- 1. A die is tossed twice; let X_1 and X_2 denote the outcome of the first and second toss, respectively.
 - a. What is the joint pmf for (X_1, X_2) if the tosses are independent and if the outcomes of each toss are equiprobable?
 - b. Let $X = \min(X_1, X_2)$ and $Y = \max(X_1, X_2)$. Find the joint pmf for (X, Y).
 - c. Find the marginal pmf's for X and Y in part b.
- 2. The general form of the joint pdf for two jointly Gaussian random variables is

$$f_{X,Y}(x,y) = \frac{\exp\left\{\frac{-1}{2(1-\rho^2)} \left[\left(\frac{x-m_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x-m_1}{\sigma_1}\right) \left(\frac{y-m_2}{\sigma_2}\right) + \left(\frac{y-m_2}{\sigma_2}\right)^2 \right] \right\}}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

for $-\infty < x < \infty$ and $-\infty < y < \infty$. Show that the marginal pdf's of X and Y are those of Gaussian random variables with means m_1 and m_2 and variances σ_1^2 and σ_2^2 , respectively.

3. Let X be the input to a communication channel. X takes on the values ± 1 with equal probability. Suppose that the output of the channel is Y = X + N, where N is a Laplacian random variable with pdf

$$f_N(z) = \frac{1}{2} \alpha e^{-\alpha|z|}, \quad -\infty < z < \infty.$$

- a. Find $P[X = k, Y \le y]$ for $k = \pm 1$.
- b. Find the marginal pdf of Y.
- c. Suppose we are given that Y > 0. Which is more likely, X = 1 or X = -1?
- 4. Let X and Y be independent random variables. Find an expression for the probability of the following events in terms of $F_X(x)$ and $F_Y(y)$:
 - a. $\{a < X \le b\} \cap \{Y \le d\}$.
 - b. $\{a \le X \le b\} \cap \{c \le Y \le d\}$.
 - c. $\{|X| > a\} \cap \{c \le Y \le d\}$.
- 5. Consider a sequence of n + m independent Bernoulli trials with probability of success p in each trial. Let N be the number of successes in the first n trials and let M be the number of successes in the remaining m trials.
 - a. Why are N and M independent random variables?
 - b. Find the joint pmf of N and M and the marginal pmf's of N and M.
 - c. Find the pmf for the total number of successes in the n+m trials.
- 6. Let $X = \cos \Theta$ and $Y = \sin \Theta$, where Θ is an angle that is uniformly distributed in the interval $(0, 2\pi)$. Find f(y|x) and E[Y|X].
- 7. The random variables X and Y have the joint pdf

$$f_{X,Y}(x,y) = 2e^{-(x+y)}, \qquad 0 \le y \le x < \infty.$$

Find the pdf of Z = X + Y. Note that X and Y are not independent.