MATH685Z - Mathematic Models in Financial Economics

Homework Five

Course instructor: Prof. Y.K. Kwok

1. Suppose $T=2, K=4, N=1$, the interest rate r is a constant satisfying $0 \leq r<0.125$, and the price process for the risky security and the probability measure are as follows:

ω	$S_{0}(\omega)$	$S_{1}(\omega)$	$S_{2}(\omega)$	$P(\omega)$
ω_{1}	5	8	9	$1 / 4$
ω_{2}	5	8	6	$1 / 4$
ω_{3}	5	4	6	$1 / 4$
ω_{4}	5	4	3	$1 / 4$

In addition, suppose the investor has an exponential utility function:

$$
u(w)=1-\exp \{-w\} .
$$

In view of the predictability requirement, the strategy H_{1} for trading the risky security entails the specification of three scalar values: the position, denoted by H^{5}, carried forward from time 0 when the price $S_{0}=5$, the position, denoted by H^{8}, carried forward from time 1 when the price $S_{1}=8$, and the position, denoted by H^{4}, carried forward from time 1 when the price $S_{1}=4$. Show that

$$
\begin{aligned}
H^{5}= & \frac{3 \ln (3-5 r)+(2-4 r) \ln (2-4 r)+(1+4 r) \ln (1+4 r)}{12(1+r)} \\
& -\frac{3 \ln (1+5 r)+(2+8 r) \ln (2+8 r)+(1-8 r) \ln (1-8 r)}{12(1+r)} ; \\
H^{8}= & -\frac{1}{3} \ln \left(\frac{2+8 r}{1-8 r}\right) ; \quad H^{4}=\frac{1}{3} \ln \left(\frac{2-4 r}{1+4 r}\right) .
\end{aligned}
$$

It remains to compute H_{0}, the strategy for trading the bank account. Clearly $H_{0}(1)=$ $v-5 H^{5}$, where v is the initial wealth. Show that

$$
H_{0}(2)=\left\{\begin{array}{ll}
v-5 H^{5}+\frac{8}{1+r}\left(H^{5}-H^{8}\right) & \text { for } \omega_{1} \text { and } \omega_{2} \\
v-5 H^{5}+\frac{8}{1+r}\left(H^{5}-H^{4}\right) & \text { for } \omega_{3} \text { and } \omega_{4}
\end{array} .\right.
$$

2. For the securities model in Question 1, we now set $r=0$. Compute the optimal trading strategy for the following utility functions. Verify that the strategies are the same and explain why this is so.
(a) $u(w)=-\frac{1}{w}$;
(b) $u(w)=\beta w-\frac{w^{2}}{2}$.
3. For the securities model in Question 1, with constant interest rate r where $0 \leq r<0.125$. Take $u(w)=\ln w$, compute the optimal attainable wealth, the optimal objective value, and the optimal trading strategy using the risk neutral computation approach.
4. Suppose $u(w)=\ln w$. Show that the inverse function $I(i)=i^{-1}$, the Lagrange multiplier $\lambda=v^{-1}$, the optimal attainable wealth is $W=v L^{-1} B_{1}$, and the optimal objective value is $\ln (v)-E\left[\ln \left(L / B_{1}\right)\right]$. Compute these expressions and solve for the optimal trading strategy in the case where $N=1, K=2, r=1 / 9, S_{0}=5, S_{1}\left(\omega_{1}\right)=20 / 3, S_{1}\left(\omega_{2}\right)=40 / 9$, and $P\left(\omega_{1}\right)=3 / 5$.
5. Suppose $u(w)=\gamma^{-1} w^{\gamma}$, where $-\infty<\gamma<1$ and $\gamma \neq 0$. Show that the inverse function $I(i)=i^{-1 /(1-\gamma)}$, the Lagrange multiplier

$$
\lambda=v^{-(1-\gamma)}\left\{E\left[\left(L / B_{1}\right)^{-\gamma /(1-\gamma)}\right]\right\}^{(1-\gamma)}
$$

