

The optimal wealth W is obtained and it depends on the underlying

securities market model only via the probability measures P and Q.

That is, the true measure and risk neutral measure comprise what

can be thought of as a sufficient statistic for the optimal portfolio

subproblem.
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Continued with the numerical example

Let P(ω1) = 1/2, P(ω2) = P(ω3) = 1/4 so that

L(ω1) = 2/3, L(ω2) = L(ω3) = 4/3. With r = 1/9 so that B1 =

10/9,

EQ[ln(L/B1)] =
1

3

[
ln

(
2

3
· 9

10

)
+ 2 ln

(
4

3
· 9

10

)]
= −0.04873

so that the optimal attainable wealth is

W = v(1 + r) + EQ[ln(L/B1)] − ln(L/B1)

=

{
v(10/9) + 0.46209 ω = ω1
v(10/9) − 0.23105 ω = ω2 or ω = ω3

.
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Now

λ = exp
{
−10

9
v+ 0.04873

}
so the optimal value of the objective function is

E[u(W )] = −λEQB−1
1 = − 9

10
λ.

Note that this is consistent to λ = E[B1u
′(V1)]. Once the optimal

attainable wealth W is computed, we solve for the optimal trading

strategy H by solving W/B1 = v+G∗.
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In state ω1

W (ω1)/B1 = v+
9

10
(0.46209) = v+ 0.41590;

v+G∗(ω1) = v+H1(6 − 6) +H2(13 − 10) = v+ 3H2.

Similar procedures are carried for states ω2 and ω3. We obtain

ω1 : 0.41590 = 0 ·H1 + 3H2
ω2 : −0.20795 = 2H1 −H2
ω3 : −0.20795 = −2H1 − 2H2

⎫⎪⎬⎪⎭ ⇒ H1 = −0.03466
H2 = 0.13863

.

Lastly, we compute H0 using

V0 = v = H0 + 6H1 + 10H2 so that H0 = v − 1.17834.

Check that this trading strategy satisfies the first order condition.
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Consumption-investment problem

� A consumption process C = (C0, C1) consists of a non-negative

scalar C0 and a non-negative random variable C1.

� A consumption-investment plan consists of a pair (C,H) where

C is a consumption process and H is a trading strategy.

1. C0 = time zero consumption

V0 = H0 +ΣHnSn(0) = amount invested at time zero. Amount

of money available at time zero = ν ≥ C0 + V0.

2. V1 = H0B1 + ΣHnSn(1) = amount of money available at t = 1

so C1 ≤ V1.

We assume that a sensible investor who can consume only at t = 0

and t = 1 would not leave money “lying in the drawer”.
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Throughout the subsequent analysis, we always assume the absence

of arbitrage opportunities so that a risk neutral probability measure

exists.

A consumption-investment plan is said to be admissible if

(1) C0 + V0 = ν and (2) C1 = V1. We always assume ν ≥ 0.

If (C,H) is admissible, then C1 is an attainable contingent claim

with

EQ[C1/B1] = EQ[V1/B1] = V0

for every risk neutral measure Q, and correspondingly,

EQ[C0 + C1/B1] = ν.
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Given ν ≥ 0 and some consumption process C, how to we know

whether there exists some trading strategy H such that (C,H) is

admissible?

1. Well, if C1 is an attainable contingent claim, then there exists

some trading strategy H such that

C1 = V1 = H0B1 + ΣHnSn.

2. Further, if EQ[C0 + C1/B1] = ν is satisfied for some Q, then

C0 + V0 = ν, in which case (C,H) is admissible.

Summary

Let the initial amount of money ν ≥ 0 and the consumption pro-

cess C be fixed. There exists a trading strategy H such that the

consumption-investment plan (C,H) is admissible if and only if

C0 + EQ[C1/B1] = ν

for every risk neutral probability measure Q.
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Example

n S∗
n S∗

n(1)
ω1 ω2 ω3

1 6 6 8 4
2 10 13 9 8

The securities model is complete with Q = (1/3,1/3,1/3). In order

for (C0, C1) to be a part of an admissible consumption-investment

plan, we must have

ν − C0 =
9

10
EQ[C1] =

3

10
[C1(ω1) + C1(ω2) + C1(ω3)].

There is only one constraint involving C0 and C1(ω).
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Maximization problem

An investor starts with initial wealth ν and wants to choose an

admissible consumption-investment plan so as to maximize the ex-

pected value of the utility of consumption at both times zero and

one.

u : R+ → R is concave, differentiable and strictly increasing.

Maximize u(C0) +E[u(C1)]

subject to

C0 +H0B0 +
N∑
n=1

HnSn(0) = ν

C1 −H0B1 −
N∑
n=1

HnSn(1) = 0 for all ω ∈ Ω

C0 ≥ 0, C1 ≥ 0, H ∈ R
N+1
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Example Consider the above securities model:

Take u(C) = lnC. Since lim
C→0+

lnC is −∞, we may drop the explicit

non-negativity constraint.

