
MATH685X – Mathematical Models in Financial Economics

Topic 1 – Utility theory and decision making under uncertainty

1.1 Maximum expected return criterion and St Peterburg’s paradox

1.2 Preference orderings and utility functions

• Preference relations

• Theorem for the existence of utility function

1.3 Maximum expected utility approach

• Choices among lotteries and maximum expected utility

1.4 Choices of probability distributions over outcomes

• Ellsberg paradox

• Von Neumann – Morgenstern framework

• Independence axiom and Allais paradox
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1.1 Maximum expected return criterion (for risky investments)

Identifies the investment with the highest expected return.
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1
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(30) = 14.

According to the maximum expected return criterion, D is preferred over

C. However, some investors may prefer C on the ground that it has a

smaller downside loss of −5 and a higher upside gain of 40.

Is such procedure well justified? How to include the risk appetite of an

individual investor into the decision procedure?
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St Petersburg paradox (failure of Maximum Expected Return Criterion)

Tossing of a fair coin until the first head shows up. The prize is 2k−1

where k is the number of tosses until the first head shows up (the game

is then ended). There is a very small chance to receive a large sum of

money. This occurs when x is large.

Expected prize of the game =
∞∑

k=1

1

2k
2k−1 = ∞.

• When people are faced with such a lottery in experimental trials, they

refuse to pay more than a finite price (usually low). “Few people

would pay even $25 to enter such a game.”
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• The decision criterion which takes only the expected value into ac-

count would recommend a course of action that no (real) rational

person would be willing to take.

• Finite resources of the participants – one simply cannot buy that

which is not sold. Sellers would not produce a lottery whose potential

loss were unacceptable.

If the total resources (or maximum jackpot) of the casino is W , then

the expected value of the lottery is

E =
∞∑

k=0

1

2k+1
min(2k, W )

=
L−1∑

k=0

1

2k+1
2k +
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k=L

1

2k+1
W

=
L

2
+

W

2L
, where L = 1 + floor(ln2 W ).
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The following table shows the expected value E of the game with various

potential backers and their bankroll W

Backer Bankroll Expected value of lottery

Friendly game $100 $4.28

Millionaire $100, 000,000 $10.95

Billionaire $1,000,000,000 $15.93

Bill Gates (2008) $58,000,000,000 $18.84

U.S. GDP (2007) $13.8 trillion $22.79

World GDP (2007) $54.3 trillion $23.77

Googolaire $10100 $166.50

Notes: The estimated net worth of Bill Gates is from Forbes. The GDP

data are as estimated for 2007 by the International Monetary Fund, where

one trillion dollars equals $1012. A “googolaire” is a hypothetical person

worth a googol dollars ($10100).
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1.2 Preference orderings and utility functions

Preference relations

The building block is pairwise comparison. Given the set of alternatives

B, how to determine which element in the choice set B that is preferred?

The individual first considers two arbitrary elements: x1, x2 ∈ B. He then

picks the preferred element x1 and discards the other. From the remaining

elements, he picks the third one and compares with the winner. The

process continues and the best choice among all alternatives is identified.
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Choice set

Let the choice set B be a convex subset of the n-dimensional Euclidean

space. The component xi of the n-dimensional vector x may represent

xi units of commodity i. By convex, we mean that if x1, x2 ∈ B, then

αx1 + (1 − α)x2 ∈ B for any α ∈ [0,1].

• Each individual is endowed with a preference relation, �.

• Given any pair of elements x1 and x2 ∈ B, x1 � x2 means either that

x1 is preferred to x2 or that x1 is indifferent to x2.
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Three axioms for �

Reflexivity

For any x1 ∈ B, x1 � x1.

Comparability

For any x1, x2 ∈ B, either x1 � x2 or x2 � x1.

Transitivity

For x1, x2, x3 ∈ B, given x1 � x2 and x2 � x3, then x1 � x3.

Remarks

1. Without the comparability axiom, an individual could not determine

an optimal choice. There would exist at least two elements of B

between which the individual could not discriminate.