the optimal attainable wealth

$$
W=\frac{v\left(L / B_{1}\right)^{-1 /(1-\gamma)}}{E\left[\left(L / B_{1}\right)^{-\gamma /(1-\gamma)}\right]}
$$

and the optimal objective value $E[u(W)]=\lambda v / \gamma$. Compute these expressions and solve for the optimal trading strategy in the case where the underlying model is as in Problem 2.
6. Derive formulas for λ, C_{0}, and C_{1} for the consumption investment problem in the case where the utility function is:
(a) $u(c)=-\exp (-c)$.
(b) $u(c)=\gamma^{-1} c^{\gamma}$, where $-\infty<\gamma<1$ and $\gamma \neq 0$.
7. Suppose we allow the customer to have income or endowment \widetilde{E} at time $t=1$, where \widetilde{E} is a specified random variable. Consider the optimization problem:

$$
\begin{aligned}
\operatorname{maximize} & u\left(C_{0}\right)-E\left[u\left(C_{1}\right)\right] \\
\text { subject to } & C_{0}+H_{0} B_{0}+\sum_{n=1}^{N=1} H_{n} S_{n}(0)=v \\
& C_{1}-H_{0} B_{1}-\sum_{n=1}^{N} H_{n} S_{n}(1)=\widetilde{E} \\
& C_{0} \geq 0, \quad C_{1} \geq 0, \quad H \in \mathbb{R}^{N+1} .
\end{aligned}
$$

The pair (v, \widetilde{E}) is sometimes called the endowment process for the consumer. Show that the consumption-investment plan (C, H) is admissible if and only if

$$
C_{0}+E_{Q}\left[C_{1}-\widetilde{E} / B_{1}\right]=\nu
$$

for every risk neutral probability measure Q.
8. Assume a one-period model. The aggregate consumption at time 0 is 8 units. There are three states at time $1,\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$. All agents have homogeneous beliefs, and the probability of each state is $1 / 3$. (This is the P measure.) The aggregate consumption in these states is

$$
C\left(\omega_{1}\right)=64, \quad C\left(\omega_{2}\right)=27, \quad C\left(\omega_{3}\right)=125 .
$$

The representative agent's utility function is of the form

$$
v\left(c_{0}, C_{1}\right)=c_{0}^{1 / 3}+C_{1}^{1 / 3}
$$

Suppose the three Arrow-Debreu securities are traded in this model. Compute the prices of these three securities. A traded asset exists that pays 1% of aggregate consumption at time 1 in each state. Find the price of this asset at time 0.
9. There are $K=3$ states and $N=3$ securities with the payouts

$$
\begin{array}{lll}
d_{1}\left(\omega_{1}\right)=24, & d_{2}\left(\omega_{1}\right)=44, & d_{3}\left(\omega_{1}\right)=12 \\
d_{1}\left(\omega_{2}\right)=20, & d_{2}\left(\omega_{2}\right)=44, & d_{3}\left(\omega_{2}\right)=12
\end{array}
$$

The prices of these securities are

$$
p_{1}=35, \quad p_{2}=40, \quad \text { and } \quad p_{3}=12 .
$$

(a) Find the set of all the attainable consumption processes.
(b) Is the consumption process

$$
c(0)=10, \quad c\left(T, \omega_{1}\right)=6, \quad c\left(T, \omega_{2}\right)=5, \quad c\left(T, \omega_{3}\right)=12
$$

attainable? Find the initial endowment and the trading strategy that attain it.
(c) Is the consumption process

$$
c(0)=0, \quad c\left(T, \omega_{1}\right)=9, \quad c\left(T, \omega_{2}\right)=1, \quad c\left(T, \omega_{3}\right)=17
$$

attainable? Find the initial endowment and the trading strategy and attain it.
(d) Does the given price system permit arbitrage strategies?