Given P(ω1) = 1/2, P(ω2) = P(ω3) = 1/4 and r = 1/9:

Maximize lnC0 +
1

2
lnC1(ω1) +

1

4
lnC1(ω2) +

1

4
lnC1(ω3)

subject to C0 = ν −H0 − 6H1 − 10H2

C1(ω1) =
10

9
H0 +

60

9
H1 +

130

9
H2

C1(ω2) =
10

9
H0 +

80

9
H1 +

90

9
H2

C1(ω3) =
10

9
H0 +

40

9
H1 +

80

9
H2.
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After some simplication:

Maximize

ln(ν −H0 − 6H1 − 10H2) +
1

2
ln

(
10

9
H0 +

60

9
H1 +

130

9
H2

)
+

1

4
ln

(
10

9
H0 +

80

9
H1 +

90

9
H2

)
+

1

4
ln

(
10

9
H0 +

40

9
H1 +

80

9
H2

)
.

The necessary conditions are:

− 1

C0
+

1

2

10

9

1

C1(ω1)
+

1

4

10

9

1

C1(ω2)
+

1

4

10

9

1

C1(ω3)
= 0

− 6

C0
+

1

2

60

9

1

C1(ω1)
+

1

4

80

9

1

C1(ω2)
+

1

4

40

9

1

C1(ω3)
= 0

10

C0
+

1

2

130

9

1

C1(ω1)
+

1

4

90

9

1

C1(ω2)
+

1

4

80

9

1

C1(ω3)
= 0.

Solve for H0, H1 and H2, then obtain C0, C1(ω1), C1(ω2) and C1(ω3).
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Solution of the maximization problem

Differentiate the objective function with respect to H0, · · · , HN suc-

cessively and substitute for C0 and C1. The following N + 1 first

order necessary conditions are obtained:

u′(C0) = E[B1u
′(C1)]

u′(C0)Sn(0) = E[u′(C1)Sn(1)], n = 1, · · · , N.
Recall that C0 and C1 must be both non-negative. If u is chosen

such that u(C) → −∞ as C → 0+, then these constraints will not

be binding.

Theorem

If C is a part of a solution to the optimal consumption-investment

problem with C0 ≥ 0 and C1(ω) ≥ 0 for all ω, then

Q(ω) = P(ω)B1(ω)
u′(C1(ω))

u′(C0)
.
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Proof

In a similar manner, we have

(P(ω1)B1(ω1)u
′(C1(ω1)) · · ·P(ωK)B1(ωK)u′(C1(ωK)))S

= u′(C0)(S
∗
1(0) · · ·S∗

N(0)),

and upon comparing with

(Q1(ω1) · · ·Q(ωK))S = (S∗
1(0) · · ·S∗

N(0)).

we deduce that

Q(ω) = P(ω)B1(ω)
u′(C1(ω))

u′(C0)
.

Note that P(ω)B1(ω)
u′(C1(ω))

u′(C0)
> 0 and

K∑
k=1

P(ωk)B1(ωk)
u′(C1(ωk))

u′(C0)
= 1.
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Risk neutral computational approach (consumption-investment

problem)

Alternative formulation: maximize u(C0) + E[u(C1)]

subject to C0 + EQ[C1/B1] = ν

C0 ≥ 0 and C1 ≥ 0.

First, we analyze the constrained problem:

Maximize u(C0) + E[u(C1)] − λ{C0 +E[C1L/B1] − ν}.
Assume that we choose an utility function such that the optimal

solution features strictly positive consumption values.
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Consider the satisfaction of the first order conditions:

u′(C0) = λ and u′(C1(ω)) = λL/B1,

we have

C0 = I(λ) and C1(ω) = I(λL/B1).

What is the governing equation for λ?

I(λ) + EQ[I(λL/B1)/B1] = ν.

Solution generally exists if I(λ) is monotonic. If the corresponding

values of C0 and C1 are non-negative, then they must be an optimal

solution.

36



Example

Suppose u(C) = lnC so that u′(C) = 1/C and I(i) = 1/i.

C0 = 1/λ and C1(ω) =
1

λL
/B1

and
1

λ
+

1

λ
EQ[L−1] =

1

λ
+

1

λ
E[1] =

2

λ
= ν,

so λ = 2/ν and C0 = ν/2, C1(ω) = νB1(ω)P(ω)/[2Q(ω)]. Both

C0 and C1 are non-negative if ν ≥ 0. The maximum value of the

objective function is

2 ln
ν

2
+E

[
ln
νB1

L

]
.

With L(ω1) = 2/3, L(ω2) = L(ω3) = 4/3 and r = 1/9

C1(ω) = ν
5

9
L−1 =

{
5
6ν if ω = ω1
5
12ν if ω = ω2 or ω = ω3

.
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Note that the first order conditions are satisfied. Lastly, we compute

the optimal H1 and H2 using
C1

B1
= V0 +G∗ =

ν

2
+G∗:

3

4
ν =

1

2
ν + 0H1 + 3H2

3

8
ν =

1

2
ν + 2H1 −H2

3

8
ν =

1

2
ν − 2H1 − 2H2

2 unknowns: H1, H2 but 3 equations. Solution exists provided that

C1 is attainable. By enforcing EQ[C1/B1] to have the same value

for all Q,C1 is guaranteed to be attainable.

The solution is given by: H1 = −ν/48, H2 = ν/12.

From
ν

2
= H0 + 6H1 + 10H2, we obtain H0 = − 5

24
ν.
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Generalizations

1. The objective function is given as u(C0) + βE[u(C1)], where

0 < β ≤ 1; here β is considered as the discount factor.

2. Allow the consumer to have endowment (income) Ẽ at time

t = 1, where Ẽ is a specified random variable. The second

constraint becomes

C1 −H0B1 −
N∑
n=1

HnSn(1) = Ẽ.

