
MATH685Z – Mathematical Models in Financial Economics

Topic 7 — Capital asset pricing model and factor models

7.1 Capital asset pricing model and beta values

7.2 Interpretation and uses of the capital asset pricing model

7.3 Arbitrage pricing theory and factor models
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7.1 Capital asset pricing model and beta values

Capital market line (CML)

The CML is the tangent line drawn from the risk free point to the

feasible region for risky assets. This line shows the relation between

rP and σP for efficient portfolios (risky assets plus the risk free

asset).

The tangency point M represents the market portfolio, so named

since all rational investors (minimum variance criterion) should hold

their risky assets in the same proportions as their weights in the

market portfolio.

• Every investor is a mean-variance investor and they all have ho-

mogeneous expectations on means and variances, then everyone

buys the same portfolio. Prices adjust to drive the market to

efficiency.
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All portfolios on the CML are efficient, and they are composed of

various mixes of the market portfolio and the risk free asset.

Based on the risk level that an investor can take, she combines the

market portfolio of risky assets with the risk free asset.
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Equation of the CML:

r = r +
rM − r

σM
σ,

where r and σ are the mean and standard deviation of the rate of

return of an efficient portfolio.

Slope of the CML =
rM − r

σM
= price of risk of an efficient portfolio.

This indicates how much the expected rate of return must increase

when the standard deviation increases by one unit.

The CML does not apply to an individual asset or portfolios that

are inefficient.
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Sharpe ratio

One index that is commonly used in performance measure is the

Sharpe ratio, defined as

ri − r

σi
=

excess expected rate of return above riskfree rate

standard deviation
.

We expect

Sharpe ratio ≤ slope of CML.

Closer the Sharpe ratio to the slope of CML, the better the perfor-

mance of the fund in terms of return against risk.

In the previous example,

Slope of CML =
17% − 10%

12%
=

7

12
= 0.583

Sharpe ratio =
14% − 10%

40%
= 0.1 < Slope of CML.
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Capital Asset Pricing Model

Let M be the market portfolio M , then the expected rate of return

ri of any asset i satisfies

ri − r = βi(rM − r)

where

βi =
σiM

σ2
M

.

Here, σiM = cov(ri, rM) is the covariance between the rate of return

of risky asset i and the rate of return of the market portfolio M .

Remark

Expected excess rate of return of a risky asset above r is related to

the correlation of ri with rM .
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Assumptions underlying the standard CAPM

1. No transaction costs.

2. Assets are infinitely divisible.

3. Absence of personal income tax.

4. An individual cannot affect the price of a stock by his buying or

selling action. All investors are price takers.

5. Unlimited short sales are allowed.

6. Unlimited lending and borrowing at the riskless rate.
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7. Investors are assumed to be concerned with the mean and vari-

ance of returns, and all investors are assumed to define the

relevant period in exactly the same manner.

8. All investors are assumed to have identical expectations with

respect to the necessary inputs to the portfolio decision.

Both (7) and (8) are called the “homogeneity of expectations”.

The CAPM relies on the mean-variance approach, homogeneity of

expectation of investors, and no market frictions. In equilibrium,

every investor must invest in the same fund of risky assets and in

the risk free asset.
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Alternative proof of CAPM

Consider σiM = cov(ri, rM) = eT
i Ωw∗

M ,

where ei = (0 · · ·1 · · ·0) = ith co-ordinate vector which represents

the weight of asset i. Recall w∗
M =

Ω−1(µ − r1)

b − ar
so that

σiM =
(µ − r1)i

b − ar
=

ri − r

b − ar
, provided b − ar 6= 0. (1)

Recall

σ2
M = w∗

MΩw∗
M =

w∗
M(µ − r1)

b − ar
=

µM − r

b − ar
. (2)

Alternatively, we may obtain (2) by setting i ≡ M in (1). This gives

σ2
M = (µM − r)/(b − ar). Eliminating b − ar from eqs. (1) and (2),

we obtain

ri − r =
σiM

σ2
M

(µM − r).
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Beta of a portfolio

Consider a portfolio containing n risky assets with weights w1, · · · , wn.

Since rP =
n∑

i=1

wiri, we have cov(rP , rM) =
n∑

i=1

wicov(ri, rM) so that

βP =
cov(rP , rM)

σ2
M

=

∑n
i=1 wicov(ri, rM)

σ2
M

=
n∑

i=1

wiβi.

The portfolio beta is given by the weighted average of the beta

values of the risky assets in the portfolio.

Since rP =
n∑

i=1

wiri and βP =
n∑

i=1

wiβi, and for each asset i, the

CAPM gives: ri − r = βi(rM − r). Noting
n∑

i=1

wi = 1, we then have

rP − r = βP (rM − r).
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Various interpretations of the CAPM

• If we write σiM = ρiMσiσM , then the CAPM can be rewritten as

ri − r

σi
= ρiM

rM − r

σM
.

The Sharpe ratio of asset i is given by the product of ρiM and

the slope of CML. When ρiM is closer to one, the asset is closer

to (but always below) the CML. For an efficient portfolio e that

lies on the CML, we then have ρeM = 1.

• For any two risky assets i and j, we have

ri − r

βi
=

rj − r

βj
= rM − r.

Under the CAPM, the expected excess return above r normalized

by the beta value is constant for all assets. On the other hand,

the Sharpe ratios are related by

(Sharpe ratio)i

ρiM
=

ri − r

ρiMσi
=

rj − r

ρjMσj
=

(Sharpe ratio)j

ρjM
=

rM − r

σM
.
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• Let P be an efficient portfolio on the CML, then

rP = αrM + (1 − α)r

where α is the proportional weight of the market portfolio M .

Consider

cov(rP , rM) = cov(αrM + (1 − α)r, rM) = αvar(rM) = ασ2
M

var(rP ) = α2σ2
M ; hence

ρPM =
cov(rP , rM)

σPσM
=

ασ2
M

ασMσM
= 1,

thus verifying the earlier claim. Furthermore, it is seen that

βP =
cov(rP , rM)

var(rM)
= α

var(rM)

var(rM)
= α.

• The beta value of an efficient portfolio is equal to the propor-

tional weight α of the market portfolio in the efficient portfolio.

This is obvious since the expected excess rate of return above

the riskfree rate is contributed by the proportion of market port-

folio in the efficient portfolio only while the proportion of riskfree

asset does not contribute.
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Some special cases of beta values

1. When βi = 0, ri = r. A risky asset (with σi > 0) that is uncor-

related with the market portfolio will have an expected rate of

return equal to the risk free rate. There is no expected excess

return over r even the investor bears some risk in holding a risky

asset with zero beta.

