MATH 246 - Probability and Random Processes

Solution to Final Examination

Fall 2003
Course Instructor: Prof. Y. K. Kwok

Time allowed: 100 minutes

1. (a) Stationary increments

The increments of the Poisson process $N(t)$ over two time intervals of equal length have the same probability distribution, independent of the starting time of the interval. That is,

$$
P\left[N\left(t_{1}+\delta\right)-N\left(t_{1}\right)\right]=P\left[N\left(t_{2}+\delta\right)-N\left(t_{2}\right)\right]
$$

for any t_{1}, t_{2} and δ.
Independent increments
The increments of the Poisson process over any two non-overlapping time intervals are independent.
(b) (i) Assume $t_{1}<t_{2}$,

$$
\begin{aligned}
C_{N}\left(t_{1}, t_{2}\right) & =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left(N\left(t_{2}\right)-\lambda t_{2}\right)\right] \\
& =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left\{\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]+\left(N\left(t_{1}\right)-\lambda t_{1}\right)\right\}\right] \\
& =E\left[N\left(t_{1}\right)-\lambda t_{1}\right] E\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]+E\left[\left\{N\left(t_{1}\right)-\lambda\left(t_{1}\right)\right\}^{2}\right] \\
& =\operatorname{var}\left(N\left(t_{1}\right)\right)=\lambda \min \left(t_{1}, t_{2}\right) .
\end{aligned}
$$

(ii) $\quad P\left(N\left(t_{1}\right)=1 \mid N\left(t_{2}\right)=1\right]$

$$
\begin{aligned}
& =\frac{P\left[N\left(t_{1}\right)=1, \quad N\left(t_{2}\right)-N\left(t_{1}\right)=0\right]}{P\left[N\left(t_{2}\right)=1\right]} \\
& =\frac{P\left[N\left(t_{1}\right)=1\right] P\left[N\left(t_{2}-t_{1}\right)=0\right]}{P\left[N\left(t_{2}\right)=1\right]} \\
& =\frac{\lambda t_{1} e^{-\lambda t_{1}} e^{-\lambda\left(t_{2}-t_{1}\right)}}{\lambda t_{2} e^{-\lambda t_{2}}}=\frac{t_{1}}{t_{2}} .
\end{aligned}
$$

2. (a) $E\left[X_{n}\right]=E\left[\frac{Y_{n}+Y_{n-1}}{2}\right]=\frac{\lambda}{2}+\frac{\lambda}{2}=\lambda$.
(b) Sum of two independent Poisson random variables remain to be Poisson so that $Y_{n}+Y_{n-1}$ is a Poisson random variable with parameter 2λ. Now

$$
P\left[X_{n}=k\right]=P\left[Y_{n}+Y_{n-1}=2 k\right]=\frac{(2 \lambda)^{2 k}}{(2 k)!} e^{-2 \lambda}, \quad k=0, \frac{1}{2}, 1, \frac{3}{2}, \cdots
$$

(c) $\quad R_{X}(i, j)=\frac{1}{4} E\left[\left(Y_{i}+Y_{i-1}\right)\left(Y_{j}+Y_{j-1}\right)\right]$

$$
=\frac{1}{4}\left\{E\left[Y_{i} Y_{j}\right]+E\left[Y_{i} Y_{j-1}\right]+E\left[Y_{i-1} Y_{j}\right]+E\left[Y_{i-1} Y_{j-1}\right]\right\}
$$

Note that $E\left[Y_{i} Y_{j}\right]= \begin{cases}\operatorname{var}\left(Y_{i}\right)+E\left[Y_{i}\right]^{2} & \text { if } i=j \\ E\left[Y_{i}\right] E\left[Y_{j}\right] & \text { if } i \neq j\end{cases}$

$$
= \begin{cases}\lambda+\lambda^{2} & \text { if } i=j \\ \lambda^{2} & \text { if } i \neq j\end{cases}
$$