The pair (ν, Ẽ) is called the endowment process for the con-

sumer.

� The consumption-investment plan (C,H) is admissible if and

only if

C0 + EQ[(C1 − Ẽ)/B1] = ν.
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Complete markets

Definitions

A contingent claim can be considered as a random variable Y that

represents a terminal payoff whose value depends on the occurrence

of a particular state ωk, where ωk ∈ Ω.

A securities model is complete if every contingent claim Y lies in the

asset span, that is, Y can be generated by some trading strategy.

S(1;Ω) =

⎛⎜⎝ S1(1;ω1) · · · SM(1;ω1)
... ...

S1(1;ωK) · · · SM(1;ωK)

⎞⎟⎠ .

• Y always lies in the asset span iff the column space of S(1;Ω)

is equal to RK.

• A necessary condition for market completeness: M ≥ K.
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• When there is no redundant security, the trading strategy that

generates Y must be unique.

• Under market completeness, if the set of risk neutral probability

measures is non-empty, then it must be a singleton.

Proof

Let M denote the set of all risk neutral probability measures. We

quote the following well known result without proof.

“The contingent claim Y is attainable iff EQ[Y/B1] takes the

same value for every Q ∈M .”

The above result is consistent with the law of one price.
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We prove by contradiction. Assume market is complete so that

every Y is attainable but M has two distinct risk neutral probability

measures, Q and Q̂. There must exist some state ωk with Q(ωk) �=
Q̂(ωk).

Take

Y (ω) =

{
B1(ωk) ω = ωk
0 otherwise

,

then

EQ[Y/B1] = Q(ωk) �= Q̂(ωk) = E
Q̂
[Y/B1].

This leads to a contradiction.
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Incomplete markets

When the market is incomplete, then a non-attainable contingent

claim cannot be priced using risk neutral valuation principle.

• We still can specify an interval (V−(Y ), V+(Y )) where a reason-

able price at t = 0 of the contingent claim should lie.

V+(Y ) = inf{EQ[Ỹ /B1] : Ỹ ≥ Y and Ỹ is attainable}
V−(Y ) = sup{EQ[Ỹ /B1] : Ỹ ≤ Y and Ỹ is attainable}.

• V+(Y ) can be seen as the minimum value among all prices of

attainable contingent claims that dominate the non-attainable

claim Y .
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What happens when V (Y ) > V+(Y )?

An arbitrageur can lock in riskless profit by selling the contingent

claim to receive V (Y ) and use V+(Y ) to construct the replicating

portfolio that generates the attainable Ỹ .

• The upfront positive gain is V (Y ) − V+(Y ).

• Since Ỹ ≥ Y , the replicating portfolio always dominates Y so

that no loss at expiry is ensured.
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How to characterize the set of all risk neutral measures M?

M = W⊥ ∩ P+

W = {X ∈ RK : X = G∗ for some trading strategy H}, where

discount gain = G∗ =
M∑

m=1

HmΔS∗
m.

W⊥ = {Y ∈ R
K : XTY = 0 for all X ∈W}

P+ = {X ∈ R
K : X1 + · · · +XK = 1, X1 > 0, · · · , XK > 0}.

This is because

GTQ = EQ[G∗] =
K∑
k=1

Q(ωk)

⎡⎣ M∑
m=1

hmΔS∗
n(ωk)

⎤⎦
=

M∑
m=1

hmEQ[ΔS∗
m] = 0

and Q(ω) > 0,ΣQ(ω) = 1.
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Numerical example

Consider

S∗
0 = (3 3) and S∗(1;ω) =

⎛⎝ 4 3
3 2
2 4

⎞⎠ ,

the discounted gains of the two risky securities are

⎛⎝ 1
0
−1

⎞⎠ and

⎛⎝ 0
−1
1

⎞⎠.

W =

⎧⎨⎩h1

⎛⎝ 1
0
−1

⎞⎠+ h2

⎛⎝ 0
−1
1

⎞⎠ , where h1 and h2 are scalars

⎫⎬⎭ .

W⊥ is the line through the origin which is perpendicular to

⎛⎝ 1
0
−1

⎞⎠ and

⎛⎝ 0
−1
1

⎞⎠ .

The line should assume the form λ

⎛⎝ 1
1
1

⎞⎠. Together with the constraints that

sum of components equals one and every component is positive, we obtain

Q =

(
1

3

1

3

1

3

)
.
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Let Qj ∈ M = W⊥ ∩ P+, j = 1, · · · J are chosen to be independent

vectors, thus forming a basis of W⊥ (assume to have dimension J).

Then

W = {X ∈ R
K : XTQj = 0, j = 1,2, · · · , J}.

How to solve for V+(Y )?
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Solve the following linear program

minimize λ

subject to

Ỹ ≥ Y

U = Ỹ /B1

λ = UTQ1
...

λ = UTQJ

λ ∈ R, Ỹ ∈ RK.

We enforce the condition that EQ[Ỹ /B1] takes the same value for

every risk neutral measure Q.

If λ and Ỹ are part of the optimal solution of the above linear

program problem, then λ = V+(Y ) and Ỹ is an attainable contingent

claim with Ỹ ≥ Y .
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Optimal portfolios in incomplete markets

Need to properly identify the set of attainable wealths.