2. When βi = 1, ri = rM . The risky asset has the same expected

rate of return as that of the market portfolio.
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Representation of the risky assets or portfolios of risky assets with

β = 0 and β = 1 in the σ − r diagram.
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3. When βi > 1, the expected excess rate of return is higher than

that of market portfolio - aggressive asset. When βi < 1, the

asset is said to be defensive.

4. When βi < 0, ri < r. Since
dσM

σM
= βi dwM

i , so a risky asset with

negative beta reduces the variance of the portfolio. This risk

reduction potential of an asset with negative β is something like

paying a premium to reduce risk. When more units of the neg-

ative beta asset are added to the portfolio, the expected return

is reduced while the risk of the market portfolio (as quantified

by σM) is also reduced at the same time.
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Example

Assume that the expected rate of return on the market portfolio is

12% per annum and the rate of return on the riskfree asset is 7%

per annum. The standard deviation of the market portfolio is 32%

per annum. Assume that the market portfolio is efficient.

(a) What is the equation of the capital market line?

CML is given by

r = r +

(
rM − r

σM

)
σ = 0.07 + 0.1562σ.

(b) (i) If an expected return of 18% is desired for an efficient port-

folio, what is the standard deviation of this portfolio?

Substituting r = 0.18 into the CML equation, we obtain

σ =
(0.18 − 0.07)

0.1562
= 0.7042.

16



(ii) If you have $1,000 to invest, how should you allocate the wealth

among the market portfolio and the riskfree asset to achieve the

above portfolio?

Recall

rP = αrM + (1 − α)r

so that

α =
rP − r

rM − r
=

0.18 − 0.07

0.12 − 0.07
=

0.11

0.05
= 2.2.

Note that 1 − α = −1.2. The investor should short sell $1,200

of the riskfree asset and long $2,200 of the market portfolio.

(iii) What is the beta value of this portfolio?

The beta value equals the weight of investment on the market

portfolio in the efficient portfolio, so

β = α = 2.2.
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(c) If you invest $300 in the riskfree asset and $700 in the market

portfolio, how much money should you expect to have at the

end of the year?

The expected return per annum is given by

E[rP ] = 0.3r + 0.7rM = 0.105.

The expected amount of money at the end of the year is

($300 + $700)(1 + E[rP ]) = $1,105.
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Extension of CAPM – no reference to the market portfolio

Let P be any efficient portfolio lying along the CML and Q be any

portfolio. An extension of the CAPM gives

rQ − r = βQP (rP − r), βQP =
σQP

σ2
P

, (A)

that is, we may replace the market portfolio M by an efficient port-

folio P .

More generally, the random rates of return rP and rQ are related by

rQ − r = βQP (rP − r) + ǫQP (B)

with cov(rP , ǫQP ) = E[ǫQP ] = 0. The residual ǫQP has zero expected

value and it is uncorrelated with rP .
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Proof

Since Portfolio P is efficient (lying on the CML), then

rP = αrM + (1 − α)r, α > 0.

The first result (A) can be deduced from the CAPM by observing

σQP = cov(rQ, αrM + (1 − α)r) = αcov(rQ, rM) = ασQM , α > 0

σ2
P = α2σ2

M and rP − r = α(rM − r).

Consider

rQ − r = βMQ(rM − r) =
σQM

σ2
M

(rM − r)

=
σQP/α

σ2
P/α2

(rP − r)/α = βQP (rP − r).
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By performing the regression of rQ on rP , the relationship among

rQ and rP can be formally expressed as

rQ = α0 + α1rP + ǫQP ,

where α0 and α1 are the resulting coefficients estimated from the

regression. The residual ǫQP is taken to have zero expected value.

Observe that

rQ = α0 + α1rP

and from result (A), we obtain

rQ = βQP rP + r(1 − βQP )

so that

α0 = r(1 − βQP) and α1 = βPQ.

Hence, we obtain result (B).
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Zero-beta CAPM: absence of the risk free asset

There exists a portfolio ZM whose beta is zero. Since βMZM
= 0,

we have rZM
= r. Consider the following relation from CAPM

rQ = r + βQM(rM − r),

it can be expressed in terms of the market portfolio M and its zero-

beta counterpart ZM as follows

rQ = rZM
+ βQM(rM − rZM

).

In this form, the role of the riskfree asset is replaced by the zero-beta

portfolio ZM . However, the formula is still referencing the market

portfolio (implicitly implies the presence of the risk free asset).

⋆ The more general version of the CAPM allows the choice of any

efficient (mean-variance) portfolio and its zero-beta counterpart.

In this sense, we allow the absence of the risk free asset.
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Zero-beta counterpart of a given efficient portfolio

Let P and Q be any two frontier portfolios of risky assets. Recall

w∗
P = Ω−1(λP

11+ λP
2 µ) and w∗

Q = Ω−1(λ
Q
11+ λ

Q
2 µ)

where

λP
1 =

c − bµP

∆
, λP

2 =
aµP − b

∆
, λ

Q
1 =

c − bµQ

∆
, λ

Q
2 =

aµQ − b

∆
,

a = 1T
Ω−11, b = 1T

Ω−1µ, c = µTΩ−1µ, ∆ = ac − b2.

The covariance between RP and RQ is given by

cov(rP , rQ) = w∗T

P Ωw∗
Q =

[
Ω−1(λP

11+ λP
2 µ)

]T
(λ

Q
11+ λ

Q
2 µ)

= λP
1 λ

Q
1 a + (λP

1 λ
Q
2 + λ

Q
1 λP

2 )b + λP
2 λ

Q
2 c

=
a

∆

(
µP −

b

a

)(
µQ −

b

a

)
+

1

a
. (A)

Setting Q to be P , we obtain σ2
P =

a

∆

(
µP −

b

a

)2

+
1

a
.
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Find the frontier portfolio Z such that cov(RP , RZ) = 0. We find

µZ such that [see Eq. (A)]

a

∆

(
µP −

b

a

)(
µZ −

b

a

)
+

1

a
= 0.

This gives

µZ =
b

a
−

∆
a2

µP − b
a

.

Since (µP − µg)(µZ − µg) = −
∆

a2
< 0, where µg =

b

a
, so when one

portfolio is efficient, then its zero-covariance counterpart is non-

efficient.
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Slope of the tangent at P to the frontier curve:

dµP

dσP
=

∆σP

aµP − b
.