2. The transitivity axiom ensures that the choices are consistent.
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Example 1 – Total quantity

Let B = {(x, y) : x ∈ [0,∞) and y ∈ [0,∞)} represent the set of alterna-

tives. Let x represent ounces of orange soda and y represent ounces of

grape soda. It is easily seen that B is a convex subset of R2.

Suppose the individual is concerned only with the total quantity of soda

available, the more the better, then the individual is endowed with the

following preference relation:

For (x1, y1), (x2, y2) ∈ B,

(x1, y1) � (x2, y2) if and only if x1 + y1 ≥ x2 + y2.
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Example 2 – Dictionary order

Let the choice set B = {(x, y) : x ∈ [0,∞), y ∈ [0,∞)}. The dictionary

order � is defined as follows:

Suppose (x1, y1) ∈ B and (x2, y2) ∈ B, then

(x1, y1) � (x2, y2) if and only if

[x1 > x2] or [x1 = x2 and y1 ≥ y2].

It is easy to check that the dictionary order satisfies the three basic axioms

of a preference relation.
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Definition

Given x, y ∈ B and a preference relation � satisfying the above three

axioms.

1. x is indifferent to y, written as

x ∼ y if and only if x � y and y � x.

2. x is strictly preferred to y, written as

x ≻ y if and only if x � y and not x ∼ y.
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Axiom 4 – Order Preserving

For any x, y ∈ B where x ≻ y and α, β ∈ [0,1],

[αx + (1 − α)y] ≻ [βx + (1 − β)y] if and only if α > β.

Example 1 revisited – checking the Order Preserving Axiom

Recall the preference relation defined in Example 1, we take (x1, y1),

(x2, y2) ∈ B such that (x1, y1) ≻ (x2, y2) so that x1 + y1 − x2 − y2 > 0.

Take α, β ∈ [0,1] such that α > β, and observe

α[(x1 + y1) − (x2 + y2)] > β[(x1 + y1) − (x2 + y2)].

Adding x2 + y2 to both sides, we obtain

α(x1 + y1) + (1 − α)(x2 + y2) > β(x1 + y1) + (1 − β)(x2 + y2).
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Axiom 5 – Intermediate Value

For any x, y, z ∈ B, if x ≻ y ≻ z, then there exists a unique α ∈ (0,1) such

that

αx + (1 − α)z ∼ y.

Remark

Given 3 alternatives with rankings of x ≻ y ≻ z, there exists a fractional

combination of x and z that is indifferent to y. Trade-offs between the

alternatives exist.
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Example 1 revisited – checking the Intermediate Value Axiom

Given x1 + y1 > x2 + y2 > x3 + y3, choose

α =
(x2 + y2) − (x3 + y3)

(x1 + y1) − (x3 + y3)
.

Rearranging gives

α(x1 + y1) + (1 − α)(x3 + y3) = x2 + y2

so that

[α(x1, y1) + (1 − α)(x3, y3)] ∼ (x2, y2).
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Dictionary order does not satisfy the intermediate value axiom

Suppose (x1, y1), (x2, y2), (x3, y3) ∈ B such that (x1, y1) ≻ (x2, y2) ≻

(x3, y3) and x1 > x2 = x3 and y2 > y3. For any α ∈ (0,1), we have

α(x1, y1) + (1 − α)(x3, y3)

= α(x1, y1) + (1 − α)(x2, y3)

= (αx1 + (1 − α)x2, αy1 + (1 − α)y3).

But for α > 0, we have αx1 + (1 − α)x2 > x2 so

α(x1, y1) + (1 − α)(x3, y3) ≻ (x2, y2) for all α ∈ (0,1).

In other words, there is no α ∈ (0,1) such that

αx + (1 − α)z ∼ y.
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Axiom 6 – Boundedness

There exist x∗, y∗ ∈ B such that x∗ � z � y∗ for all z ∈ B.

• This Axiom ensures the existence of a most preferred element x∗ ∈ B

and a least preferred element y∗ ∈ B.