A contingent claim (or wealth) W is attainable iff EQ[W/B1] takes

the same value for every risk neutral probability measure Q ∈M .

Wv = {W ∈ R
K : EQ[W/B1] = v, Q ∈M},

where Wv is the set of wealths that can be generated starting with

initial capital v.

If there exists a finite number of independent vectors Q(1), · · · , Q(J)

such that every element of M can be expressed as a linear combi-

nation of these J vectors. We have

EQ[W/B1] = v for all Q ∈M iff EQ(J)[W/B1] = v, j = 1,2, · · · , J.
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The optimal portfolio problem becomes

maximize Eu(W )

subject to EQ(j)[W/B1] = v, j = 1,2, · · · , J.

Define Lj = Q(j)/P , maximize Eu(W ) −
J∑

j=1

λj{E[LjW/B1] − v}.

The first order conditions, one for each ω, give

u′(W (ω)) =
J∑

j=1

λjLj(ω)/B1(ω), ∀ω ∈ Ω,

or

W (ω) = I

⎡⎣ J∑
j=1

λjLj(ω)/B1(ω)

⎤⎦ , ∀ω ∈ Ω.

We need to solve for the Lagrangian multipliers from the following

set of equations.

E[LjI(λ1L1/B1 + · · · + λJLJ/B1)/B1] = v, j = 1, · · · , J.
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Example K = 3, N = 1, r = 1/9, S1(0) = 5

ω S1(ω) S∗
1(ω) P(ω)

ω1 20/3 6 1/3
ω2 40/9 4 1/3
ω3 30/9 3 1/3

{
Q1 −Q2 − 2Q3 = 0
Q1 +Q2 +Q3 = 1

.

The model is incomplete with M consisting of all probability mea-

sures of the form

Q = (θ,2 − 3θ,−1 + 2θ) where
1

2
< θ <

2

3
.

Note that dim W = 1, dim W⊥ = 2 so that the set of risk neutral

measures is generated by one free parameter.
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A contingent claim X = (X1 X2 X3) is attainable iff

X1 − 3X2 + 2X3 = 0.

This is the plane spanned by (1 1 1)T and (6 4 3)T .

Say, take θ = 1/2 and θ = 1/3, we obtain

Q(1) =
(
1

2

1

2
0
)

and Q(2) =
(
2

3
0

1

3

)
.

Note that Q(1) and Q(2) are obtained by taking the two endpoints

in the range
1

2
< θ <

2

3
.

L1 =
(
3

2

3

2
0
)

and L2 = (2 0 1).

Remark

We have relaxed the positivity condition on values of Q to non-

negativity condition instead of the usual positivity condition. In this

case, the probability measure is called a pricing measure.
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RecallW (ω) = I

⎡⎣ 2∑
j=1

λjLj(ω)/B1(ω)

⎤⎦. Taking u(W ) = lnW,u′(W ) =

1/W and I(i) = 1/i, so that

1

3λ1 + 4λ2
+

1

3λ1
= v

1

9λ1 + 12λ2
+

1

3λ2
= v.

The unique (non-negative) solution is

λ1 =
0.46482

v
and λ2 =

0.53519

v
.
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W (ω) =
v

0.46482
(

9
10

)
L1(ω) + 0.53519

(
9
10

)
L2(ω)

=

⎧⎪⎨⎪⎩
0.62860v, ω = ω1
1.59360v, ω = ω2
2.07611v, ω = ω3

.

Note that W (ω) satisfies X1 − 3X2 + 2X3 = 0.

Solve H1 and H0 from

⎧⎨⎩ H0 + 6H1 =
(

9
10

)
(0.6286)v

H0 + 4H1 =
(

9
10

)
(1.5936)v

yielding H0 = 3.17124v and H1 = −0.43425v.

The optimal objective value is 0.24409 + ln v = E[lnW ].
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Alternative approach

• Add one or more securities to the model such that it is made

to be complete. The computation is easier since it is done for

a complete market.

• Solve the optimal portfolio problem with the constraint that no

position can be taken in any of the added fictitious securities.

Be careful that when adding new fictitious securities, one has to

avoid adding arbitrage opportunities.
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Equilibrium models

• How equilibriums of prices are related to the attributes of the

agents in the economy, such as the endowments, beliefs, and

preferences, as well as to the type and structure of the traded

securities? The characteristics of these securities are fixed at

the outset.

• Result from the optimizing action of all the agents in the market.

Equilibrium is reached when the prices are such that each agent’s

expected utility is maximized.

• No-arbitrage pricing fails when a new security cannot be repli-

cated by existing securities. The equilibrium approach is more

general as it tries to relate the prices of securities to more funda-

mental economic concepts (where the prices come from). This

is why it needs to impose more structure than in the no-arbitrage

approach.
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Remarks

• If a market is in equilibrium, it should not permit arbitrage oppor-

tunities. If otherwise, agents are able to improve their welfare

at zero cost. This contradicts the property of an equilibrium

that the agent’s utilities are already maximized.

• Again, the price of a security can be expressed as the discounted

expectation of its payoff, but the actual payoff is adjusted by a

risk factor. The expectation is taken with respect to a proba-

bility measure that corresponds to realistic probabilities.

• Under certain conditions, we can unite the characteristics of

each individual agent into one representative agent. We then

derive the equilibrium prices in terms of the attributes of this

representative agent. This technique can lead to the derivation

of the CAPM.
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Assumptions of one-period securities model

1. No production. Such models are known as exchange economies.

2. Single perishable good that cannot be stored. This good is used

as the unit of measurement.