The intercept of the tangent line at the vertical axis is

µP −
dµP

dσP
σP = µP −

∆σ2
P

aµP − b

= µP −
aµ2

P − 2bµP + c

aµP − b
=

b

a
−

∆/a2

µP − b/a
= µZ.

These calculations verify that the uncorrelated counterpart Z can

be obtained by drawing a tangent to the frontier curve at P and

finding the intercept of the tangent line at the vertical axis. Draw

a horizontal line from the intercept to hit the frontier curve at Z.
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Intuition behind the geometric construction of the uncorrelated

counterpart

• Fix the riskfree point, we determine the market portfolio by the

tangency method. Subsequently, all zero-beta funds (uncorre-

lated with the market portfolio) lie on the same horizonal line

through the riskfree point in the σP -µP diagram.

• Conversely, we consider the scenario where the riskfree point

is NOT specified. Actually, the riskfree asset is absent in the

present context. Apparently, given an efficient fund, we deter-

mine the corresponding “riskfree point” such that the efficient

fund is the market portfolio with reference to the riskfree point.

In this case, the frontier fund with the same return as this pseudo

“riskfree point” will have its random rate of return uncorrelated

with that of the efficient fund. The pseudo “riskfree point”

and this uncorrelated counterpart (itself is a minimum variance

portfolio) lie on the same horizontal line in the σ-r diagram.
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Let P be a frontier portfolio other than the global minimum variance

portfolio and Q be any portfolio, then

cov(RP , RQ) =
[
Ω−1

(
λP
11+ λP

2 µ
)]T

ΩwQ

= λP
11

T
wQ + λP

2 µTwQ = λP
1 + λP

2 µQ.

Solving for µQ and substituting λP
1 =

c − bµP

∆
and λP

2 =
aµP − b

∆
:

µQ =
bµP − c

aµP − b
+ cov(rP , rQ)

∆

aµP − b

=
b

a
−

∆/a2

µP − b/a
+

cov(rP , rQ)

σ2
P




(
µP − b

a

)2

∆/a
+

1

a




∆

aµP − b

= µZP
+ βQP

(
µP −

b

a
+

∆/a2

µP − b/a

)

= µZP
+ βQP(µP − µZP

)

so that we obtain the following generalized CAPM (in terms of the

given efficient portfolio and its uncorrelated counterpart)

µQ − µZP
= βQP (µP − µZP

).
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7.2 Interpretation and uses of the capital asset pricing model

Security market line (SML)

From the two relations:





r = rf +
rM−rf

σ2
M

σiM

r = rf + (rM − rf)βi

,

we can plot either r against σiM or r against βi.
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Under the equilibrium conditions assumed by the CAPM, every asset

should fall on the SML. The SML expresses the risk reward structure

of assets according to the CAPM.

• Point O′ represents under-priced security. This is because the

expected return is higher than the return with reference to the

risk. In this case, the demand for such security will increase and

this results in price increase and lowering of the expected return.
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Example

Consider the following set of data for 3 risky assets, market portfolio

and risk free asset:

portfolio/security σi ρiM βi actual expected rate of return

=
E[P1 + D1]

P0
− 1.0

1 10% 1.0 0.5 13%
2 20% 0.9 0.9 15.4%
3 20% 0.5 0.5 13%
market portfolio 20% 1.0 1.0 16%
risk free asset 0 0.0 0.0 10%

• Note that β can be computed using the data given for ρiM , σi

and σM . For example, β1 = ρ1Mσ1/σM = 0.5.
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Use of the CML

The CML identifies expected rates of return which are available

on efficient portfolios of all possible risk levels. Portfolios 2 and 3

lie below the CML. The market portfolio, the risk free asset and

Portfolio 1 all lie on the CML. Hence, Portfolio 1 is efficient while

Portfolios 2 and 3 are non-efficient.

At σ = 10%, r = 10%︸ ︷︷ ︸
rf

+10%︸ ︷︷ ︸
σ

×
(16 − 10)%

20%︸ ︷︷ ︸
(rM−rf)/σM

= 13%.

At σ = 20%, r = 10% + 20% ×
(16 − 10)%

20%
= 16%.
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Note that Asset 2 is closer to the CML since ρ2M is 0.9, which is

sufficiently close to 1. Asset 3 has high non-systematic risk (risk

that does not contribute to expected return) as ρ3M is seen to have

a low value.
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Use of the SML

The SML asks whether the portfolio provides a return equal to what

equilibrium conditions suggest should be earned.
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The expected rates of return of the portfolios for the given values

of beta are given by

r1 = r3 = 10%︸ ︷︷ ︸
r

+0.5︸︷︷︸
β

×(16% − 10%︸ ︷︷ ︸
rM−r

) = 13%

r2 = 10% + 0.9 × (16% − 10%) = 15.4%.

These expected rates of return suggested by the SML agree with

the actual expected rates of return. Hence, each investment is fairly

priced.

Portfolio 1 has unit value of ρiM , that is, it is perfectly corre-

lated with the market portfolio. Hence, Portfolio 1 has zero non-

systematic risk.

Portfolios 2 and 3 both have ρiM less than one.

Portfolio 2 has ρiM closer to one and so it lies closer to the CML.
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Decomposition of risks

Suppose we write the random rate of return ri of asset i formally as

ri = r + βi(rM − r) + ǫi.

The CAPM tells us something about the residual term ǫi.

(i) Taking expectation on both sides

E[ri] = r + βi(rM − r) + E[ǫi]

while ri = r + βi(rM − r) so that E[ǫi] = 0.

(ii) Taking the covariance of ri with rM

cov(ri, rM) =

zero︷ ︸︸ ︷
cov(rf , rM)+βi


cov(rM , rM) − cov(rf , rM)︸ ︷︷ ︸

zero




+ cov(ǫi, rM)

so that cov(ǫi, rM) = 0.
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(iii) Consider the variance of ri

var(ri) = β2
i cov(rM − rf , rM − rf)︸ ︷︷ ︸

var(rM)

+ var(ǫi)

so that σ2
i = β2

i σ2
M + var(ǫi).

The total risk consists of systematic risk β2
i σ2

M and firm-specific

(idiosyncratic) risk var(ǫi).

Systematic risk = β2
i σ2

M , this risk cannot be reduced by diversifica-

tion because every asset with nonzero beta contains this risk.