Example 1 revisited – checking the Boundedness Axiom

Recall B = {(x, y) : x ∈ [0,∞) and y ∈ [0,∞)}. Given any (z1, z2) ∈ B, we

have

(z1 + 1, z2) � (z1, z2) since z1 + z2 + 1 > z1 + z2.

Therefore, a maximum does not exist.
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Motivation for defining utility

Knowledge of the preference relation � effectively requires a complete

listing of preferences over all pairs of elements from the choice set B. We

define a utility function that assigns a numeric value to each element of

the choice set such that a larger numeric value implies a higher preference.

• We establish the theorem on the existence of utility function.

• The optimal criterion for ranking alternative investments is based on

the ranking of the expected utility values of the various investments.
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Theorem – Existence of Utility Function

Let B denote the set of payoffs from a finite number of securities, also

being a convex subset of Rn. Let � denote a preference relation on B.

Suppose � satisfies the following axioms

(i) ∀x ∈ B, x � x.

(ii) ∀x, y ∈ B, x � y or y � x.

(iii) For any x, y, z ∈ B, if x � y and y � z, then x � z.

(iv) For any x, y ∈ B, x � y and α, β ∈ [0,1],

αx + (1 − α)y � βx + (1 − β)y if and only if α > β.

(v) For any x, y, z ∈ B, suppose x ≻ y ≻ z, then there exists a unique

α ∈ (0,1) such that αx + (1 − α)z ∼ y.

(vi) There exist x∗, y∗ ∈ B such that ∀z ∈ B, x∗ � z � y∗.

Then there exists a utility function U : B → R such that

(a) x ≻ y iff U(x) > U(y).

(b) x ∼ y iff U(x) = U(y).
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To show the existence of U : B → R, we write down one such function

and show that it satisfies the stated conditions.

Based on Axiom 6, we choose x∗, y∗ ∈ B such that

x∗ � z � y∗ for all z ∈ B.

Without loss of generality, let x∗ ≻ y∗. [Otherwise, x∗ ∼ z ∼ y∗ for all

z ∈ B. In this case, U(z) = 0 for all z ∈ B, which is a trivial utility function

that satisfies conditions (a) and (b).]

Consider an arbitrary z ∈ B. There are 3 possibilities:

1. z ∼ x∗; 2. x∗ ≻ z ≻ y∗; 3. z ∼ y∗.
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We define U by giving its value under all 3 cases:

1. U(z) = 1

2. By Axiom 5, there exists a unique α ∈ (0,1) such that

[αx∗ + (1 − α)y∗] ∼ z.

Define U(z) = α.

3. U(z) = 0.

Such U satisfies properties (a) and (b).
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Proof of property (a)

Necessity Suppose z1, z2 ∈ B are such that z1 ≻ z2, we show

U(z1) > U(z2).

Consider the four possible cases.

1. z1 ∼ x∗ ≻ z2 ≻ y∗

2. z1 ∼ x∗ ≻ z2 ∼ y∗

3. x∗ ≻ z1 ≻ z2 ≻ y∗

4. x∗ ≻ z1 ≻ z2 ∼ y∗.

Case 1 By definition, U(z1) = 1 and U(z2) = α, where α ∈ (0,1)

uniquely satisfies

αx∗ + (1 − α)y∗ ∼ z2.

Now, U(z1) = 1 > α = U(z2).

Case 2 By definition, U(z1) = 1 > 0 = U(z2).
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Case 3 By defintion, U(zi) = αi, where αi ∈ (0,1) uniquely satisfies

αix
∗ + (1 − αi)y

∗ ∼ zi,

so that

z1 ∼ [α1x∗ + (1 − α1)y
∗] and [α2x∗ + (1 − α2)y

∗] ∼ z2.

We claim α1 > α2. Assume not, then α1 ≤ α2. By Axiom 4,

[α2x∗ + (1 − α2)y
∗] � [α1x∗ + (1 − α1)y

∗].

This is a contradiction. Hence, α1 > α2 is true and

U(z1) = α1 > U(z2) = α2.

Case 4 By definition, U(z1) = α1, where α1 ∈ (0,1) uniquely satisfies

α1x∗ + (1 − α1)y
∗ ∼ y1 and U(z2) = 0.

