
Worked examples — Multiple Random Variables

Example 1 Let X and Y be random variables that take on values from the set {−1, 0, 1}.
(a) Find a joint probability mass assignment for which X and Y are independent, and

confirm that X2 and Y 2 are then also independent.

(b) Find a joint pmf assignment for which X and Y are not independent, but for which
X2 and Y 2 are independent.

Solution

(a) We assign a joint probability mass function for X and Y as shown in the table below.
The values are designed to observe the relations: PXY (xk, yj) = PX(xk)PY (yj) for all
k, j. Hence, the independence property of X and Y is enforced in the assignment.

PXY (xk, yj) x1 = −1 x2 = 0 x3 = 1 PY (yj)

y1 = −1
1
12

1
6

1
4

1
2

y2 = 0
1
18

1
9

1
6

1
3

y3 = 1
1
36

1
18

1
12

1
6

PX(xk)
1
6

1
3

1
2

Given the above assignment for X and Y , the corresponding joint probability mass
function for the pair X2 and Y 2 is seen to be

PX2Y 2(x̃k, ỹj) x̃1 = 1 x̃2 = 0 PY 2(ỹj)

ỹ1 = 1
1
12

+
1
4

+
1
36

+
1
12

=
4
9

1
6

+
1
18

=
2
9

2
3

ỹ2 = 0
1
18

+
1
6

=
2
9

1
9

1
3

PX2(x̃k)
2
3

1
3

Note that PX2,Y 2(x̃k, ỹj) = PX2(x̃k)PY 2(ỹj) for all k and j, so X2 and Y 2 are also
independent.

(b) Suppose we take the same joint pmf assignment for X2 and Y 2 as in the second table,
but modify the joint pmf for X and Y as shown in the following table.

PXY (xk, yj) x1 = −1 x2 = 0 x3 = 1 PY (yj)

y1 = −1
1
4

1
6

1
12

1
2

y2 = 0
1
18

1
9

1
6

1
3

y3 = 1
1
12

1
18

1
36

1
6

PX(xk)
7
18

1
3

5
18

1



This new joint pmf assignment for X and Y can be seen to give rise to the same joint
pmf assignment for X2 and Y 2 in the second table. However, in this new assignment,
we observe that

1
4

= PXY (x1, y1) 6= PX(x1)PY (y1) =
7
18
· 1
2

=
7
36

,

and the inequality of values can be observed also for PXY (x1, y3), PXY (x3, y1) and
PXY (x3, y3), etc. Hence, X and Y are not independent.

Remark

1. Since −1 and 1 are the two positive square roots of 1, we have

PX(1) + PX(−1) = PX2(1) and PY (1) + PY (−1) = PY 2(1),

therefore

PX2(1)PY 2(1) = [PX(1) + PX(−1)][PY (1) + PY (−1)]

= PX(1)PY (1) + PX(−1)PY (1) + PX(1)PY (−1) + PX(−1)PY (−1).

On the other hand, PX2Y 2(1, 1) = PXY (1, 1) + PXY (−1, 1) + PXY (1,−1) + PXY

(−1,−1). Given that X2 and Y 2 are independent, we have PX2Y 2(1, 1) = PX2(1)
PY 2(1), that is,

PXY (1, 1) + PXY (−1, 1) + PXY (1,−1) + PXY (−1,−1)

= PX(1)PY (1) + PX(−1)PY (1) + PX(1)PY (−1) + PX(−1)PY (−1).

However, there is no guarantee that PXY (1, 1) = PX(1)PY (1), PXY (1,−1) = PX(1)
PY (−1), etc., though their sums are equal.

2. Suppose X3 and Y 3 are considered instead of X2 and Y 2. Can we construct a pmf
assignment where X3 and Y 3 are independent but X and Y are not?

3. If the set of values assumed by X and Y is {0, 1, 2} instead of {−1, 0, 1}, can we
construct a pmf assignment for which X2 and Y 2 are independent but X and Y are
not?

Example 2 Suppose the random variables X and Y have the joint density function
defined by

f(x, y) =
{

c(2x + y) 2 < x < 6, 0 < y < 5
0 otherwise

.