It is the systematic risk where the investor is rewarded for excess

return above the riskfree rate.
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Efficient portfolios: zero non-systematic risk

Consider a portfolio P formed by the combination of the market

portfolio and the risk free asset. This portfolio is an efficient port-

folio (one fund theorem) and it lies on the CML with a beta value

equal to βP (say). Its rate of return can be expressed as

rP = (1 − βP )r + βP rM = r + βP (rM − r)

so that ǫP = 0. The portfolio variance is β2
Pσ2

M . This portfolio has

only systematic risk (zero non-systematic risk).

For an efficient portfolio P , we have ρPM = 1 so that βP =
σP

σM
.
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Portfolios not on the CML – non-efficient portfolios

For other portfolios with the same value of βP but not lying on the

CML, they lie below the CML since they are non-efficient portfolios.

With the same value of βP , they all have the same expected rate of

return given by

r = r + βP(rM − r)

but the portfolio variance is greater than β2
Pσ2

M . The extra part of

the portfolio variance is var(ǫi).
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equation of CML: r = r +
rM − r

σM
σ
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Diversification effect

Note that ǫi is uncorrelated with rM as revealed by cov(ǫi, rM) = 0.

The term var(ǫi) is called the non-systematic or specific risk. This

risk can be reduced by diversification.

Consider ri = (1−βiM)r +βiMrM + ǫi and observe cov(ǫi, ǫj) ≈ 0 for

i 6= j and cov(rM , ǫi) = 0 for all i, then

µP =
n∑

i=1

wiri =
n∑

i=1

(1 − βiM)wir +
n∑

i=1

βiMwiµM

σ2
P =




n∑

i=1

wiβiM






n∑

j=1

wjβjM


σ2

M +
n∑

i=1

w2
i σ2

ǫi
.

Let βPM =
n∑

i=1

wiβiM and αP =
n∑

i=1

wi(1 − βiM)r, then

µP = αP + βPMµM

σ2
P = β2

PMσ2
M +

n∑

i=1

w2
i σ2

ǫi
.
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Suppose we take wi = 1/n so that

σ2
P = β2

PMσ2
M +

1

n2

n∑

i=1

σ2
ǫi

= β2
PMσ2

M + σ2/n,

where σ2 is the average of σ2
ǫ1

, · · · , σ2
ǫn. When n is sufficiently large

σP →




n∑

i=1

wiβiM


σM = βPMσM .

• We may view βiM as the contribution of asset i to the portfolio

variance σ2
P .

• From σ2
i = β2

iMσ2
M+σ2

ǫi
, the contribution from σ2

ǫi
to the portfolio

variance σ2
P goes to zero as n → ∞.
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Example

Suppose that the relevant equilibrium model is the CAPM with un-

limited borrowing and lending at the riskless rate of interest. Com-

plete the blanks in the following table.

Stock Expected Return Standard Deviation Beta Residual Variance

1 0.15 — 2.00 0.10

2 — 0.25 0.75 0.04

3 0.09 — 0.50 0.17

Solution

Given our assumptions, the relationship between the expected rate

of return and beta is linear.

From the information we have for stock 1 and 3, we know the risk

premium accorded the market portfolio must be

E[rM ] − r =
E[r1] − E[r3]

β1 − β3
=

0.15 − 0.09

2.0 − 0.5
= 0.04.
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Knowing this, we can use the information we have for stock 1 to

find the risk-free rate

E[r1] = r + (E[rM ] − r)β1

r = E[r1] − (E[rM ] − r)β1 = 0.15 − (0.04)(2.00) = 0.07.

We can now find the expected return for stock 2

E[r2] = r + (E[rM ] − r)β2 = 0.07 + (0.04)(0.75) = 0.10.

The information given for stock 2 allows us to estimate the variance

of returns of the market:

σ2(r2) = β2
2σ2(rM) + σ2(ǫ2)

σ2(rM) =
σ2(r2) − σ2(ǫ2)

β2
2

=
(0.25)2 − (0.04)

(0.75)2
= 0.04
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The standard deviations of stock 1 and 3 can now be found:

σ2(r1) = (2.0)2(0.04) + 0.10 = 0.26;σ(r1) = 0.5099.

σ2(r3) = (0.5)2(0.04) + 0.17 = 0.18;σ(r3) = 0.4243.

Stock Expected

Return

Standard

Deviation

Beta Residual

Variance

1 0.15 0.51 2.00 0.10
2 0.10 0.25 0.75 0.04
3 0.09 0.42 0.5 0.17

risk free asset 0.07 0 0 0
market port-

folio

0.11 0.2 1.00 0

Stock 3 has very high firm specific risk; σ(r3) = 0.4243 is much

higher than σ(rM) = 0.2 but the expected return is only 9% as

compared to E[rM ] = 11%. This represents an inferior stock.
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Remark

The CAPM predicts that the excess return on any stock (portfolio)

adjusted for the risk on that stock (portfolio) should be the same

E[ri] − r

βi
=

E[rj] − r

βj
. (A)

This is in contrast to the Sharpe ratio, where

E[ri] − r

σi
T E[rj] − r

σj
. (B)

The asset with a lower value of Sharpe ratio is considered inferior.

Here, σ2
i = β2

i σ2
M + var(εi) and σ2

j = β2
j σ2

M + var(εj). The inferior

asset has a high residual risk.
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CAPM as a pricing formula

Suppose an asset is purchased at P and later sold at Q. The rate

of return is
Q − P

P
, P is known and Q is random. Using the CAPM,

Q − P

P
= r + β(rM − r) so that P =

Q

1 + r + β(rM − r)
.

Here, P gives the fair price of the asset with expected value Q and

beta β.

The factor
1

1 + r + β(rM − r)
can be regarded as the risk adjusted

discount rate.
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Example (Investment in a mutual fund)

A mutual fund invests 10% of its funds at the risk free rate of 7%

and the remaining 90% at a widely diversified portfolio with asymp-

totically low level of idiosyncratic risk that closely approximates the

market portfolio, and rM = 15%. The beta of the fund is then

equal to 0.9.

Suppose the expected value of one share of the fund one year later

is $110, what should be the fair price of one share of the fund now?

According to the pricing form of the CAPM, the current fair price

of one share =
$110

1 + 7% + 0.9 × (15 − 8)%
=

$110

1.142
= $96.3.
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Implicitly, β also involves P since β = cov

(
Q

P
− 1, rM

)/
σ2

M so that

β =
cov(Q, rM)

Pσ2
M

. We rearrange the terms in the CAPM pricing

formula to solve for P explicitly

1 =
Q

P(1 + r) + cov(Q, rM)(rM − r)/σ2
M

so that the fair price based on the CAPM is

P =
1

1 + r

[
Q −

cov(Q, rM)(rM − r)

σ2
M

]
.