3. A security is a contract that specifies the amount of the con-

sumption good in each future date.

4. Securities have no risk of default.

5. Agents maximize their expected utility of consumption by trad-

ing in the available marketed securities.

6. The equilibrium prices in turn are set by the actions of risk-averse

agents in the model.
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There is a given set of traded securities. We would like to show how

the prices of these securities can be related to more fundamental

economic variables.

• At time 1, the state of the economy is represented by a set of

outcomes ω ∈ Ω.

• The time 1 payout on security j in state ω, is Xj(ω), j = 1,2, · · · , N .

Three sets of variables to be solved

1. Initial price xj

2. Optimal consumption allocations {Ci0, Ci1}

3. Trading strategies θni
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Agents

Each agent receives an initial endowment of consumption good:

amount e0 at time 0 and e1(ω) at time 1 in state ω. Endowment

process {e0, e1(ω)} is non-negative.

Consumption process

• Consumes an amount C0 at time 0 and C1(ω) at time 1 in state

ω. Suppose we assume e1(ω) = 0 for all ω:

– If the agent makes no trade, the consumption is {e0,0}.

– If the agent buys one unit of security j for a price of xj, the

consumption process is

{e0 − xj,Xj(ω)}.
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Trading strategy

• consists of an N-dim vector showing the net trades that the

agent makes in each security;

• different trading strategies lead to different consumption pat-

terns;

• preferable to conduct the optimization over the feasible set of

trading strategies rather than over consumption allocations.

If the market is incomplete, not all consumption patterns are attain-

able. When the market is complete, all consumptions are attainable,

and we may use consumptions as control variables in optimization

procedure.
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Probability measure

• Agents make decisions to maximize their individual expected

utilities, using the agent’s own subjective probabilities.

Heterogenous beliefs: agent i assigns his subjective probability Pi(ω)

to state ω.

Homogeneous beliefs: each agent assigns the same probability P(ω)

to a given state.

The expected utility for agent i is

Ui0(Ci0) +
∑
ω
Pi(ω)Ui1(Ci1(ω)).

Each agent strives to maximize his own expected utility by trading

in the marketed securities. Utility function is increasing, concave

and twice differentiable.
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Equilibrium prices

• Assume that each agent has made his optimal trading decisions

so that the consumption allocations are optimal for each agent.

Equilibrium prices are prices that support this allocation.

• When the system is in equilibrium, the prices and the consump-

tion allocations are such that each agent’s expected utility is

maximized at these consumption allocations and prices.

• The initial endowment acts as a constraint in the consumption

pattern.
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Equilibrium condition

Assume that the agent has already made the optimal investment de-

cisions, that is, any deviation from this position is no longer optimal.

What is the relation between xj and consumption pattern?

• Denote the optimal consumption process in equilibrium by {C∗
i0, C

∗
i1(ω)}.

• Assume that the agent purchases α units of security j at time 0.

Agent’s consumption is C∗
i0−αxj at time 0 and C∗

i1(ω)+αXj(ω)

at time 1 in state ω. The optimal choice would be α = 0. This

is the standard procedure of applying the variational principle.

• With this revised investment and consumption plans, the agent’s

expected utility becomes

Ui0(C
∗
i0 − αxj) +

∑
ω
Pi(ω)Ui1(C

∗
i1(ω) + αXj(ω)).
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Differentiating with respect to α

−xjU ′
i0(C

∗
i0 − αxj) +

∑
ω
Pi(ω)U ′

i1[C
∗
i1(ω) + αXj(ω)]Xj(ω),

and this vanishes at α = 0. Hence

xj =
∑
ω
Pi(ω)

U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

Xj(ω) = EPi[ZiXj], where

Zi =
U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

,

which is a random variable called a pricing kernel.

The expectation is taken with respect to the subjective probabilities

of the individual agent.
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Arrow-Debreu security

• Pays exactly one unit of the consumption good in state ω at

time 1, and zero in all other states.

• Let ψω be the price of the Arrow-Debreu security in ω, then

ψω = Pi(ω)
U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

,

as from the perspective of agent i. But this must be equalized

across all agents in the economy.

The price of the portfolio containing all Arrow-Debreu securities and

that of unit discount bond must be equal since both pay precisely

1 unit at time 1 in every state. Hence,

1

1 + rf
=

∑
ω
ψω =

∑
ω
Pi(ω)

U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

for every agent i.
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Alternative approach – individual agent’s consumption optimization

under market completeness (all investment choices are attainable)

Assume that there is a complete market of Arrow-Debreu securities

and the prices are taken as given. The agent’s problem is

max
Ci,0,Ci,1

⎧⎨⎩Ui0(Ci0) +
∑
ω∈Ω

Pi(ω)Ui(Ci1(ω))

⎫⎬⎭
subject to the constraint

ei0 − Ci0 =
∑
ω∈Ω

ψω[Ci1(ω) − ei1(ω)] = initial value of portfolio.

Form the Lagrangian

Ui0(Ci0) +
∑
ω∈Ω

Pi(ω)Ui1(Ci1(ω))

+ γi

⎡⎣ei0 +
∑
ω∈Ω

ψωei1(ω) − Ci0 − ∑
ω∈Ω

ψωCi1(ω)

⎤⎦ .
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We differentiate this Lagrangian with respect to the consumption

variables since they can be used as control variables when the market

is complete.

