Review of Topics — Single Random Variable

- 1. Discrete random variable arises when we count the occurrences of A. Different counting rules lead to different types of random variables.
- 2. Bernoulli random variable

count = number of "success" in a Bernoulli trial
$$S_X = \{0,1\}$$
 pmf: $P_X(0) = 1-p, P_X(1) = p.$

3. Binomial random variable

count = number of "successes" in
$$n$$
 Bernoulli trials
$$S_X = \{0,1,2,\cdots,n\}$$
 pmf: $P_X(k) = C_k^n p^k (1-p)^{n-k}, \quad k=0,1,\cdots,n.$

- Maximum value of $P_X(k)$ is obtained at $k_{max} = [(n+1)p]$.
- 4. Geometric random variable

count = number of trials required until the 1st "success" appears
$$S_X = \{1,2,\cdots,n\}$$
 pmf: $P_X(k)=(1-p)^{k-1}p,\quad k=1,2,\cdots$.

• Memoryless property

$$P[X > k + j | X > j] = P[X > k], k, j > 1.$$

5. Poisson random variable

count = number of "successes" over time period
$$[0,T]$$

$$S_X = \{0,1,2,\cdots,n,\cdots\}$$
 pmf: $P_X(k) = \frac{\alpha^k}{k!}e^{-\alpha}, k = 0,1,2,\cdots$

- $\frac{\alpha^k}{k!}e^{-\alpha} \approx C_k^n p^k (1-p)^{n-k}$, $\alpha = np$ (sufficiently accurate when $n \ge 10$ and $p \le 0.1$)
- $P_X(k)$ achieves maximum at $k = \begin{cases} 0, & \alpha < 1 \\ [\alpha], & \alpha \ge 1 \end{cases}$
- 6. E[X] and VAR[X] of a discrete random variable

$$E[X] = \sum_k x_k P_X(x_k)$$
 weighted average
$$VAR[X] = E[X^2] - E[X]^2$$

$$STD[X] = \sqrt{VAR[X]}$$

- E[c] = c if c is a constant.
- E[cX] = cE[X], c is a constant.
- 7. For binomial random variable

$$E[X] = np$$
, $VAR[X] = np(1-p)$.

For geometric random variable

$$E[X] = \frac{1}{p}, \quad VAR[X] = \frac{1-p}{p^2}.$$

For Poisson random variable

$$E[X] = VAR[X] = \alpha.$$

8. Uniform random variable on [a, b]

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

For example, X = a number picked at random between 0 and 1.

9. Exponential random variable

$$S_X = [0, \infty)$$
 $f_X(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0, \end{cases}$
 $F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$

• Memoryless property

$$P[X > t + h|X > t] = P[X > h]$$

i.e., the probability of the 1st arrival of event is independent of how long you have been waiting.

- 10. The exponential random variable is obtained as the limiting form of the geometric random variable.
- 11. For a Poisson random variable, the following random times have exponential distribution:
 - (i) the waiting time until the 1st success;
 - (ii) the time between successes.
- 12. Normal random variable

$$S_X = (-\infty, \infty)$$

$$F_X(x) = N\left(\frac{x-m}{\sigma}\right), \quad N(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m)^2/2\sigma^2}.$$

•
$$E[X] = m$$
, $VAR[X] = \sigma^2$.

13. Central Limit Theorem

If X_i are independent and identically distributed random variables with mean μ and variance σ^2 , then $S_n = X_1 + X_2 + \cdots + X_n$ is a normal random variable with $E[S_n] = n\mu$ and $VAR[S_n] = n\sigma^2$.

14. Expectation

$$E[X] = \sum_{k} x_k P_X(x_k)$$
 for X being discrete $E[X] = \int_{-\infty}^{\infty} t f_X(t) dt$ for X being continuous

• If
$$f_X(m-x) = f_X(m+x)$$
, then $E[X] = m$

 \bullet For non-negative random variable X

(i)
$$E[X] = \int_0^\infty [1 - F_X(t)] dt$$
, X is continuous

(ii)
$$E[X] = \sum_{k=0}^{\infty} P[X > k], \quad S_X = \{0, 1, 2, \cdots\}.$$

15. Function of a random variable: Y = g(X)

• Given y = g(x), find $F_Y(y)$ and $f_Y(y)$ using the concept of equivalent events.

• If g(x) = y has n solutions, x_1, x_2, \dots, x_n , then

$$f_Y(y) = \sum_{k=1}^n \frac{f_X(x)}{|dy/dx|} \bigg|_{x=x_k}.$$

16. Expectation of Y = g(X)

$$E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
$$E[Y] = \sum_{k} g(x_k) P_X(x_k)$$

•
$$E[c] = c$$

•
$$E[cX] = cE[X]$$

•
$$E\left[\sum_{k=1}^{n} g_k(X)\right] = \sum_{k=1}^{n} E[g_k(X)].$$