In this new form, the riskfree discount factor
1

1 + r
is applied on the

certainty equivalent. Net present value of the asset is the difference

between the fair price and the observed price, which is then given

by

−P +
1

1 + r

[
Q −

cov(Q, rM)(rM − r)

σ2
M

]
.
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Difficulties with the mean-variance approach

1. Application of the mean-variance theory requires the determina-

tion of the parameter values: mean values of the asset returns

and the covariances among them. Suppose there are n assets,

then there are n mean values, n variances and
n(n − 1)

2
covari-

ances. For example, when n = 1,000, the number of parameter

values required = 501,500.

2. In the CAPM, there is really only one factor that influences the

expected return, namely, βiM .

The assumption of investors utilizing a mean variance framework

is replaced by an assumption of the risk factors generating security

returns.
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7.3 Arbitrage pricing theory (APT) and factor models

• The APT rests on the law of one price in the financial market:

portfolios with the same payoff have the same price. Arbitrage

opportunities arise when two securities with the same payoff

have different prices – buy the cheap one and sell the expensive

one to secure a risk free profit. Absence of arbitrage ⇒ Law of

one price.

• The APT requires that the returns on any stock be linearly

related to a number of risk factors.

• The return on a security can be broken down into an expected

return and an unexpected (or surprise) component.

• Randomness displayed by the returns of n assets can be traced

back to a smaller number of underlying basic sources of ran-

domness (factors). Hopefully, this leads to a simpler covariance

structure.
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Single-factor model

The random rate of return ri of asset i and the factor f are assumed

to be linearly related by

ri = ai + bif + ei i = 1,2, · · · , n.

Here, f is the random quantity shared by all assets, ai and bi are

fixed constants, ei’s are random errors (without loss of generality,

take E[ei] = 0). bi = factor loading; which measures the sensitivity

of the return ri to the factor. Further, we assume

cov(ei, f) = 0 and E[eiej] = 0, i 6= j.

Interpret the CAPM model in terms of excess returns ri − r of any

risky asset and rM − r of the market portfolio.

ri − r = βi(rM − r) + ei.

Here, rM − r is the single random factor that drives the return.
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Specifying the factors (macroeconomic state variables) that affect

the return-generating process

1. Inflation

Inflation impacts both the level of the discount rate and the size

of the future cash flows.

2. Risk premia

Differences between the return on safe bonds and more risky

bonds are used to measure the market’s reaction to risk.

3. Industrial production

Changes in industrial production affect the opportunities facing

investors and the real value of cash flow.

Much of the empirical APT research has focused on the identifica-

tion of these factors.
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⋆ Different data sets (past one month or two months data) may

lead to different estimated values.

From ri = ai + bif + ei, we deduce that

ri = ai + bif

σ2
i = b2i σ2

f + σ2
ei

[using cov(f, ei) = 0]

σij = bibjσ
2
f , i 6= j [using cov(ei, ej) = 0 in addition]

bi = cov(ri, f)/σ2
f .
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Example (Four stocks and one index)

Historical rates of return for four stocks over 10 years, record of

industrial price index over the same period.

Estimate of ri is r̂i =
1

10

10∑

k=1

rk
i , where rk

i is the observed rate of

return of asset i in the kth year. The estimated variances and co-

variances are given by

v̂ar(ri) =
1

9

10∑

k=1

(rk
i − r̂i)

2

ĉov(ri, f) =
1

9

10∑

k=1

(rk
i − r̂i)(f

k − f̂).

Once the covariances have been estimated, bi and ai are obtained:

bi =
cov(ri, f)

var(f)
and ai = r̂i − bif̂ .

Also, ei can be estimated once the estimated values of ai and bi are

known.
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We estimate the variance of the error under the assumption that

these errors are uncorrelated with each other and with the index.

The formula to be used is

var(ei) = var(ri) − b2i var(f).

In addition, we estimate cov(ei, ej) by following similar calculations

as in ĉov(ri, f).

• Unfortunately, the error variances are almost as large as the

variances of the stock returns.

• There is a high non-systematic risk, so the choice of this factor

does not explain much of the variation in returns.

• Further, cov(ei, ej) are not small so that the errors are highly

correlated. We have

cov(e1, e2) = 44 and cov(e2, e3) = 91.

Recall that the factor model was constructed under the assump-

tion of zero error covariances.
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Year Stock 1 Stock 2 Stock 3 Stock 4 Index

1 11.91 29.59 23.27 27.24 12.30
2 18.37 15.25 19.47 17.05 5.50
3 3.64 3.53 −6.58 10.20 4.30
4 24.37 17.67 15.08 20.26 6.70
5 30.42 12.74 16.24 19.84 9.70
6 −1.45 −2.56 −15.05 1.51 8.30
7 20.11 25.46 17.80 12.24 5.60
8 9.28 6.92 18.82 16.12 5.70
9 17.63 9.73 3.05 22.93 5.70
10 15.71 25.09 16.94 3.49 3.60

aver 15.00 14.34 10.90 15.09 6.74
var 90.28 107.24 162.19 68.27 6.99
cov 2.34 4.99 5.45 11.13 6.99
b 0.33 0.71 0.78 1.59 1.00
a 12.74 9.53 5.65 4.36 0.00

e-var 89.49 103.68 157.95 50.55

The record of the rates of return for four stocks and an index of industrial prices are shown. The

averages and variances are all computed, as well as the covariance of each with the index. From

these quantities, the bi”s and the ai’s are calculated. Finally, the computed error variances are

also shown. The index does not explain the stock price variations very well.
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Portfolio risk under single-factor models – systematic and non-

systematic risks

Let wi denote the weight for asset i, i = 1,2, · · · , n.

rP =
n∑

i=1

wiai +
n∑

i=1

wibif +
n∑

i=1

wiei

so that rP = a + bf + e, where

a =
n∑

i=1

wiai, b =
n∑

i=1

wibi and e =
n∑

i=1

wiei.

Further, since E[ei] = 0, E[(f − f)ei] = 0 so that

E[e] = 0 and E[(f − f)e] = 0;

e and f are uncorrelated. Also, cov(ei, ej) = 0, i 6= j, so that σ2
e =

n∑

i=1

w2
i σ2

ei
. Overall variance of portfolio = σ2 = b2σ2

f + σ2
e .
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As an illustration suppose we take σ2
ei

= S2 and wi = 1/n so that

σ2
e =

S2

n
. As n → ∞, σ2

e → 0. The overall variance of portfolio σ2

tends to decrease as n increases since σ2
e goes to zero, but σ2 does

not go to zero since b2σ2
f remains finite.