We have U(z1) = α1 > 0 = U(z2).
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Sufficiency

Suppose, given z1, z2 ∈ B, that U(z1) > U(z2), we would like to show

z1 ≻ z2. Consider the following 4 cases

1. U(z1) = 1 and U(z2) = α2, where α2 ∈ (0,1) uniquely satisfies

[α2x∗ + (1 − α2)y
∗] ∼ z2.

2. U(z1) = 1, where z1 ∼ x∗ and U(z2) = 0, where z2 ∼ y∗.

3. U(zi) = αi, where αi ∈ (0,1) uniquely satisfies

[αix
∗ + (1 − αi)y

∗] ∼ zi.

4. U(z1) = α1 and U(z2) = 0, where z2 ∼ y∗.
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Case 1 z1 ∼ x∗ ∼ [1 · x∗ + 0 · y∗] and z2 ∼ [α2x∗ + (1 − α2)y
∗].

By Axiom 4, 1 > α2 so that z1 ≻ z2.

Case 2 z1 ∼ x∗ ≻ y∗ ∼ z2.

Case 3 z1 ∼ [α1x∗ + (1 − α1)y
∗]

z2 ∼ [α2x∗ + (1 − α2)y
∗]

Since α1 > α2, by Axiom 4, z1 ≻ z2.

Case 4 z1 ∼ [α1x∗ + (1 − α1)y
∗] and

z2 ∼ y∗ ∼ [0x∗ + (1 − 0)y∗].

By Axiom 4 and Axiom 3, since α1 > 0, z1 ≻ z2.
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Proof of Property (b)

Necessity

Suppose z1 ∼ z2 but U(z1) 6= U(z2), then

U(z1) > U(z2) or U(z2) > U(z1).

By property (a), this implies z1 ≻ z2 or z2 ≻ z1, a contradiction. Hence,

U(z1) = U(z2).

Sufficiency

Suppose U(z1) = U(z2), but z1 ≻ z2 or z1 ≺ z2. By property (a), this

implies U(z1) > U(z2) or U(z2) > U(z1), a contradiction. Hence, z1 ∼ z2.
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Certainty equivalent

What is the certain amount that one would be willing to accept so that

it is indifferent between playing the game for free or receiving this certain

sum? This certain amount is called the certainty equivalent of the game.

In simple language, every game or lottery has a price.

• Let U(x) be the utility of the player, which measures the sense of

satisfaction for a given wealth level x. Based on the expected utility

criterion, the certainty equivalent c is given by

U(c) = E[U(X)],

where X is the random wealth at the end of the game. Certainty

equivalent of the game of St. Peterburg paradox under log utility

ln c = E[lnX] =
∞∑

x=1

1

2x
ln 2x−1 = ln2

∞∑

x=1

x − 1

2x
= ln2

so that c = 2 is the certainty equivalent.
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1.3 Maximum expected utility criterion (MEUC)

How do we make a choice between the following two lotteries:

L1 = {p1, A1; p2, A2; · · · ; pn, An}

L2 = {q1, A1; q2, A2; · · · ; qn, An}?

The monetary outcomes are A1, · · · , An; pi and qi are the probabilities of

occurrence of Ai in L1 and L2, respectively. These outcomes are mutually

exclusive and only one outcome can be realized under each investment.

We are not limited to lotteries with the same set of outcomes. Suppose

outcome Ai will not occur in Lottery L1, we can simply set pi = 0.

Comparability

When faced by two monetary outcomes Ai and Aj, the investor must say

Ai ≻ Aj, Aj ≻ Ai or Ai ∼ Aj.
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Continuity

If A3 � A2 and A2 � A1, then there exists U(A2) [0 ≤ U(A2) ≤ 1] such

that

L = {[1 − U(A2)], A1;U(A2), A3} ∼ A2.

For a given set of outcomes A1, A2 and A3, these probabilities are a

function of A2, hence the notation U(A2).

