

MATH 246 — Probability and Random Processes

Test Two

Fall 2002 Course Instructor: Prof. Y. K. Kwok

Time allowed: 75 minutes

[points]

[3]

1. Let X be the standard Gaussian random variable with zero mean and unit standard deviation. Find

(a)
$$P[|X| > \frac{1}{2}];$$
 [3]

(b) the density function of the random variable |X|. [3]

Express your answers in terms of $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt$ and $n(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

- 2. Let X and Y be a pair of *independent* random variables, where X is uniformly distributed over (0,1) and Y is uniformly distributed over (-2,0). Find the probability density function of Z = X/Y.
- 3. Let X be the standard Gaussian random variable with zero mean and unit standard deviation. Let I, independent of X, be such that

$$P[I=0] = P[I=1] = \frac{1}{2}.$$

Define

$$Y = \begin{cases} X & \text{if } I = 1 \\ -X & \text{if } I = 0 \end{cases},$$

that is, Y is equally likely to equal either X or -X.

(a) Is Y a Gaussian random variable? Find its mean and variance.

Hint:
$$P[Y \le y] = P[X \le y]P[I = 1] + P[X \ge -y]P[I = 0]$$

= $\frac{1}{2} \left[\int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt + \int_{-y}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \right]$

and make use of the symmetry property of the integrand function.

(b) Compute COV(X, Y).

Hint:
$$COV(X,Y) = E[XY] - E[X]E[Y]$$
 and $E[XY] = E[E[XY|I]]$. [3]

- 4. Let X and Y be random variables that take on values from the set $\{0, 1, 2\}$.
 - (a) Find a joint probability mass assignment for which X and Y are independent, and illustrate that X^2 and Y^2 are also independent.

[3]

(b) Can we find a joint pmf assignment for which X and Y are not independent, but for which X^2 and Y^2 are independent? If yes, find an example; if not, explain why.

[3]

- 5. An urn contains n white and m black balls. One ball is drawn randomly at a time until the first white ball is drawn.
 - (a) Let X denote the number of black balls that are drawn before the first white ball appears. We write M(n, m) to be the expected value of X (showing its dependence on n and m). Explain why

$$M(n, m) = E[X] = E[X|Y = 1]P[Y = 1] + E[X|Y = 0]P[Y = 0]$$

where Y is the discrete random variable defined by

$$Y = \left\{ \begin{matrix} 1 & \quad \text{if the first ball selected is white} \\ 0 & \quad \text{if the first ball selected is black} \right.$$

then show that
$$M(n, m) = \frac{m}{n+m} [1 + M(n, m-1)].$$
 [3]

(b) Explain why M(n,0) = 0, show that $M(n,1) = \frac{1}{n+1}$, $M(n,2) = \frac{2}{n+1}$, M(n,3)

$$=\frac{3}{n+1}$$
; then deduce the value of $M(n,m)$.