• The risk due to ei is said to be diversifiable since its contribution

to the overall risk is essentially zero in a well-diversified portfolio.

This is because ei’s are uncorrelated and so each can be reduced

by diversification. In simple sense, some of the ǫi will be positive

and others negative, so their weighted sum is likely to be close

to zero.

• The risk due to bif is said to be systematic since it is present

even in a diversified portfolio.

The return on the portfolio is made up of the expected returns on

the individual securities and the random component arising from the

single risk factor f .
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Single-factor models with zero residual risk

Assume zero idiosyncratic (asset-specific) risk,

ri = ai + bif, i = 1,2, · · · , n,

where the factor f is chosen to satisfy E[f ] = 0 for convenience

(with no loss of generality) so that ri = ai.

Consider two assets which have two different factor loading bi’s,

what should be the relation between their expected returns under

the assumption of no arbitrage?

Consider a portfolio with weight w in asset i and weight 1 − w in

asset j. The portfolio return is

rP = w(ai − aj) + aj + [w(bi − bj) + bj]f.
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By choosing w∗ =
bj

bj − bi
, the portfolio becomes risk free and

r∗P =
bj(ai − aj)

bj − bi
+ aj.

This must be equal to the return of the risk free asset, denoted

by r. If otherwise, arbitrage opportunities arise. Suppose the risk

free two-asset portfolio has a return higher than that of the riskfree

asset, we then short sell the riskfree asset and long hold the risk

free portfolio. We write the relation as

aj − r

bj
=

ai − r

bi
= λ.

set

Hence, ri = r + biλ, where λ is the factor risk premium. Note that

when two assets have the same factor loading b, they have the same

expected return.
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1. The risk free return r is the expected return on a portfolio with

zero factor loading.

2. In general, the term risk premium refers to the excess return

above the riskfree rate of return demanded by an investor who

bears the risk of the investment. The factor risk premium λ gives

the extra return above r per unit loading of the risk factor,

λ = (ri − r)|bi=1.

3. Under the general single-factor model, where

ri = ai + bif + ei,

cov(ri, rj) = cov(ai + bif, aj + bjf) = bibjvar(f) = bibjσ
2
f ,

based on the usual assumption that

cov(ei, f) = cov(ej, f) = cov(ei, ej) = 0.

That is, the asset-specific risks are assumed to be uncorrelated

with the factor risk and among themselves.
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Numerical example

Given a1 = 0.10, b1 = 2, a2 = 0.08 and b2 = 1, and assuming E[f ] =

e1 = e2 = 0 for the two assets under the single-factor model, find

the factor risk premium λ. How to construct the zero-beta portfolio

from these two risky assets?

The two unknowns r and λ are determined from the no-arbitrage

relation:
0.10 − r

2
=

0.08 − r

1
= λ

so that r = 0.06 and λ = 0.02. The expected rate of return of the

two assets are given by r1 = 0.10 + 2λ and r2 = 0.08 + λ.

To construct a zero-beta portfolio, we long two units of asset 2 and

short one unit of asset 1 so that

rP = 2r2 − r1 = 2(0.08 + f) − (0.10 + 2f) = 0.06.
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Two-factor extension

Consider the two-factor model

ri = ai + bi1f1 + bi2f2, i = 1,2, · · · , n,

where the factors f1 and f2 are chosen such that

E[f1f2] = 0, E[f2
1 ] = E[f2

2 ] = 1, E[f1] = E[f2] = 0.

Consider a 3-asset portfolio, with the assumption that 1, b1 =


b11
b21
b31


 and b2 =




b12
b22
b32


 are linearly independent. Form the port-

folio with weights w1, w2 and w3 so that

rP =
3∑

i=1

wiai + f1

3∑

i=1

wibi1 + f2

3∑

i=1

wibi2.
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Since 1, b1 and b2 are independent, the following system of equa-

tions 


1 1 1
b11 b21 b31
b12 b22 b32







w1
w2
w3


 =




1
0
0


 (A)

always has unique solution. By choosing this set of values for wi, i =

1,2,3, the portfolio becomes riskfree. By applying the no-arbitrage

argument again, the risk free portfolio should earn the return same

as that of the riskfree asset, thus

rP =
3∑

i=1

wiai = r.

Rearranging, we obtain a new relation between w1, w2 and w3:

3∑

i=1

(ai − r)wi = 0. (B)
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This implies that there exists a non-trivial solution to the following

homogeneous system of linear equations:



a1 − r a2 − r a3 − r
b11 b21 b31
b12 b22 b32







w1
w2
w3


 =




0
0
0


 .

The above coefficient matrix must be singular. Since the second

and third rows are independent, it must occur that the first row is

formed by some linear combination of the second and third rows.

This gives

ai − r = ri − r = λ1bi1 + λ2bi2

for some constant parameters λ1 and λ2.
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Remark

What happens if 1, b1 and b2 are not independent? In this case, we

cannot form a riskfree portfolio using the 3 given assets as there is

no solution to the linear system (A).

Factor risk premium: λ1 and λ2

– interpreted as the excess expected return per unit loading asso-

ciated with the factors f1 and f2.

For example, λ1 = 3%, λ2 = 4%, factor loadings are bi1 = 1.2, bi2 =

0.7, r = 7%, then

ri = 7% + 1.2 × 3% + 0.7 × 4% = 13.6%.
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Absence of the riskfree asset

ri − r = λ1bi1 + λ2bi2, i = 1,2, · · · , n.

If no risk free asset exists naturally, then we replace r by λ0, where

λ0 is the return of the zero-beta asset (whose factor loadings are all

zero). Note that the zero-beta asset is riskfree. Once λ0, λ1 and λ2

are known, the expected return of an asset is completely determined

by the factor loadings bi1 and bi2. Theoretically, a riskless asset

can be constructed from any three risky assets so that λ0 can be

determined.

Indeed, we choose a solution




w1
w2
w3


 that satisfies Eq. (A), we

obtain a risk free portfolio. We then set

λ0 =
3∑

i=1

wiai.

The expected rate of return becomes ri = λ0 + λ1bi1 + λ2bi2.
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Numerical example

Consider 3 assets whose rates of return are governed by

r1 = 5 + 2f1 + 3f2

r2 = 6 + f1 + 2f2

r3 = 4 + 6f1 + 10f2,

where f1 and f2 are the risk factors. We can form a riskfree portfolio

by assigning weights w1, w2 and w3, which can obtained by solving

w1 + w2 + w3 = 1

2w1 + w2 + 6w3 = 0

3w1 + 2w2 + 10w3 = 0.