Why is it called the continuity axiom? When U(A2) = 1, we obtain

L = A3 � A2; when U(A2) = 0, we obtain L = A1 � A2. If we increase

U(A2) continuously from 0 to 1, we hit a value U(A2) such that L ∼ A2.

Remark

Though U(A2) is a probability value, we will see that it is also the in-

vestor’s utility function.
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Interchangeability

Given L1 = {p1, A1; p2, A2; p3, A3} and A2 ∼ A = {q, A1; (1 − q), A3}, the

investor is indifferent between L1 and L2 = {p1, A1; p2, A; p3, A3}.

Transitivity

Given L1 ≻ L2 and L2 ≻ L3, then L1 ≻ L3.

Also, if L1 ∼ L2 and L2 ∼ L3, then L1 ∼ L3.
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Decomposability

A complex lottery has lotteries as prizes. A simple lottery has monetary

values A1, A2, etc as prizes.

Consider a complex lottery L∗ = (q, L1; (1 − q), L2), where

L1 = {p1, A1; (1 − p1), A2} and L2 = {p2, A1; (1 − p2), A2},

L∗ can be decomposed into a simple lottery L = {p∗, A1; (1 − p∗), A2},

with A1 and A2 as prizes where p∗ = qp1 + (1 − q)p2.
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Monotonicity

(a) For monetary outcomes, A2 > A1 =⇒ A2 ≻ A1.

(b) For lotteries

(i) Let L1 = {p, A1; (1 − p), A2} and L2 = {p, A1; (1 − p), A3}. If A3 >

A2, then A3 ≻ A2; and L2 ≻ L1.

(ii) Let L1 = {p, A1; (1 − p), A2} and L2 = {q, A1; (1 − q), A2}, also

A2 > A1 (hence A2 ≻ A1). If p < q, then L1 ≻ L2.
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Theorem

The optimal criterion for ranking alternative investments is the expected

utility of the various investments.

Proof

How do we make a choice between L1 and L2

L1 = {p1, A1; p2, A2; · · · ; pn, An}

L2 = {q1, A1; q2, A2; · · · ; qn, An}

A1 < A2 < · · · < An, where Ai are various monetary outcomes?

⋆ By comparability axiom, we can compare Ai. Further, by monotonicity

axiom, we determine that

A1 < A2 < · · · < An implies A1 ≺ A2 ≺ · · · ≺ An.

⋆ Define A∗
i = {[1 − U(Ai)], A1;U(Ai), An} where 0 ≤ U(Ai) ≤ 1.
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By the continuity axiom, for every Ai, there exists U(Ai) such that Ai ∼

A∗
i .

For A1, U(A1) = 0, hence A∗
1 ∼ A1; for An, U(An) = 1. For other Ai,0 <

U(Ai) < 1. By the monotonicity and transitivity axioms, U(Ai) increases

from zero to one as Ai increases from A1 to An.

⋆ Substitute Ai by A∗
i in L1 successively and by the interchangeability

axiom,

L1 ∼ L̃1 = {p1, A∗
1; p2, A∗

2; · · · ; pn, A∗
n}.
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By the decomposability axiom, we observe

L1 ∼ L̃1 ∼ L∗
1 = {Σpi[1 − U(Ai)], A1;ΣpiU(Ai), An}.

Similarly

L2 ∼ L∗
2 = {Σqi[1 − U(Ai)], A1;ΣqiU(Ai), An}.

By the monotonicity axiom, L∗
1 ≻ L∗

2 if

ΣpiU(Ai) > ΣqiU(Ai).

This is precisely the expected utility criterion. The same conclusion ap-

plies to L1 ≻ L2, due to transitivity.
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Remarks

Recall Ai ∼ A∗
i = {[1−U(Ai)], A1;U(Ai), An}, such a function U(Ai) always

exists, though not all investors would agree on the specific value of U(Ai).

• By the monotonicity axiom, utility is non-decreasing.

• A utility function is determined up to a positive linear transformation,

so its value is not limited to the range [0,1]. “Determined” means

that the ranking of the projects by the MEUC does not change.

