## MATH 246 — Probability and Random Processes

## Solution to Test Two

Fall 2002

Course Instructor: Prof. Y. K. Kwok

1. (a) 
$$P\left[|X| > \frac{1}{2}\right] = 1 - P\left[-\frac{1}{2} \le X \le \frac{1}{2}\right] = 1 - \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$
$$= 1 - \left[N\left(\frac{1}{2}\right) - N\left(-\frac{1}{2}\right)\right].$$

(b) Consider

$$P[|X| \le x] = P[-x \le X \le x], \quad x \ge 0$$
$$= N(x) - N(-x)$$

so that

$$f_{|x|}(x) = \frac{d}{dx} P[|X| \le x] = \frac{d}{dx} [N(x) - N(-x)] = 2n(x).$$

$$f_Z(z) = \int_{-\infty}^{\infty} |y| f_{XY}(yz, y) \ dy; f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}, f_Y(y) = \begin{cases} \frac{1}{2} & -2 < y < 0 \\ 0 & \text{otherwise} \end{cases}$$

\_ .

and since X and Y are independent

$$f_{XY}(yz, y) = \begin{cases} \frac{1}{2} & 0 < yz < 1 \text{ and } -2 < y < 0 \\ 0 & \text{otherwise} \end{cases}$$

Consider the following cases

(i) when z > 0, yz is always negative, so 0 < yz < 1 is never satisfied;

(ii) when 
$$-\frac{1}{2} < z < 0$$
, both  $0 < yz < 1$  and  $-2 < y < 0$  are satisfied;

(iii) when 
$$z < -\frac{1}{2}$$
, we observe  $\begin{cases} 0 < yz < 1 \\ -2 < y < 0 \end{cases} \Leftrightarrow \frac{1}{z} < y < 0$ .

We then have

(i) 
$$-\frac{1}{2} < z < 0, f_Z(z) = \int_{-2}^0 \frac{1}{2} |y| \ dy = \int_{-2}^0 -\frac{y}{2} \ dy = 1.$$

(ii) 
$$z < -\frac{1}{2}, f_Z(z) = \int_{1/z}^0 -\frac{y}{2} dy = -\frac{y^2}{4} \Big]_{1/z}^0 = \frac{1}{4z^2}.$$

In summary, 
$$f_Z(z) = \begin{cases} 1 & -\frac{1}{2} < z < 0 \\ \frac{1}{4z^2} & z < -\frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$
.

As a check, consider

$$\int_{-\infty}^{\infty} f_Z(z) \ dz = \int_{-\infty}^{-1/2} \frac{1}{4z^2} \ dz + \int_{-\frac{1}{2}}^{0} \frac{1}{2} \ dz = -\frac{1}{4z} \bigg|_{-\infty}^{-\frac{1}{2}} + z \bigg|_{-\frac{1}{2}}^{0} = \frac{1}{2} + \frac{1}{2} = 1.$$

3. (a)

$$\begin{split} P[Y \leq y] &= P[X \leq y] P[I = 1] + P[X \geq -y] P[I = -1] \\ &= \frac{1}{2} \left[ \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \ dt + \int_{-y}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \ dt \right]. \end{split}$$

Since the Gaussian density function is symmetric,  $P[Y \le y] = N(y)$  and  $f_Y(y) = n(y)$  so that Y is also a Gaussian random variable. The mean and variance of Y are zero and one, respectively.

(b) 
$$COV(X,Y) = E[XY] - E[X]E[Y] = E[XY] = E[XY]$$
 since  $E[X] = E[Y] = 0$ .

$$E[XY] = E_I[E[XY|I]] = \frac{1}{2} \{ E[X^2] + E[-X^2] \} = 0.$$

4. (a)

| $P_{XY}(x_k, y_j)$ | $x_1 = 0$      | $x_2 = 1$      | $x_3=2$        | $P_Y(y_j)$    |
|--------------------|----------------|----------------|----------------|---------------|
| $y_1 = 0$          | $\frac{1}{12}$ | $\frac{1}{6}$  | $\frac{1}{4}$  | $\frac{1}{2}$ |
| $y_1 = 1$          | $\frac{1}{18}$ | $\frac{1}{9}$  | $\frac{1}{6}$  | $\frac{1}{3}$ |
| $y_2 = 2$          | $\frac{1}{36}$ | $\frac{1}{18}$ | $\frac{1}{12}$ | $\frac{1}{6}$ |
| $P_X(x_k)$         | $\frac{1}{6}$  | $\frac{1}{3}$  | $\frac{1}{2}$  |               |

| $P_{X^2Y^2}(\widetilde{x}_k,\widetilde{y}_j)$ | $\widetilde{x}_1=0$ | $\widetilde{x}_2=1$ | $\widetilde{x}_3 = 4$ | $P_{Y^2}(\widetilde{y}_j)$ |
|-----------------------------------------------|---------------------|---------------------|-----------------------|----------------------------|
| $\widetilde{y}_1=0$                           | $\frac{1}{12}$      | $\frac{1}{6}$       | $\frac{1}{4}$         | $\frac{1}{2}$              |
| $\widetilde{y}_2=1$                           | $\frac{1}{18}$      | $\frac{1}{9}$       | $\frac{1}{6}$         | $\frac{1}{3}$              |
| $\widetilde{y}_3 = 4$                         | $\frac{1}{36}$      | $\frac{1}{18}$      | $\frac{1}{12}$        | $\frac{1}{6}$              |
| $P_{X^2}(\widetilde{x}_k)$                    | $\frac{1}{6}$       | $\frac{1}{3}$       | $\frac{1}{2}$         |                            |

Note that  $P_{X^2Y^2}(\widetilde{x}_k,\widetilde{y}_j)=P_{X^2}(\widetilde{x}_k)P_{Y^2}(\widetilde{y}_j)$  for all k and j, so  $X^2$  and  $Y^2$  are also independent.

(b) For each  $\tilde{x}_k \in S_{X^2}$ , there corresponds to only one  $x_k \in S_X$  where  $x_k$  is the positive square root of  $\tilde{x}_k$ . We then have  $P_{X^2}(\tilde{x}_k) = P_X(\sqrt{\tilde{x}_k}) = P_X(x_k)$ , and the same rule applied for  $\tilde{y}_j \in S_{Y^2}$  and  $\sqrt{\tilde{y}_k} = y_j \in S_Y$ .

Suppose  $X^2$  and  $Y^2$  are independent, that is,  $P_{X^2Y^2}(\widetilde{x}_k, \widetilde{y}_k) = P_{X^2}(\widetilde{x}_k)P_{Y^2}(\widetilde{y}_j)$ , then we observe that  $P_{XY}(x_k, y_j) = P_X(x_k)P_Y(y_j)$  so that X and Y must be independent.

- 5. (a) M(n,m) = E[X|Y=1]P[Y=1] + E[X|Y=0]P[Y=0] from the Law of Total Probability. It is seen that  $P[Y=1] = \frac{n}{n+m}$ ,  $P[Y=0] = \frac{m}{n+m}$ , E[X|Y=1] = 0, E[X|Y=0] = 1 + M(n,m-1). The "one" comes in since one black ball has been drawn; after then there are m-1 black balls and n white balls remaining.
  - (b) M(n,0) = 0 since there is no black ball remaining,  $M(n,1) = \frac{1}{n+1}(1+0) = \frac{1}{n+1}$ ,  $M(n,2) = \frac{2}{n+2}\left[1 + \frac{1}{n+1}\right] = \frac{2}{n+1}$ . In general,  $M(n,m) = \frac{m}{n+1}$ .