(i) When $i=j$

$$
\begin{aligned}
R_{X}(i, i) & =\frac{1}{4}\left\{E\left[Y_{i}^{2}\right]+2 E\left[Y_{i} Y_{i-1}\right]+E\left[Y_{i-1}^{2}\right]\right\} \\
& =\frac{1}{4}\left[\lambda+\lambda^{2}+2 \lambda^{2}+\lambda+\lambda^{2}\right)=\frac{\lambda(2 \lambda+1)}{2}
\end{aligned}
$$

(ii) When $i=j+1$

$$
\begin{aligned}
R_{X}(i, i-1) & =\frac{1}{4}\left\{E\left[Y_{i} Y_{i-1}\right]+E\left[Y_{i} Y_{i-2}\right]+E\left[Y_{i-1}^{2}\right]+E\left[Y_{i-1} Y_{i-2}\right]\right\} \\
& =\frac{1}{4}\left(3 \lambda^{2}+\lambda+\lambda^{2}\right)=\frac{\lambda(4 \lambda+1)}{4}
\end{aligned}
$$

(iii) When $i=j-1$, we also obtain $R_{X}(i, i+1)=\frac{\lambda(4 \lambda+1)}{4}$.
(iv) When $i \neq j$ and $|i-j| \neq 1$, we have $R_{X}(i, j)=\lambda^{2}$.
3. (a) A random process is stationary if $X(t)$ and $X(t+\tau)$ have the same statistics for any τ.

A random process is wide sense stationary if

$$
\begin{array}{ll}
m_{X}(t)=m & \text { for all } t \\
C_{X}\left(t_{1}, t_{2}\right)=C_{X}\left(t_{1}-t_{2}\right) & \text { for all } t_{1} \text { and } t_{2}
\end{array}
$$

(b)

$$
\begin{aligned}
m_{X}(t) & =E\left[U \sin \omega_{0} t\right]=\sin \omega_{0} t E[U]=0 \\
C_{X}\left(t_{1}, t_{2}\right) & =E\left[U^{2} \sin \omega_{0} t_{1} \sin \omega_{0} t_{2}\right]-m_{X}(t)^{2} \\
& =\sin \omega_{0} t_{1} \sin \omega_{0} t_{2}\left(\operatorname{Var}(U)+E[U]^{2}\right) \\
& =\sin \omega_{0} t_{1} \sin \omega_{0} t_{2}
\end{aligned}
$$

$X(t)$ is not wide sense stationary since $C_{X}\left(t_{1}, t_{2}\right)$ is not a function of $t_{2}-t_{1}$.
4. (a)

$$
P=\left(\begin{array}{ccc}
(1-\beta)^{2} & 2 \beta(1-\beta) & \beta^{2} \\
\alpha(1-\beta) & \alpha \beta+(1-\alpha)(1-\beta) & (1-\alpha) \beta \\
\alpha^{2} & 2 \alpha(1-\alpha) & (1-\alpha)^{2}
\end{array}\right)
$$

$P\left[X_{1}=0, X_{0}=1\right]=P\left[X_{1}=0 \mid X_{0}=1\right] P\left[X_{0}=1\right]=\alpha(1-\beta) / 2$.
(b) π_{∞} is obtained by solving

$$
\boldsymbol{\pi}_{\infty}=\boldsymbol{\pi}_{\infty} P
$$

To verify that $\boldsymbol{\pi}_{\infty}=\left(\begin{array}{lll}\frac{\alpha^{2}}{(\alpha+\beta)^{2}} & \frac{2 \alpha \beta}{(\alpha+\beta)^{2}} & \frac{\beta^{2}}{(\alpha+\beta)^{2}}\end{array}\right)$, consider