• The absolute difference or ratio of the utilities of two investment

choices gives no indication of the degree of preference of one over

the other since utility values can be expanded or suppressed by a

linear transformation.
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Ellsberg paradox

• It is a paradox in decision theory and experimental economic in which

people’s choices violate the expected utility criterion. This is taken

to be evidence for ambiguity aversion.

Games

• A box contains 30 red balls and 60 other balls (either black or yellow).

Gamble A Gamble B

Receive $100 if Receive $100 if

a red ball is drawn a black ball is drawn

Gamble C Gamble D

Receive $100 if a red Receive $100 if a black

or yellow ball is drawn or yellow ball is drawn
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According to expected utility criterion,

Gamble A is preferred to Gamble B if and only if

drawing a red ball is more likely than drawing a black ball

Mathematically,

pRU($100) + (1 − pR)U($0) > pBU($100) + (1 − pB)U($0)

(pR − pB)[U($100) − U($0)] > 0

Given U($100) > U($0), this is equivalent to pR > pB.

Gamble D is preferred to Gamble C

⇔ pBU($100) + pY U($100) + pRU($0)

> pRU($100) + pY U($100) + pBU($0)

⇔ pB > pR.
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When surveyed, most people strictly prefer Gamble A to Gamble B and

Gamble D to Gamble C. These preferences are seen to be inconsistent

with the expected utility theory.

• Taken as evidence for some sort of ambiguity aversion. In Gamble A,

the probability of a red ball is 30/90, which is precise number. No

probability information is provided regarding other outcomes, so the

player has very unclear subjective impressions of these probabilities.

• Deceit aversion mechanism

If a person is not sold the probability of a certain event, it is to deceive

them. When faced with the choice between a red ball and a black

ball, the probability of 30/90 is compared to the lower part of the

0/90 − 60/90 range.

38



1.4 Choice of probability distribution over outcomes

Economic agents choose actions on the basis of consequences that the

chosen actions produce. Other factors may interact with an action (state

of the world) to produce a particular consequence.

A = set of feasible actions

S = set of possible states of the world

C = set of consequences

A combination of an action a ∈ A and a state s ∈ S will produce a

particular consequence c ∈ C.

(s, a) → c = f(s, a).
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Uncertainty about the state of the world is often modelled by a probability

measure on S.

• Choosing an action “a” determines a consequence for each state of

the world, f(s, a). The decision over actions in A can therefore be

viewed as a decision over state-dependent consequences.

Write (c11, c21, · · · , cs1) as the state-contingent consequences associ-

ated with action a1. Choosing a1 over a2 is the same as choosing

(c11, · · · , cs1) over (c12, · · · , cs2).

• If f is constant with respect to the state of the world, then the decision

is taken under certainty .
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Alternative viewpoint – choice of probability distribution over outcome

The relationship among actions, states of the world and consequences is

described by f : S × A → C.

Since a probability distribution measure is defined on S, there is an in-

duced probability distribution on the set of consequences for each action.

Consider action a ∈ A, and any (measurable) subset of consequences

K ⊂ C,

Prob {K} := prob{s ∈ S|f(s, a) ∈ K}.

The probability of a particular consequence is equal to the probability of

the states of the world which lead to this consequence given a particular

action.
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Hence, the choice of an action amounts to the choice of a probability dis-

tribution on consequences. The choice of different gambles or investment

choices is the choice among alternative probability distributions.
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Objects of choice can be viewed either as

• state-contingent outcomes

• probability distributions.

Formalism

Given a set of outcomes C and a probability distribution on the set of

states, each action induces a probability distribution on the outcomes in

C.

If the set of consequences is finite, C = {c1, · · · , cn}, then each action

determines a vector of probabilities from the set

∆n =



(p1, · · · pn) ∈ R

n
+

∣∣∣∣∣∣

n∑

i=1

pi = 1





with pi = prob ({s ∈ S|f(s, a) = ci}).
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The utility function over outcomes u(ci) is commonly called the Von

Neumann-Morgenstern utility index.

