Multiple Random Variables

Vector random variable X is a function that assigns a vector of real numbers
to each outcome £ in S (sample space of the random experiment).

Example The random experiment of selecting one student from a class, define
the following functions:

H(¢) height of student £ in inches
W) = weight of student £ in pounds

A(¢)

age of student £ in years.

(H(&),W(&),A(£)) is vector random variable.



Product form events

Let X = (Xq,---,Xy), an event of product form is depicted

A={X1in A1} Nn{Xo in Ax}N---N{Xyp in An}

where A, is a one-dimensional event that involves X, only.
eg. B={min(X,Y) <5}, B is the union of two product form events.

B={X<5and Y <oo}U{X >5and Y < 5}.
Y

(5,5)
{X<5and | <o} |

> X

i{X>5andY£5}




Pairs of Discrete Random Variables

e~

X = (X,Y) assumes values from some countable set

S = {(xj7yk)7.] — 1727'°'7k: 1727}
The joint probability mass function of X specifies the probability of the product-
formevent {X =z} N{Y =y}, 7=1,2,--- , k=1,2--.

PH{X =z;} n{Y =y}
P[X:Z‘J,Yzyk],j:l,Q,,]{':1,2,

Pxy(zj, k)

This can be interpreted as the long-term relative frequency of the joint event
{X = a:j} N{Y =y} in a sequence of repetitions of the random experiment.

P[X in A] = Zz(xj’yk)eAPX,Y(xjayk)

and

0
> Pxy(zjyr) = 1.
1k=1

oo
J]=



Marginal probability mass functions

= P[X = z;,Y = anything]
0
= > Pxy(xj,up);
k=1
0
similarly, Py(yr) = > Pxy(zj,yL).
=1

Marginal pmf’'s are one-dimensional pmf’s; knowledge of the marginal pmf's is
insufficient to specify the joint pmf.



Example A urn contains 3 red, 4 white and 5 blue balls.

Now, 3 balls are

drawn. Let X and Y be the number of red and white balls chosen, respectively,
find the joint probability mass function of X and Y,

Pxy(j, k) = P{X =7} n{Y = k}].

\ 0 1 2 3 Py(j)
J
0 10/220 | 40/220 | 30/220 4/220 84/220
1 30/220 | 60/220 | 18/220 0 108/220
2 15/220 | 12/220 0 0 271220
3 1/220 0 0 0 1/220
Py(k) | 56/220 | 112/220 | 48/220 41220
_ 301 4C1 5C1 _ 60
PX,Y(171) 1203 — 220
3C2 4C1 _ 12
PX,Y(27 1) 1203 — 220



Example The number of bytes N in a message has a geometric distribution with
parameter p and range Sy ={0,1,2,.--}. Messages are broken into packets of
maximum length M bytes. Let (Q be the number of full packets in a message,
and R be the number of bytes left over.

Find the joint pmf and the marginal pmf's of () and R.

Solution

() is the quotient of division of N by M, and R is the remaining bytes in the
above division. @ takes on values in {0,1,---}; that is, all non-negative integers.

R takes on values in {O0,1,---, M — 1}.

Interestingly, the joint pmf is relatively easier to compute

PIQ=q,R=r] = P[N =gqM + 7] = (1 — p)p?M*T.



Marginal pmf of ) is given by

Pl[Q=¢q] = P[N in {gM,qgM +1,---,gM + (M —1)}]

M-—1
= Y (1 -p)ptMtk
k=0

a1 —p" M~/ Myg
= (1-p)p 1——p: (1-—p")®P")Y, ¢=0,1,2,---.
T he probability of achieving one full packet = pM, so the probability of having q
full packets = (pM)2(1—pM). The marginal pmf of Q is a geometric distribution

with parameter pM.

Marginal pmf of R is found to be

P[R=r] = PINin{r,M+r,2M +r,---}]

- M+ 1-p
> (1 —p)p? "= pmPy =01 M-
q=0

R can be considered as a truncated geometric distribution.



Joint cdf of X and Y

Defined as the probability of the product-form event {X <z} N{Y <wy1}

Fxy(r1,y1) = P[X <21,Y < yq]

Properties

(i) Fxy(z1,y1) < Fxy(x2,92), r1 < xp and y1 < yo

This is because {X <z} N{Y <wyy} is a subset of {X <o} N{Y < ys}.

(i) Fxy(—o00,y1) = Fx y(z1,—00) =0

This is because {X < —oo} N{Y < y1} and {X < z1}N{Y < —oco} are
ImMpossible events.