The following first-order conditions are both necessary and suffi-

cient for the maximum since the utility functions are assumed to be

concave:

U ′
i0(Ci0) = γi, for all i,

Pi(ω)U ′
i1(Ci1(ω)) = γiψω, for all i and ω.

Taking the ratio of the two equations, we recover

ψω = Pi(ω)
U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

.
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Equilibrium concept

In equilibrium, the prices that are resulted from the individual opti-

mizing action of the agent in the economy. Assume that the agents

in the market optimize directly over trading strategies. We do not

assume that the securities market is complete. The trading strate-

gies can be used to alter the agent’s consumption patterns.

Assumptions

1. There are I agents in the economy. Each agent has a utility

function of the form

Ui0(Ci0) + Ui1(Ci1),

where U ′s are increasing concave and twice differentiable.

2. There are N securities in the market. Security j has a payoff of

Xj(ω) at time 1 in state ω. The time-0 price of security j is xj.
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Let Θ denote the entire set of trading strategies for the group of

I traders. An equilibrium is a set of prices and trading strategies

{x,Θ} such that

(i) Given these prices and trading strategies, each agent’s expected

utility is maximized subject to the constraint imposed by the

agent’s initial endowment. This furnishes N × I first order con-

ditions.

e.g. the first order condition for agent i with respect to θ
j
i is

U ′
i0

Ci0︷ ︸︸ ︷⎛⎝ei0 −
N∑
n=1

θni xn

⎞⎠xj =
∑
ω
Pi(ω)U ′

i1

Ci1︷ ︸︸ ︷⎛⎝ei1 +
N∑
n=1

θni Xn(ω)

⎞⎠Xj(ω)

i = 1, · · · , I, j = 1, · · · , N.
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(ii) The market for each security clears, that is,

I∑
i=1

θni = 0, n = 1,2, · · · , N.

The solution of N×I first order equations and N market-clearing

conditions gives the optimal trading strategies and the equilib-

rium prices. There are N(I+1) equations for N(I+1) unknowns.

Remark

The securities are all non-redundant.
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Remark

The market-clearing conditions are consistent with the requirement

that total consumption = total endowment in each state.

� Total consumption at time 0 =
I∑

i=1

⎛⎝ei0 −
N∑
n=1

θni xn

⎞⎠

=
I∑

i=1

ei0 = total endowment

� Total consumption at time 1 in state ω

=
I∑

i=1

⎛⎝ei1(ω) −
N∑
n=1

θni Xn(ω)

⎞⎠ =
I∑

i=1

ei1(ω).
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Summary of concepts of equilibrium

• For each set of prices, the agents determine the trading strate-

gies that optimize their preferences. How about the process by

which the prices get to equilibrium?

• The equilibrium prices are those for which the optimal trading

strategies equalize the supply of and demand for each security.

• In equilibrium [characterized by price and optimized trading strate-

gies]

(i) each agent uses trading strategies that optimize the agent’s

preferences for the given market structure and prices;
(ii) the market clears so that the purchases and sales of each

security are in balance.
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• Inputs that generate the equilibrium prices and trading strategies

(i) initial endowments,

(ii) preferences and beliefs of the agents,

(iii) security market structure.

The equilibrium prices emerge from a constrained optimization

problem that uses these inputs. Say, if we add a new secu-

rity that cannot be replicated by existing securities, then the

resulting prices and equilibrium allocations also change.
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Example - 3 states and 3 agents

� Each agent has an initial endowment of 16 units at time 0 and

50 units at time 1 in each state.

� Each agent has the same utility function:
√
C0 and

√
C1.

� The agents have different subjective probabilities of the states:

Agent State 1 State 2 State 3
One 0.50 0.25 0.25
Two 0.25 0.50 0.25
Three 0.25 0.25 0.50

� Specification of the securities available for trading

Assume that the 3 Arrow-Debreu securities are traded so that

the securities market is complete.
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Under market completeness, all consumption allocations are attain-

able.

15 unknowns — 12 consumption amounts (4 for each agent) and

3 securities prices

15 equations, namely,

(i) 9 first-order conditions: ψω = Pi(ω)
U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

, i = 1,2,3 and

ω = ω1, ω2, ω3.

(ii) 3 equations that equate market value of each agent’s optimal

consumption allocation with the market value of the agent’s

original endowment (one equation for each agent).

(iii) 3 equations that equate total aggregate consumption with total

aggregate endowment in each state.
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The equilibrium allocations for the three agents are found to be

agent time 0 State 1 State 2 State 3
One 16 100 25 25
Two 16 25 100 25
Three 16 25 25 100

The price of the three Arrow-Debreu securities are 0.2. It can be

checked that they satisfy

ψω = Pi(ω)
U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

.

• The allocations satisfy the 9 first-order conditions (one equation

of each agent and each state). Hence, each agent’s expected

utility is maximized.
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Consider agent one, he has an endowment at time 1 of 50 units in

all 3 states.

� Sell the Arrow-Debreu securities associated with state 2 and 3,

by selling 25 units of each security. This produces an inflow of

10 units. The amount is used to buy 50 units of the state-1

Arrow-Debreu security.

