MATH 246, Fall 2001

Final Examination

1. (a) Suppose X and Y are a pair of discrete random variables. Show that

$$
E[X]=\sum_{y_{j}} E\left[X \mid Y=y_{j}\right] P\left[Y=y_{j}\right]
$$

where the summation is taken over all possible discrete values that can be assumed by Y.
Hint $\sum_{y_{j}} E\left[X \mid Y=y_{j}\right] P\left[Y=y_{j}\right]=\sum_{y_{j}} \sum_{x_{i}} x_{i} P\left[X=x_{i} \mid Y=y_{j}\right] P\left[Y=y_{j}\right]$, where the inner
summation is taken over all possible discrete values that can be assumed by X.
(b) A urn contains m white balls and n black balls. One ball at a time is randomly withdrawn without replacement until a white ball is drawn, then the drawing terminates. Let X denote the number of black balls withdrawn until the drawing experiment stops. We write $M(m, n)$ to denote the expectation $E[X]$, with dependence on m and n. Let Y denote the discrete random variable defined by

$$
Y= \begin{cases}1 & \text { if the first ball drawn is white } \\ 0 & \text { if the first ball drawn is black }\end{cases}
$$

(i) Using the result in part (a), show that

$$
M(m, n)=E[X \mid Y=1] P[Y=1]+E[X \mid Y=0] P[Y=0]
$$

(ii) Explain why $M(m, n)$ satisfies the following recursive relation:

$$
M(m, n)=\frac{n}{m+n}[1+M(m, n-1)]
$$

(iii) Explain why $M(m, 1)=\frac{1}{m+1}$, and use the recursive relation to show

$$
M(m, 2)=\frac{2}{m+1} \quad \text { and } \quad M(m, 3)=\frac{3}{m+1}
$$

(iv) Using (ii) and (iii), find the solution for $M(m, n)$.
2. Let X and Y be random variables that take on values from the set $\{-1,0,1\}$. Find a joint probability mass function assignment for which X and Y are dependent, but for which X^{2} and Y^{2} are independent.
3. A point is chosen uniformly at random from the triangle that is formed by joining the three points $(-1,0),(0,1)$ and $(1,0)$. Let X and Y be the co-ordinates of a randomly chosen point.
(a) What is the joint density of X and Y ? Also, compute $f_{X}(x \mid y)$ and $f_{Y}(y \mid x)$.
(b) Calculate the expected value of X and Y. Specify the domain of definition of each of these joint probability function and conditional probability functions.
(c) Find the correlation coefficient between X and Y. Are X and Y independent?
4. Let $N(t), t \geq 0$ be a Poisson process with parameter $\lambda>0$.
(a) Describe the independence increments property and stationary increments property of a Poisson process.
(b) If $t_{2}>t_{1}$, find the conditional expectation of $N\left(t_{2}\right)$, given $N\left(t_{1}\right)=k$. That is, find $E\left[N\left(t_{2}\right) \mid N\left(t_{1}\right)=k\right]$.
(c) Find the auto-covariance function $C_{N}\left(t_{1}, t_{2}\right)$.
(d) Find $P[N(t-d)=j \mid N(t)=k]$, with $d>0$.
5. Given a two-state Markov chain X_{n} taking the values 1 and 2 with the state transition matrix

$$
P=\begin{gathered}
1 \\
1\left(\begin{array}{cc}
2 \\
\frac{2}{3} & \frac{1}{3} \\
2 & \frac{2}{3}
\end{array}\right) .
\end{gathered}
$$

(a) Find the two-step transition matrix $P(2)$.
(b) Find $P\left[X_{3}=2, X_{2}=1, X_{1}=2 \mid X_{0}=1\right]$.
(c) Show by mathematical induction that

$$
P^{n}=\frac{1}{2}\left(\begin{array}{cc}
1+\left(\frac{1}{3}\right)^{n} & 1-\left(\frac{1}{3}\right)^{n} \\
1-\left(\frac{1}{3}\right)^{n} & 1+\left(\frac{1}{3}\right)^{n}
\end{array}\right)
$$