Given a von Neumann-Morgenstern utility function u, one can treat the

expected utility representation
n∑

i=1

piu(ci) as an utility function of the prob-

ability distribution (p1, · · · , pn):

U(p1, · · · , pn) =
n∑

i=1

piu(ci).

This expected utility representation evaluates a probability distribution

P(p1, · · · , pn) over outcomes (c1, · · · , cn) by forming a weighted average

of the utilities u(ci) derived from the different outcomes using the prob-

abilities as weights.
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Assumptions on a preference ordering over probability distributions:

1. Completeness requires the ordering to order any pair of probability

distributions in ∆n.

2. Transitivity: p ≻ q, q ≻ r then p ≻ r.

3. Continuity: For a continuous transformation of a probability distribu-

tion p into another probability distribution q, where q ≻ p, the course

of transformation leads to a probability distribution that is indiffer-

ence to any probability distribution ranked between p and q. That is,

preference for probability distributions do not change abruptly.
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4. Independence axiom

The preference relation on ∆n represented by the utility function U(·)

satisfies for any p, q, r ∈ ∆n and any α ∈ [0,1]

U(αp + (1 − α)r) ≥ U(αq + (1 − α)r) iff U(p) ≥ U(q).

For example, suppose an investor is indifferent between X and Y ; Z is a

third prospect. Investor should be indifferent to these 2 gambles:

X with prob p and Z with prob 1 − p

Y with prob p and Z with prob 1 − p

If a person were indifferent between having a Ford or a Datsun, she would

be indifferent to buy a lottery ticket for $10 that gave a 1 in 500 chance of

winning a Ford or a ticket for $10 that gave the same change of winning

a Datsun.
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One can decompose any two probability distributions into parts that are

identical and parts that are different.
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Existence of utility function on ∆n

If a preference ordering over the probability distributions in ∆n satisfies

completeness, transitivity and continuity, there exists a utility function

U : ∆n → R that represents this preference ordering. The utility function

U(·) is unique up to monotone transformation.

• One can take any strictly increasing function : R → R, say, f(x) =

exp(x), to obtain another equivalent utility function Ũ(p) = f(U(p).

Theorem (expected utility representation)

A utility function U on ∆n satisfies the independence axiom iff there is a

utility function over outcomes u : C → R such that for all p and q ∈ ∆n

U(p) ≥ U(q) if and only if
n∑

i=1

piu(ci) ≥
n∑

i=1

qiu(ci).
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Allais Paradox (1952)

C1 = 5 million, C2 = 1 million, C3 = 0

prob {C1} prob {C2} prob {C3}

p 0 1 0

q 0.1 0.89 0.01

r 0.1 0 0.9

s 0 0.11 0.89

Most people prefer p over q (did not consider the 10% chance of winning

5 million worth the risk of losing one million with 1% chance).

Most people prefer r over s since there is 10% chance of winning 5 million

but only an additional 1% chance of getting nothing.
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Mathematical proof of inconsistency

Based on the expected utility approach, we have

(i) p is preferred to q means

1.00U(1) > 0.89U(1) + 0.01U(0) + 0.1U(5) (i)

(ii) r is preferred to s means

0.9U(0) + 0.1U(5) > 0.89U(0) + 0.11U(1). (ii)

Adding 0.89[U(1) − U(0)] to both sides, we obtain

0.01U(0) + 0.89U(1) + 0.1U(5) > 1.00U(1),

a contradiction to (i).

The pair of gambles p and q (r and s) have 89% chance of giving the

same outcome of 1 million (zero).

51



• If the 89% “common consequence” is disregarded, then both gambles

offer the same choice: 10% chance of getting 5m and 1% chance of

getting nothing against 11% chance of getting 1m.

• The independence axiom overlooks the notion of complementaries.

The 1% chance of getting nothing carries with it a great sense of

disappointment if you were to pick that gamble and lose, knowing 1m

would have won with 100% certainty. This feeling of disappointment

is contingent on the outcome in the other portion of the gamble.

• Allais argues that it is not possible to evaluate portions of gambles

or choices independently of the other choices presented, as the inde-

pendence axiom requires.
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