MATH 246 — Probability and Random Processes

Solution to Test One

Fall 2003

Course Instructor: Prof. Y. K. Kwok

- 1. (a) $P[E] = P[E \cap F] + P[E \cap F^C] = P[E]P[F] + P[E \cap F^C]$ so that $P[E \cap F^C] = (1 - P[F])P[E] = P[E]P[F^C]$
 - (b) $P[A] = \frac{1}{4}, P[B] = \frac{1}{13}, P[A \cap B] = \frac{1}{52}.$ Since $P[A \cap B] = P[A]P[B]$, so they are independent.
- 2. By the law of total probabilities

$$P[C] = P[C|I]P[I] + P[C|G]P[G]$$

= 0.30 \times 0.35 + 0.25 \times 0.65 = 0.2675.

3.
$$P[II|B] = \frac{P[II \cap B]}{P[B]} = \frac{\frac{1}{4} \times \frac{1}{2}}{\frac{1}{4} \times 0 + \frac{1}{4} \times \frac{1}{2} + \frac{1}{4} \times 0 + \frac{1}{4} \times \frac{1}{2}} = \frac{1}{2}.$$

4. (a) Range of $S_Z = \{z : 0 \le z \le 2\}$.

$$F_Z(0)=\ P[Z\leq 0]=0,$$

$$F_Z(1)=\ P[Z\leq 1]=rac{ ext{area of half square bounded below by }x=y}{ ext{area of the square}}=rac{1}{2},$$

$$F_Z(2)=\ 1.$$

- (b) Since $F_Z(z) = 0$ for $z \le 0$ and $F_Z(z) = 1$ for $z \ge 2$, so $f_Z(-1) = 0$ and $f_Z(3) = 0$.
- 5. (a) Average number of call over t minutes =8t. $P[\text{at least one call}] = 1 P[\text{no call}] = 1 e^{-8t}.$
 - (b) $P[X=2] = \frac{4^2}{2!}e^{-4}$,

where $\mu =$ average number of calls over half a minute = 4.