$$
\begin{aligned}
\operatorname{LHS} & =\left(\begin{array}{lll}
\frac{\alpha^{2}}{(\alpha+\beta)^{2}} & \frac{2 \alpha \beta}{(\alpha+\beta)^{2}} & \frac{\beta^{2}}{(\alpha+\beta)^{2}}
\end{array}\right)\left(\begin{array}{ccc}
(1-\beta)^{2} & 2 \beta(1-\beta) & \beta^{2} \\
\alpha(1-\beta) & \alpha \beta+(1-\alpha)(1-\beta) & (1-\alpha) \beta \\
\alpha^{2} & 2 \alpha(1-\alpha) & (1-\alpha)^{2}
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{\alpha^{2}(1-\beta)^{2}+2 \alpha^{2} \beta(1-\beta)+\alpha^{2} \beta^{2}}{(\alpha+\beta)^{2}} \\
\frac{2 \alpha^{2} \beta(1-\beta)+2 \alpha \beta[\alpha \beta+(1-\alpha)(1-\beta)]+2 \beta^{2} \alpha(1-\alpha)}{(\alpha+\beta)^{2}} \\
\frac{\alpha^{2} \beta^{2}+2 \alpha(1-\alpha) \beta^{2}+\beta^{2}(1-\alpha)^{2}}{(\alpha+\beta)^{2}}
\end{array}\right)^{T} \\
& =\boldsymbol{\pi}_{\infty}=\text { RHS }
\end{aligned}
$$

$P^{\infty}=\frac{1}{(\alpha+\beta)^{2}}\left(\begin{array}{lll}\alpha^{2} & 2 \alpha \beta & \beta^{2} \\ \alpha^{2} & 2 \alpha \beta & \beta^{2} \\ \alpha^{2} & 2 \alpha \beta & \beta^{2}\end{array}\right)$ since all the rows of P^{∞} are equal to $\boldsymbol{\pi}_{\infty}$.
(c) Take $n=$ number of trials $=2$ and $p=$ probability of success in each trial $=\frac{\beta}{\alpha+\beta}$. Let $X=$ number of successes in this binomial experiment. We then have

$$
\begin{aligned}
& P[X=0]={ }_{2} C_{0}\left(\frac{\beta}{\alpha+\beta}\right)^{0}\left(\frac{\alpha}{\alpha+\beta}\right)^{2}=\frac{\alpha^{2}}{(\alpha+\beta)^{2}}=\pi_{\infty, 0} \\
& P[X=1]={ }_{2} C_{1}\left(\frac{\beta}{\alpha+\beta}\right)^{1}\left(\frac{\alpha}{\alpha+\beta}\right)^{1}=\frac{2 \alpha \beta}{(\alpha+\beta)^{2}}=\pi_{\infty, 1} \\
& P[X=2]={ }_{2} C_{2}\left(\frac{\beta}{\alpha+\beta}\right)^{2}\left(\frac{\alpha}{\alpha+\beta}\right)^{0}=\frac{\beta^{2}}{(\alpha+\beta)^{2}}=\pi_{\infty, 2} .
\end{aligned}
$$

5. (a) Y_{n} can assume the following values: $0, \frac{1}{2}, 1$. The respective probabilities are

$$
\begin{aligned}
P\left[Y_{n}=0\right] & =P\left[X_{n}=0, X_{n-1}=0\right]=\frac{4}{9} \\
P\left[Y_{n}=\frac{1}{2}\right] & =P\left[X_{n}=1, X_{n-1}=0\right]+P\left[X_{n}=0, X_{n-1}=1\right] \\
& =2\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=\frac{4}{9} \\
P\left[Y_{n}=1\right] & =P\left[X_{n}=1, X_{n-1}=1\right]=\frac{1}{9} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P\left[\left.Y_{n}=\frac{1}{2} \right\rvert\, Y_{n-1}=1\right]=\frac{P\left[Y_{n}=\frac{1}{2}, Y_{n-1}=1\right]}{P\left[Y_{n-1}=1\right]} \\
= & \frac{P\left[X_{n}=0, X_{n-1}=1, X_{n-2}=1\right]}{P\left[Y_{n-1}=1\right]}=\frac{\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)}{\frac{1}{9}}=\frac{2}{3} .
\end{aligned}
$$

Note that $\left\{Y_{n-1}=1, Y_{n-2}=0\right\}$ is an impossible event. By convention

$$
P\left[\left.Y_{n}=\frac{1}{2} \right\rvert\, Y_{n-1}=1, Y_{n-2}=0\right]=0
$$

(c) Since $\left[\left.Y_{n}=\frac{1}{2} \right\rvert\, Y_{n-1}=1\right] \neq P\left[\left.Y_{n}=\frac{1}{2} \right\rvert\, Y_{n-1}=1, Y_{n-2}=0\right]$ so Y_{n} is not Markovian.