(a) To find the constant c, we use

1 = total probability =
∫ 6

2

∫ 5

0

c(2x + y) dydx =
∫ 5

2

c

(
2xy +

y2

2

) ∣∣∣∣
5

0

dx

=
∫ 6

2

c

(
10x +

25
2

)
dx = 210c,

2



so c =
1

210
.

(b) The marginal cdf for X and Y are given by

FX(x) = P (X ≤ x) =
∫ x

−∞

∫ ∞

−∞
f(x, y) dydx

=





0 x < 2∫ x

2

∫ 5

0

2x + y

210
dydx =

2x2 + 5x− 18
84

2 ≤ x < 6
∫ 6

2

∫ 5

0

2x + y

210
dydx = 1 x ≥ 6

;

FY (y) = P (Y ≤ y) =
∫ ∞

−∞

∫ y

−∞

2x + y

210
dydx

=





0 y < 0∫ 6

2

∫ y

0

2x + y

210
dydx =

y2 + 16y

105
0 ≤ y < 5

∫ 6

2

∫ 5

0

2x + y

210
dydx = 1 y ≥ 5

.

(c) Marginal cdf for X: fX(x) =
d

dx
FX(x) =

{
4x+5
84 2 < x < 6

0 otherwise
.

Marginal cdf for Y : fY (y) =
d

dy
FY (y) =

{
2y+16
105 0 < y < 5

0 otherwise
.

(d) P (X > 3, Y > 2) =
1

210

∫ 6

3

∫ 5

2

(2x + y) dydx =
3
20

P (X > 3) =
1

210

∫ 6

3

∫ 5

0

(2x + y) dydx =
23
28

P (X + Y < 4) =
1

210

∫ 4

2

∫ 4−x

0

(2x + y) dxdy =
2
35

3



(e) Joint distribution function
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Suppose (x, y) is located in {(x, y) : x > 6, 0 < y < 5}, then

F (x, y) =
∫ 6

2

∫ y

0

2x + y

210
dydx =

y2 + 16y

105
,

and f(x, y) =
2y + 16

105
.

Note that for this density f(x, y), we have

f(x, y) 6= fX(x)fY (y),

so x and Y are not independent.

Example 3 The joint density of X and Y is given by

f(x, y) =

{
15
2

x(2− x− y) 0 < x < 1, 0 < y < 1
0 otherwise

.

Compute the condition density of X, given that Y = y, where 0 < y < 1.

Solution For 0 < x < 1, 0 < y < 1, we have

fX(x|y) =
f(x, y)
fY (y)

=
f(x, y)∫∞

−∞ f(x, y) dx

=
x(2− x− y)∫ 1

0
x(2− x− y) dx

=
x(2− x− y)

2
3 − y

2

=
6x(2− x− y)

4− 3y
.

Example 4 If X and Y have the joint density function

fXY (x, y) =

{
3
4

+ xy 0 < x < 1, 0 < y < 1
0 otherwise
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find (a) fY (y|x), (b) P

(
Y >

1
2
|1
2

< X <
1
2

+ dx

)
.

Solution

(a) For 0 < x < 1,

fX(x) =
∫ 1

0

(
3
4

+ xy

)
dy =

3
4

+
x

2

and

fY (y|x) =
fXY (x, y)

fX(x)
=

{
3+4xy
3+2x 0 < y < 1

0 otherwise
.

For other values of x, f(y|x) is not defined.

(b) P

(
Y >

1
2

∣∣∣∣
1
2

< X <
1
2

+ dx

)
=

∫ ∞

1/2

fY

(
y|1

2

)
dy =

∫ 1

1/2

3 + 2y

4
dy =

9
16

.

Example 5 Let X and Y be independent exponential random variables with parameter
α and β, respectively. Consider the square with corners (0, 0), (0, a), (a, a) and (a, 0), that
is, the length of each side is a.

y

x

(0, a)

(0, 0) (a, 0)

(a, a)

(a) Find the value of a for which the probability that (X, Y ) falls inside a square of side
a is 1/2.

(b) Find the conditional pdf of (X, Y ) given that X ≥ a and Y ≥ a.

Solution

(a) The density function of X and Y are given by

fX(x) =
{

αe−αx, x ≥ 0
0 x < 0

, fY (y) =
{

βe−βy, y ≥ 0
0 y < 0

.