Hence, find $\lim _{n \rightarrow \infty} P^{n}$. Explain why the rows in the matrix $\lim _{n \rightarrow \infty} P^{n}$ are identical.
(d) Determine the steady state probability mass functions for the Markov chain.
6. Customers arrive at a soft drink dispensing machine according to a Poisson process with rate λ. Let $N(t)$ be the number of customer arrivals up to time t. Suppose that each time a customer deposits money, the machine dispenses a random number of soft drinks. This random number is a Poisson random variable with parameter μ. The number of soft drinks dispensed upon each money deposit is assumed to be independent and identically distributed. Let $X(t)$ denote the number of drinks dispensed up to time t. Assume that the machine holds an infinite number of soft drinks.
(a) Show that $P\left[N\left(t_{1}\right)=1 \mid N\left(t_{2}\right)=1\right]=t_{1} / t_{2}, 0<t_{1}<t_{2}$.

Hint This result is equivalent to say that given that one arrival has occurred in the interval $\left[0, t_{2}\right]$, then the customer arrival time is uniformly distributed in the interval [$0, t_{2}$]. Explain how $P\left[N\left(t_{1}\right)=1 \mid N\left(t_{2}\right)=1\right]$ is related to $P\left[N\left(t_{1}\right)=1\right], P\left[N\left(t_{2}\right)-N\left(t_{1}\right)=0\right]$ and $P\left[N\left(t_{2}\right)=1\right]$.
(b) Find $P[X(t)=j \mid N(t)=n]$.

Hint Conditional on $N(t)=n, X(t)$ can be considered as a sum process of n iid Poisson random variables.
(c) Find $P[X(t)=j]$. Express your answer in terms of the function

$$
f(x ; j)=\sum_{n=1}^{\infty} \frac{x^{n} n^{j}}{n!}
$$

List of useful formulae

Binomial Random Variable
$S_{X}=\{0,1, \ldots, n\} \quad p_{k}=C_{k}^{n} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n$
$E[X]=n p \quad \operatorname{VAR}[X]=n p(1-p)$
Poisson Random Variable
$S_{X}=\{0,1,2, \ldots\} \quad p_{k}=\frac{\alpha^{k}}{k!} e^{-\alpha} \quad k=0,1, \ldots$ and $\alpha>0$
$E[X]=\alpha \quad \operatorname{VAR}[X]=\alpha$
Uniform Random Variable
$S_{X}=[a, b] \quad f_{X}(x)=\frac{1}{b-a} \quad a \leq x \leq b$
$E[X]=\frac{a+b}{2} \quad \operatorname{VAR}[X]=\frac{(b-a)^{2}}{12}$
Exponential Random Variable
$S_{X}=[0, \infty) \quad f_{X}(x)=\lambda e^{-\lambda x} \quad x \geq 0$ and $\lambda>0$
$E[X]=\frac{1}{\lambda} \quad \operatorname{VAR}[X]=\frac{1}{\lambda^{2}}$
Marginal pdf's

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}\left(x, y^{\prime}\right) d y^{\prime} \quad \text { and } \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, y\right) d x^{\prime}
$$

Independence of X and Y

X and Y are independent if and only if $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$, for all x, y
Conditional pdf of Y given $X=x$

$$
f_{Y}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

Conditional expectation of Y given $X=x$
Continuous $\quad E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y}(y \mid x) d y$
discrete $\quad F[Y \mid x]=\sum_{y_{j}} y_{j} P_{Y}\left(y_{j} \mid x\right)$
Correlation and covariance of two random variables
$\operatorname{COV}(X, Y)=E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$, where m_{X} and m_{Y} are $E[X]$ and $E[Y]$, respectively.
$\rho_{X Y}=\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}$
autocovariance $C_{X}\left(t_{1}, t_{2}\right)$ of a random process $X(t)$

$$
C_{X}\left(t_{1}, t_{2}\right)=E\left[\left\{X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right\}\left\{X\left(t_{2}\right)-m_{X}\left(t_{2}\right)\right\}\right]
$$

