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Solution to Test Two

Fall 2002 Course Instructor: Prof. Y. K. Kwok
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9. oo 0 otherwise
and since X and Y are independent
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0 otherwise

Consider the following cases
(i) when z > 0,yz is always negative, so 0 < yz < 1 is never satisfied;
1
(ii) when —3 < 2<0,both 0 <yz<1and —2 <y < 0 are satisfied;

0<yz <1

1
_2<y<0 = ;<y<0.
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(iii) when 2z < —g we observe {
We then have
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1 -3 <z<0
In summary, fz(2) =< 1 . < -1 .

As a check, consider
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otherwise



PlY <y| = P[X <y|P[l = 1]+ P[X > —y|P[] = —1]
L Y C Y e
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Since the Gaussian density function is symmetric, P[Y < y| = N(y) and fy (y) = n(y) so that Y is also a
Gaussian random variable. The mean and variance of Y are zero and one, respectively.

(b) COV(X,Y) = E[XY]— E[X]E[Y] = E[XY] = E[XY] since E[X] = E[Y] = 0.

E|XY] = E/[E[XY|I]] = % {BIX?]+ E[-X?]} =0.
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Note that Px2y2(Zk, ¥;) = Pxz(Tr)Py2(y;) for all k and j, so X2 and Y2 are also independent.
(b) For each 2y € Sx:, there corresponds to only one x; € Sx where z}, is the positive square root

of Z,. We then have Px:(z;) = Px (V7)) = Px(x1), and the same rule applied for g; € Sy= and

\/ﬂ—k =1Y; € Sy.

Suppose X% and Y? are independent, that is, Px2y2(Zk,Uk) = Px2(T;)Py2(Y;), then we observe

that Pxy (2, y;) = Px(2r) Py (y;) so that X and Y must be independent.

5. (a) M(n,m) = E[X|Y =1]P]Y = 1]+ E[X|Y =0]P[Y = 0] from the Law of Total Probability. It is
seen that P[Y = 1] = —— P[Y = 0] = —— E[X|Y = 1] = 0, E[X|Y =0] = 1 + M(n,m —1).
n-+m n—+m
The “one” comes in since one black ball has been drawn; after then there are m — 1 black balls and
n white balls remaining.
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(b) M(n,0) = 0 since there is no black ball remaining, M (n,1) = ——(1 +0) = , M(n,2) =

n+1 n+1
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