(III) Fij(O0,00) =1

This is because {X < oo}l N{Y < ool is the sure event.



(iv) marginal cumulative distribution functions

Fx(x)
Fy (y)

Fxy(z,00) = P[X <z,Y < oo] = P[X < 1]
Fx y(o0,y) = P[Y <y

(v) joint cdf is continuous from the ‘north’ and the ‘east’

im Fxy(z,y) = Fxy(a,y)
J?—>CL+
lim FX,Y(CB7 y) — FX,Y(CE7 b)
y—bt
This is a generalization of the right continuity property of the one-dimensiona
cdf.
- (1_€_ax)(1_€_ﬁy)7 x207y20
Example Fyy(z,y) = { 0 otherwise
then Fx(z) = lim Fyy(z,y)=1-e "2 2>0
Fy(y) = lim Fxy(z,y) =1-¢ ™, y>0.

X and Y are exponentially distributed with respective parameter o and g.



The cdf can be used to find the probability of events that can be expressed as
the union and intersection of semi-infinite rectangles.

In particular,

Fxy(zo,y2) = Plr1 <X <z0,y1 <Y < g0
+ Fxy(z2,y1) — Fxy(z1,y1) + Fx y(z1,92).
J
von
Vol : )




Example

[((1—e )1 —e ), 2,y>0
@)

Given F = '
\Y; X,y(a?,y) ) otherwise

\

Pll< X <3,2<Y <5]

Fxy(3,5) — Fxy(3,2) — Fxy(1,5) + Fxy(1,2)
(1—e 3 (1—-e2P) = (1 —e3(1-e2F)
—(1—e ™™ —e @) 4 (1 —e (1 —-e 2.



Joint pdf of two jointly continuous random variables
Yy x

Joint cdf:  Fxy(z,y) =/ / fX,y(a:’, y') da'dy’.
— 0 J—CO

The pdf can be obtained from the cdf by differentiation:

aQFX,Y(CE7 y)
Oxdy '

fxy(z,y) =

bo b1
Pla; < X <bj,a0 <Y <by] = / fxy (@, y) da'dy’

az Jaj

and Plr< X <z+4dz,y <Y <y dy]

yt+dy rrtdr ;o ;o
:/y /x fxy(@,y) dx'dy =~ fxy(z,y) dzdy.

Since P[—oo < X < o00,—c0 <Y <oo] =1, we have

@) @)
1= [ fxy @y daldy.
— 0 J —CO



When the random variables X and Y are jointly continuous, the probability
of an event involving (X,Y) can be expressed as an integral of a probability
density function. For every event A, which is a subset of the plane, we have

PIX in Al = [[ fxy(@y) do'dy

A non—negative

The marginal pdf's fx(x) and fy(y) are obtained by differentiating the marginal
cdf’s.

From FX(CE) = Fij(CB,OO) and Fy(y) = Fij(OO,y), we have

fx(x)
fy(y)

d X o0 !/ !/ !/ !/ o0 !/ !/
d/ U fxy (', y) dy] dx =/ fxy(z,y) dy
T J—0o0 — 0 — 0

o0 !/ !/
/ fxy(x,y) dx'.
— 0



Example Consider a circle of radius R and a point is uniformly distributed
within the circle. Let the origin be the center of the circle, and X and Y be
the coordinates of the point chosen.

(X, 1)

0, 0)




(a) Since the chosen point is uniformly distributed inside the circle, the joint
pdf of X and Y is

o if 2?24 y2<R?
Txy (@,y) = { 0 otherwise '
o0 o0 1
From / / fxvy(z,y) dedy =/ / C drdy =1, we obtain C = —.
P TR

22 +y2<R?
For a fixed z, f(z,vy) is non-zero only within —\/R2 — 2 <y< \/R2 — 2,

(b) The marginal density functions of X and Y are found to be

f()_/oof (2.7) dy — 1 VRQ—l‘Qd _2\/R2—a¢2 2 ~ R2
AT X a R | 2™ T gr2 0T =

and fx(z) =0 for 22 > R?;

2 2 2 2 2
f) = { VB Vs SR
0, y2>R2



(c) Compute the probability that the distance from the center to the chosen
point is less than or equal to a.

