

MATH 246 — Probability and Random Processes

Test Two

Fall 2003 Course Instructor: Prof. Y. K. Kwok

Time allowed: 75 minutes

[points]

[2]

[1]

1. (a) Suppose X has a probability density function f_X and define Y = |X| + 1. Express the probability density f_Y of the random variable Y in terms of f_X .

Hint: In your answer for $f_Y(y)$, distinguish between $y \ge 1$ and y < 1.

- (b) Let X be the standard Gaussian random variable with zero mean and unit standard deviation. Using (a) or otherwise, find the density function of |X| + 1. Specify the density function over the whole range $(-\infty, \infty)$.
- 2. Let X and Y be continuous random variables with joint density function:

$$f_{XY}(x,y) = \begin{cases} e^{-y} & \text{for } 0 < x < y < \infty \\ 0 & \text{otherwise} \end{cases}$$
.

- (a) Compute the marginal density functions $f_X(x)$ and $f_Y(y)$. Specify the density functions over the whole range $(-\infty, \infty)$.
- (b) Are X and Y independent? Explain. [1]
- (c) Determine the conditional density $f_X(x|y)$. Be careful that $f_X(x|y)$ takes different forms over different regions in the x-y plane.
- (d) Compute E[X|y].

Hint:
$$E[X|y] = \int_{-\infty}^{\infty} x f_X(x|y) \ dx$$
. Be careful that for certain range of $x, f_X(x|y) = 0$. [2]

3. (a) Show that the correlation coefficient ρ_{XY} between a pair of random variables X and Y observes

$$-1 \le \rho_{XY} \le 1$$
.

Hint: Consider
$$E\left[\left(\frac{X - E[X]}{\sigma_X} \pm \frac{Y - E[Y]}{\sigma_Y}\right)^2\right]$$
. [4]

(b) Let X be an exponential random variable with parameter $\lambda > 0$. Define Y = aX + b, where a and b are constants. Find the pdf of Y. Find the condition on a and b such that Y remains exponential.

Hint: For
$$Y = aX + b$$
, $f_Y = \frac{1}{|a|} f_X \left(\frac{y-b}{a} \right)$. [3]

- 4. Consider a sequence of n + m independent Bernuolli trials with probability of success p in each trial. Let N be the number of successes in the first n trials and A be the number of successes in all m + n trials.
 - (a) Find the joint pmf of N and A. [4]
 - (b) Find the marginal pmf's of N and A? [2]
 - (c) Are N and A independent random variables? Give you reasoning. [1]

Hint: The number of successes in the first n trials cannot be greater than the number of successes in $all\ m+n$ trials.

5. Let X and Y be independent and uniformly distributed over (0,1), compute $P[X \ge Y]$. Also, find the cdf of Z = X/Y.

Hint: Consider the following figures:

[5]

— End —