The solution of the above system of equations gives w1 = w2 = 2
3

and w3 = −1
3.
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This riskfree portfolio has zero factor loading (or called zero-beta

portfolio). It deterministic rate of return = 5w1 + 6w2 + 4w3 =

6. This is the same as the riskfree rate, and it is called λ0. To

determine the factor risk premia λ1 and λ2, we observe



−1 0 −2
2 1 6
3 2 10







2/3
2/3
−1/3


 =




0
0
0


 .

The first row can be written as (−2) times the second row plus the

third row, so λ1 = −2 and λ2 = 1. We then have

r1 = λ0 + 2λ1 + 3λ2 = 6 − 4 + 3 = 5;

r2 = λ0 + λ1 + 2λ2 = 6 − 2 + 2 = 6;

r3 = λ0 + 6λ1 + 10λ2 = 6 − 12 + 10 = 4.
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Remarks

1. In a well functioning market, the factor risk premia should be all

positive. In this example, we obtain λ1 = −2. This is because

r3 has a low value of expected value (r3 = 4), though r3 has

high factor loading. This leads to negative risk premium value.

Suppose we modify the expected return values to assume some

higher numerical values; for example

r1 = 13+2f1+3f2, r2 = 10+f1+2f2, r3 = 28+6f1+10f2.

The new λ0 = 2
3 × 13 + 2

3 × 10 − 1
3 × 28 = 6. The new first

row = (13 − λ0 10 − λ0 28 − λ0) = (7 4 22), which can

be expressed as 2 times the second row = (2 1 6) plus the

third row = (3 2 10). We obtain λ1 = 2 and λ2 = 1.
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2. Suppose we modify the risk factors by some scalar multiples, say,

new factors f̃1 and f̃2 are chosen to be f̃1 = 2f1 and f̃2 = 3f2.

The factor loading bi1 and bi2 are reduced by a factor of 1
2 and

1
3, respectively. We now have

r1 = 5 + f̃1 + f̃2

r2 = 6 +
f̃1
2

+
2

3
f̃2

r3 = 4 + 3f̃1 +
10

3
f̃2.

The new factor risk premia become λ̃1 = 2λ1 = −4 and λ̃2 =

3λ2 = 3. Not surprisingly, we obtain the same results for the

expected rates of return of the assets.
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3. In the derivation of the factor risk premia, we have assumed

zero idiosyncratic risk for all asset returns; that is, ej = 0 for all

assets. When idiosyncratic risks are present, we obtain the same

result for the factor risk premia for a well diversified portfolio

(under the assumption of so-called asymptotic arbitrage). That

is, the expected excess return above the riskfree rate is given

by the sum of the product of the factor loading and factor risk

premium for each risk factor.
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Expected excess return in terms of the expected excess return of

two portfolios

Given any two portfolios P and M with
bP1

bP2
6=

bM1

bM2
, we can solve

for λ1 and λ2 in terms of the expected excess return on these two

portfolios: rM − r and rP − r. The governing equations for the

determination of λ1 and λ2 are

rP − r = λ1bP1 + λ2bP2

rM − r = λ1bM1 + λ2bM2.

Once λ1 and λ2 are obtained in terms of rP − r, rM − r and factor

loading coefficients, we then have the following CAPM-like formula:

ri = r + λ1bi1 + λ2bi2 = r + b′i1(rM − r) + b′i2(rP − r)

where

b′i1 =
bi1bP2 − bi2bP1

bM1bP2 − bM2bP1
, b′i2 =

bi2bM1 − bi1bM2

bM1bP2 − bM2bP1
.
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Numerical example

Consider the previous example with the following 2 assets:

r1 = 5 + 2f1 + 3f2, r2 = 6 + f1 + 2f2;

with riskfree rate r = 6 (here r is given). Now, λ1 and λ2 are

governed by

r1 − 6 = 2λ1 + 3λ2, r2 − 6 = λ1 + 2λ2;

so that

λ1 =

∣∣∣∣∣
r1 − 6 3
r2 − 6 2

∣∣∣∣∣
∣∣∣∣∣
2 3
1 2

∣∣∣∣∣

= 2(r1 − 6) − 3(r2 − 6)

λ2 =

∣∣∣∣∣
2 r1 − 6
1 r2 − 6

∣∣∣∣∣
∣∣∣∣∣
2 3
1 2

∣∣∣∣∣

= 2(r2 − 6) − (r1 − 6).
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Lastly, we express the expected excess of the third asset in CAPM-

like form:

r3 = r + 6λ1 + 10λ2 = 6 + 2(r1 − 6) + 2(r2 − 6).

Remark

With n risk factors, we may write the excess return above r of the

asset j as sum of scalar multiples of r1 − r, r2 − r, · · · , rn − r. That

is,

rj − r =
n∑

k=1

b1jk(rk − r).
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Summary of assumptions on the capital market

• The capital market is characterized by perfect competition.

• For example, there are no investor who hold more market in-

formation than others. There are a large number of investors,

each with wealth that is small relative to the total market value

of all capital assets. Hence, the portfolio choice of individual

investors has no noticeable effect on the prices of the securities;

investors take the price as given.

• Capital market imperfections such as transaction costs and taxes

do not occur.
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• All investors have the same expectations regarding the future

in terms of mean, variance and covariance terms (homogeneous

expectations).

• The expectations are captured by a return distribution that is

described by a factor risk model; rates of return depend on some

common risk factors and some random asset-specific residual.

• The asset-specific residual has a zero mean, is uncorrelated

across assets and is uncorrelated with the common factors.
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Compare and contrast the CAPM and the APT

• The APT does not assume that investors make decisions ac-

cording to the mean-variance rule.

• The primary assumption of the APT is that security returns are

generated by a linear factor model. The APT is based on a

no-arbitrage condition – riskfree portfolio should earn the same

rate of return as that of the riskfree asset.

• The single-index model drastically reduces the inputs needed in

solving for the optimum portfolios in the efficient frontier, since

the covariances can be calculated easily: cov(ri, rj) = βiβjσ
2
f .
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Sources of risk for the expected excess return on portfolios

Assume that we have identified four factors in the return-generating

model

I1 = unexpected change in inflation, denoted by II

I2 = unexpected change in aggregate sales, denoted by IS

I3 = unexpected change in oil prices, denoted by IO

I4 = the return in the S&P index constructed to be orthogonal to

the other factors, denoted by IM .