Agent Security 1 Security 2 Security 3
one 50 −25 −25
two −25 50 −25
three −25 −25 50

• Check the market clearing conditions.

• The total amount of consumption in each state is 150, which

equals the total endowment.
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• Sum of prices of the Arrow-Debreu securities is
1

1 + rf
= 0.6 so

that the one-period risk-free interest rate is 66.67%.

The ability to trade in the market improves overall welfare.

(i) expected utility of agent one if initial endowment were retained

=
√

16 +
1

2

√
50 +

1

4

√
50 +

1

4

√
50 = 11.0711.

(ii) expected utility assuming optimal consumption

=
√

16 +
1

2

√
100 +

1

4

√
25 +

1

4

√
25 = 11.50.
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Connection between P measure and Q measure

• The risk neutral measure Q represents probability measure that

is generated using the prices of the existing traded assets.

Equilibrium price of security j = xj =
∑
ω
P(ω)Xj(ω)Z(ω), where Z

is the ratio of marginal utilities between time 1 and time 0.

Since the riskfree bond pays 1 unit in each state at time 1,

1

1 + if
= e−r =

∑
ω
P(ω)Z(ω), Z(ω) > 0.

Actually, the riskfree interest rate is determined as derived solution

of the equilibrium model.
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Define q(ω) = (1 + if)P(ω)Z(ω), ω ∈ Ω. Note that

q(ω) > 0 and
∑
ω∈Ω

q(ω) = 1

so that q(ω) defines a probability measure. Under this measure

xj =
1

1 + if

∑
ω
q(ω)Xj(ω) =

EQ[X]

1 + if
.

This is just the risk neutral valuation formula.

These q probabilities relate prices xj and Xj(ω) and they are in

general different from those of P measure.
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Two expectation representations of xj in terms of Xj(ω):

xj = EP [ZiXj] =
∑
ω

P(ω)U ′
i1(C

∗
i1(ω))

U ′
i0(C

∗
i0)

Xj(ω)

and

xj =
EQ[X]

1 + if
=

1

1 + if

∑
ω
q(ω)Xj(ω)?

Suppose a particular agent chooses the risk neutral utility function

C0 + e−ρC1, where ρ is the rate of time preference. We then have

Z(ω) = e−ρ. If we set e−ρ = e−r, then Q and P coincide:

q(ω) = e−reρP(ω) = P(ω) if ρ = r.

This explains the term “risk-neutral measure”.

Current price is given by the discounted expectation under the sub-

jective measure of the terminal payoff when the risk neutral utility

C0 + e−rC1 is chosen.
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Equilibrium solution and Pareto efficiency

The ith trader has consumption process Ci = (Ci0, C
i
1) and trading

strategy: Hi = (Hi
0, H

i
1, · · · , Hi

N).

Recall the formulation of an equilibrium model:

The variables Sn(0), n = 1, · · · , N and {Ci,Hi}, i = 1, · · · , I, are said

to be an equilibrium solution if for each i the consumption invest-

ment plan (Ci,Hi) is optimal for investor i, that is, (Ci,Hi) is a

solution of the following maximization problem.
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maximize Ui(C
i
0) + E[Ui(C

i
1)]

subject to

Ci0 +Hi
0B0 +

N∑
n=1

Hi
nSn(0) = vi

Ci1 −Hi
0B1 −

N∑
n=1

Hi
nSn(1) = Ei

Hi ∈ R
N+1

and the security market clears, that is, the aggregate demand for

each security is zero

I∑
i=1

Hi
n = 0 for n = 0,1, · · · , N.

Remark

There is no explicit constraint that requires the consumption to be

non-negative. One can specify utility functions that would force the

consumption to be non-negative.
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Aggregate consumptions = aggregate endowments

Adding the time-0 budget constraint across i

B0

I∑
i=1

Hi
0︸ ︷︷ ︸

zero

+
N∑
n=1

Sn(0)
I∑

i=1

Hi
n︸ ︷︷ ︸

zero

=
I∑

i=1

vi −
I∑

i=1

Ci0.

If this is an equilibrium solution, then LHS = 0 = RHS. We can

deduce similar result from the t = 1 budget constraints. Therefore,

suppose the consumption processes Ci, i = 1, · · · , , I are part of an

equilibrium solution, then

I∑
i=1

Ci0 =
I∑

i=1

vi and
I∑

i=1

Ci1 =
I∑

i=1

Ei.

Feasible processes

The processes {Ci0, Ci1} are said to be feasible if they satisfy the

above two constraints.
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Pareto efficient

The collection {Ĉ1, · · · , ĈI} of consumption processes is said to be

Pareto efficient if they are feasible and there is no other collection

{C1, · · · , CI} of feasible consumption processes such that

Ui(C
i
0) +EUi(C

i
1) ≥ Ui(Ĉ

i
0) + EUi(Ĉ

i
1), i = 1, · · · , I (1)

with inequality being strict for at least one i.

This is a very weak from efficiency. For example, the allocation of

all consumptions to one single agent is Pareto efficient.

Theorem

If the model is complete and {Ĉ1, · · · , ĈI} is part of an equilibrium

solution, then {Ĉ1, · · · , ĈI} is Pareto efficient.
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Proof by contradiction

Assume there exists a process {C1, · · · , CI} which is feasible and

satisfies (1), where {Ĉ, · · · , ĈI} is part of an equilibrium solution.