Write D = /X2 + Y2, Fp(a) = P[yX2 4+ Y2 <a] = / / w;ﬂ dady.

r24y?<a?
Upon simplification
1 a2 a?
Fro(a) = —/ / dedy = "¢ =2
pla) = "5 Y= TR2 T R2?

r2+y2<a?

so the density function for D is fp(a) =2a/R?,0<a < R.

(d) Compute the mean of the distance of the chosen point from the center,
E[D]

R R 2q2 2R
E|[D] :/O afp(a) daZ/ % daz?.

0



Jointly Gaussian random variables

X and Y are Gaussian random variables with zero mean and unit variance.

L @2-20myty?)/2(1-p)?

fxy(z,y) = 277\/1—7;)2

The marginal pdf of X is obtained by

e—7°/2(1—p?)

2my\/ 1 — p2

. _ 2 o
_ (& /2(1 P )/ e—[(y—px)Q—,O2$2]/2(1_p2) d’y

2my\/ 1 — p2
o—T2/2 /oo o—(W—p)?/2(1—p?) o—12/2

var Joeo \ an(1 — p2)

The last integral is recognized as the Gaussian pdf with mean pxr and variance
1 — p2, so the value of integral is one.

—o0o < T,y < OQ.

Fx(z) /oo e—(y2—2pxy)/2(1—p2) dy

Hence, fx(x) is the one-dim Gaussian pdf with zero mean and unit variance.



Independence of two random variables

Two events are independent if the knowledge that one has occurred gives no
clue to the likelihood that the other will occur.

Let X and Y be discrete random variables. Let A1 be the event that X =z, A-

be the event that ¥ = y. If X and Y are independent, then Ay and A, are
iIndependent.

P[A1 N Ap] = P[A1]P[A2]
or Pxy(z,y) = P[X =z and Y = y| = P[X = z|P[Y = y] = Px(z)Py(y).

For continuous random variables: fxyy(z,y) = fx(x)fy(y).

Example
X1 = number of students attending the lecture on a given day
X> = number of tests within that week
X3 = number of students having a cold
X4 = number of students having hair cut.

Which pair of random variables are independent?



Definition

Let X and Y be random variables with joint density fxy and marginal densities
fx and fy, respectively.

X and Y are independent if and only if

fxy(z,y) = fx(x)fy(y), forallz,y.

Remark

By integrating the above equation, we have
Y

/_yoo /_xoo fxy (@', y') de'dy’ = /_oo fy (') dy /_xoo Fx(z') da’
so that

Fxy(z,y) = Fx(z)Fy(y) for all x,y.

X and Y are independent if and only if their joint cdf is equal to the product
of its marginal cdf’s.



Example Consider the jointly distributed Gaussian random variables with the
joint pdf:

1 2 2 2

fxy(z,y) = —
xy(z,y S

1 1
fx(z) = e 2 f(y) = e V2,

V2T 2T
_ 1 — (2 + 2)/2
fx(x)fy(y) = o € vl —oco <,y < oo.

The product of the marginals equals the joint pdf if and only if p = 0. Hence,
X and Y are independent if and only if p = 0.

What is the interpretation of p? It is related to a concept called correlation (to
be discussed later).



Example

Let X and Y be zero-mean, unit variance independent Gaussian random vari-
ables. Find the value of r for which the probability that (X,Y) falls inside a
circle of radius r is 1/2.

Solution

Since X and Y are independent, the joint pdf for X and Y is

Fxy (@) = e (PH)/2
2T

In polar coordinates: z = rcosf,y = rsin @ so that 22 4+ y2 = r2. The Jacobian
of transformation is given by dxdy = rdrd6.

2

/ W/r 1 e "2/ 20 dr! g’
0 JO 27
T

12 2
= / r'e” " 2dr! = e T /2
o)

P[X?4+Y? <79

’ =1— e_TQ/Q.

Tr

Solve for r such that 1 — e "°/2 = 1/2; we obtain r = v/21In 2.



Theorem Let X and Y be independent random variables, then the random
variables defined by ¢g(X) and h(Y) are also independent.

Proof Consider the one-dimensional events A and B. Let A’ be the set of all
values of x such that if = is in A/, then g(z) is in A; let B’ be the set of all
values of y such that if y is in B/, then h(y) is in B.

That is, A’ and B’ are the equivalent event of A and B, respectively.

Plg(X) in A, h(Y) in B] =

P
P
P

X in AY in B]
X in A'|P[A in B]

9(X) in AlP[R(Y) in B]

The last but one equality follows from the independence of X and Y. The last
equality is obtained since A and A/, and B and B’ are pairs of equivalent events.