Furthermore, assume that the oil risk is not priced, λO = 0; then

ri − r = λIbiI + λSbiS + λMbiM .
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Factor b λ Contribution to mid-cap
Expected Excess Return
(%)

Inflation −0.37 −4.32 1.59

Sales growth 1.71 1.49 2.54

Oil prices 0.00 0.00 0.00

Market 1.00 3.96 3.96

Expected excess return for mid-cap stock portfolio 8.09

The expected excess return for the mid-cap stock portfolio is 8.09%.

Sales growth contributes 2.54% to the expected return for the mid-

cap. In other words, sensitivity to sales growth accounts for 2.54÷

8.09 or 31.4% of the total expected excess return.
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Factor b λ Contribution

to Growth

Stock Portfo-

lio Expected

Excess Re-

turn (%)

Inflation −0.50 −4.32 2.16

Sales growth 2.75 1.49 4.10

Oil prices −1.00 0.00 0.00

Market 1.30 3.96 5.15

Expected excess return for growth stock portfolio 11.41

• The expected excess return for the growth stock portfolio (11.41%)

is higher than it was for the mid-cap (8.09%). The growth stock

portfolio has more risk, with respect to each index, than the

mid-cap portfolio.

• Individual factors have a different absolute and relative contribu-

tion to the expected excess return on a growth stock portfolio

than they have on the mid-cap index.
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Portfolio management

Factor models are used to estimate short-run expected returns to

the asset classes. The factors are usually macroeconomic variables,

some of which are list below:

1. The rate of return on a treasury bill (T bill).

2. The difference between the rate of return on a short-term and

long-term government bond (term).

3. Unexpected changes in the rate of inflation in consumer prices

(inflation).

4. Expected percentage changes in industrial production (ind. prod.).

5. The ratio of dividend to market price for the S&P 500 in the

month preceding the return (yield).

6. The difference between the rate of return on a low- and high-

quality bond (confidence).

7. Unexpected percentage changes in the price of oil (oil).
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Four distinctive phases of the market are identified which are based

on the directional momentum in stock prices and earnings per share:

1. The initial phase of a bull market.

2. The intermediate phase of a bull market.

3. The final phase of a bull market.

4. The bear market.

Interestingly, for a given type of stock, the factor sensitivities can

change dramatically as the market moves from one phase to the

next.
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Bear market −→ Initial phase of bull market

The factor sensitivities for large versus small stocks in going from

a bear market to the initial phase of a bull market are listed below:

Phase IV Phase I

Factor Small Stocks Large Stocks Small Stocks Large Stocks

T bill −6.45 −1.21 5.16 5.81

Term 0.34 0.45 0.86 0.92

Inflation −3.82 −2.45 −3.23 −2.20

Ind. prod. 0.54 0.06 0.00 0.40

Yield 1.51 −0.16 −0.18 0.00

Confidence −0.63 −0.43 2.46 1.45

Oil −0.21 −0.07 0.26 0.20
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Asset allocation decision procedure

• Identify the current market phase, calculate the factor values

typically experienced in such a phase, and make modifications in

these factor averages to reflect expectations for the forthcoming

period (usually a year).

• Calculate expected returns for the asset classes (such as large

and small stocks) on the basis of the factor sensitivities in the

phase.

• These expected returns can then be imported to an optimizer

to determine the mix of investments that maximizes expected

return given risk exposure for the forthcoming year.
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Summary of key concepts

Construction of the uncorrelated counterpart of a frontier fund

• Recall that zero-beta funds are those funds which lie on the

same horizontal line with the riskfree point. Given the risk-

free point, we determine the market portfolio by the tangency

method. Conversely, given a frontier fund, we find the corre-

sponding riskfree point such that the frontier fund becomes the

market portfolio. This is done by drawing a tangent to the ef-

ficient frontier at the frontier fund and finding the intercept of

this tangent line at the vertical r-axis.
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Capital market line and efficient portfolios

• All portfolios lying on the CML are efficient, and all are com-

posed of various mixes of the market portfolio and the risk free

asset.

• The beta value of an efficient portfolio is equal to the propor-

tional weight of market portfolio in the efficient portfolio. This

is obvious since the excess return above the riskfree rate is con-

tributed by the portion of market portfolio.

• The CML does not apply to individual asset or portfolios that

are inefficient, because investors do not require a compensation

for non-systematic risk.
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• Efficient portfolios have the same Sharpe ratio as that of the

market portfolio.

• All portfolios are on or below the CML. When the correlation

coefficient between portfolio’s return and market return is closer

to 100%, the portfolio is closer to being efficient and comes

closer to the CML. The ratio of the Sharpe ratios is simply the

correlation coefficient between the portfolio return and market

returns.

• Efficient portfolios have zero specific (diversifiable or non-systematic)

risk.

• An efficient portfolio has 100% correlation with the Market Port-

folio. Security returns are driven by the market portfolio. The

extended version of CAPM allow the replacement of the Market

Portfolio by any efficient portfolio.
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Security market line

• In equilibrium, all assets and portfolios lie on the security market

line. All assets are priced correctly and one cannot find bargains.

Any derivation from the SML implies that the market is not in

the CAPM equilibrium.

• When equilibrium prevails, the expected excess return above the

riskfree rate normalized by the beta is constant for all assets /

portfolios.
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Beta value

• According to CAPM, the higher the asset risk (beta), the higher

the expected rate of return will be.

• All assets/portfolios with the same beta share the same amount

of systematic risk, and they have the same excess return above

the riskfree rate. The beta value (not portfolios standard de-

viation) is used as a measure of risk in CAPM since only the

systematic risk is rewarded with extra returns. When the spe-

cific risk becomes zero, the portfolio standard deviation equals

beta times market portfolio’s standard deviation.
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Systematic risk

• The variance of a security’s returns stems from overall market

movements and is measured by beta. It is only this risk that

investors are rewarded for bearing.

• Systematic risk is given by β2 times market return’s variance.

Unsystematic (firm-specific or idiosyncratic) risk

Diversifiable risk that is unique to a particular stock / portfolio. The

residual risks are uncorrelated to the market portfolio.
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APT model

• Returns of assets are driven by a set of macroeconomic factors

and noise / asset-specific component.

• The APT does not require identification of the market portfolio,

but it does require the specification of the relevant macroeco-

nomics factors. Much of the empirical APT research has focused

on the identification of these factors.

• The APT and CAPM together complement each other. They

both predict that positive returns will result from factor sensi-

tivities that move with the market.
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