Since the model is complete, for each investor i, there exists a

trading strategy Hi satisfying

Hi
0B1 +

N∑
n=1

Hi
nSn(1) = Ci1 −Ei. (a)

Define the scalars:

ψi = Ci0 − vi +Hi
0B0 +

N∑
n=1

Hi
nSn(0), i = 1, · · · , I. (b)

Think of Ci0 − ψi as the time t = 0 consumption for investor i.
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The consumption process {Ci0 − ψi, C
i
1} is seen to be attainable by

virtue of eqs (a) and (b).

Next step: we try to argue ψi ≥ 0, i = 1, · · · , I. How?

If ψi < 0, then investor i prefers (strictly) the consumption process

{Ci0 − ψi, C
i
1} to {Ci0, Ci1}. Also, {C0

i − ψi, C
i
1} satisfies the budget

constraints in investor i′s optimization problem, and so {Ci0, Ci1} is

an optimal solution rather than {Ĉi0, Ĉi1}.

By similar logic, ψi = 0 leads to a contradiction since Ui(C
i
0) +

EUi(C
i
1) > Ui(Ĉ

i
0) + EUi(Ĉ

i
1) at least for one i. We then have

ψi > 0.
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If we sum

0 <
I∑

i=1

ψi =
I∑

i=1

Ci0 −
I∑

i=1

vi +

⎛⎝ I∑
i=1

Hi
0

⎞⎠B0 +
N∑
n=1

⎛⎝ I∑
i=1

Hi
n

⎞⎠Sn(0)︸ ︷︷ ︸
zero

,

so that
I∑

i=1

Ci0 >
I∑

i=1

vi.

But this contradicts with the feasibility condition for the consump-

tion process {C1, C2, · · · , CI}. Hence, we conclude that the collec-

tion {Ĉ1, Ĉ2, · · · , ĈI} must be Pareto efficient.
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Numerical example

Suppose N = 2,K = 3, P(ω) =
(
1

3

1

3

1

3

)
and constant interest

rate.

There are I identical investors with ui(ω) = lnω, and vi = v. All

investors share common beliefs about time t = 1 prices in each of

the states.

n S∗
n(1)

ω1 ω2 ω3
1 6 8 4
2 13 9 8

We assume that Ci0 = 0 and Ei = 0 for all i and ignore the utility

of time t = 0 consumption.
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The securities prices at time t = 0 are to be determined such that

I∑
i=1

Hi
n = sn for n = 1,2, · · · , N,

where sn > 0 is the total supply of shares of security n.

The N companies are making initial public offerings of their securi-

ties. They can assess the correct t = 1 prices and they want to set

t = 0 offering prices properly.

First, we compute the risk neutral probability measure as a function

of the unknown time t = 0 prices.

From EQ[S∗
n(1)] = Sn(0), n = 1,2; and ΣQ(ω) = 1, we obtain

Q(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−28−S1(0)+4S2(0)

18 ω = ω1,
−4+5S1(0)−2S2(0)

18 ω = ω2,
50−4S1(0)−2S2(0)

18 ω = ω3.
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In order that Q(ω) is strictly positive and less that 1, S1(0) and

S2(0) must lie within the triangle with vertices at (4,8), (6,13) and

(8,9). These serve as constraints on the time t = 0 prices if there

is a risk neutral probability measure.

• Optimal problem

Maximize Eu(W ) − λ{EQ[W/B1] − v} = E[u(ω) − λ(LW/B1 −
v)], where L = Q/P with EQ[W/B1] = v.
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Recall the solution procedure:-

first order condition: u′(W (ω)) = λL(ω)/B1(ω), ω ∈ Ω.

Write Î as the inverse function for u′, then

W (ω) = Î[λL(ω)/B1(ω)].

λ is solved by EQ[Î[λL(ω)/B1(ω)]/B1(ω)] = v.

Suppose we choose u = lnw so that I =
1

w
,

EQ

[
1

λL(ω)

]
= v or EP

[
1

λ

]
= v so that λ =

1

v
.

W (ω) = I

[
1

v
L(ω)/B1

]
= vB1

P(ω)

Q(ω)
.
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Now, W (ω)/B1 = H0 +H1S
∗
1(1;ω) +H2S

∗
2(1;ω), we obtain

Hi
1(S0) =

−1
3v

−28 − S1(0) + 4S2(0)
−

4
3v

50 − 4S1(0) − 2S2(0)

+
5
3v

−4 + 5S1(0) − 2S2(0)
.

Hi
2(S0) =

4
3v

−28 − S1(0) + 4S2(0)
−

2
3v

50 − 4S1(0) − 2S2(0)

−
(
2
3

)
v

−4 + 5S1(0) − 2S2(0)
.

The dependence of Hi
n on S0 can be visualized as the demand func-

tion for security n for agent i. The existence of Hi
n is consistent

with the absence of arbitrage, otherwise the investors may long or

short an infinite number of units of some of the securities.
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Suppose s1 = 4000, s2 = 2000 shares of securities 1 and 2 are

available, v = $6,000, and I = 2.

We solve for S1(0) and S2(0) and obtain

S1(0) = 5 and S2(0) = 9.

Once S1(0) and S2(0) are known, we obtain

Hi
1 = 2000 and Hi

2 = 1000.

Lastly, H0 = v −H1S1(0) −H2S2(0) = −13,000.

All investors borrow $13,000 in order to finance the trades.
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