Since X and Y are independent, so fXY (x, y) = fX(x)fY (y). Next, we compute

P [0 ≤ X ≤ a, 0 ≤ Y ≤ a] =
∫ a

0

∫ a

0

αβe−αxe−βy dxdy = (1− e−aα)(1− e−aβ),
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and solve for a such that (1− e−aα)(1− e−aβ) = 1/2.

(b) Consider the following conditional pdf of (X,Y )

FXY (x, y|X ≥ a, Y ≥ a)

= P [X ≤ x, Y ≤ y|X ≥ a, Y ≥ a]

=
P [a ≤ X ≤ x, a ≤ Y ≤ y]

P [X ≥ a, Y ≥ a]

=
P [a ≤ X ≤ x]P [a ≤ Y ≤ y]

P [X ≥ a]P [Y ≥ a]
since X and Y are independent

=





∫ y

a

∫ x

a
αβe−αxe−βy dxdy∫∞

a

∫∞
a

αβe−αxe−βy dxdy
=

(e−aα − e−αx)(e−aβ − e−βy)
e−aαe−aβ

, x > a, y > a

0 otherwise
.

fXY (x, y|X ≥ a, Y ≥ a) =
∂2

∂x∂y
FXY (x, y|X ≥ a, Y ≥ a)

=
{

αβe−αxe−βy/e−αae−βa for x > a, y > a
0 otherwise

.

Example 6 A point is chosen uniformly at random from the triangle that is formed by
joining the three points (0, 0), (0, 1) and (1, 0) (units measured in centimetre). Let X and
Y be the co-ordinates of a randomly chosen point.

(i) What is the joint density of X and Y ?

(ii) Calculate the expected value of X and Y , i.e., expected co-ordinates of a randomly
chosen point.

(iii) Find the correlation between X and Y . Would the correlation change if the units are
measured in inches?

Solution

(i) fX,Y (x, y) =
1

Area 4 = 2, (x, y) lies in the triangle.

(ii) fX(x) =
∫ ∞

−∞
fX,Y (x, y′) dy′ =

∫ 1−x

0

2 dy = 2(1− x).

fY (y) =
∫ ∞

−∞
fX,Y (x′, y) dx′ =

∫ 1−y

0

2 dx = 2(1− y).

Hence, E[X] = 2
∫ 1

0

x(1− x) dx = 2
[
x2

2
− x3

3

]1

0

=
1
3
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and E[Y ] = 2
∫ 1

0

y(1− y) dy =
1
3
.

(iii) To find the correlation between X and Y , we consider

E[XY ] = 2
∫ 1

0

∫ 1−y

0

xy dxdy = 2
∫ 1

0

y

[
x2

2

]1−y

0

dy

=
∫ 1

0

y(1− 2y + y2) dy

=
[
y2

2
− 2

3
y3 +

y4

4

]1

0

=
1
12

.

COV(X, Y ) = E[XY ]− E[X]E[Y ]

=
1
12
−

(
1
3

)2

= − 1
36

.

E[X2] = 2
∫ 1

0

x2(1− x) dx = 2
[
x3

3
− x4

4

]1

0

=
1
6

so

VAR(X) = E[X2]− [E[X]]2 =
1
6
−

(
1
3

)2

=
1
18

.

Similarly, we obtain VAR(Y ) =
1
18

.

ρXY =
COV(X, Y )√

VAR(X)
√

VAR(Y )
=
− 1

36
1
18

= −1
2
.

Since ρ(aX, bY ) =
COV(aX, bY )
σ(aX)σ(bY )

=
abCOV(X,Y )
aσ(X)bσ(Y )

= ρ(X, Y ), for any scalar multi-

ples a and b. Therefore, the correlation would not change if the units are measured in
inches.

Example 7 Let X, Y, Z be independent and uniformly distributed over (0, 1). Compute
P{X ≥ Y Z}.

Solution Since X, Y, Z are independent, we have

fX,Y,Z(x, y, z) = fX(x)fY (y)fZ(z) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
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Therefore,

P [X ≥ Y Z] =
∫∫∫

x≥yz

fX,Y,Z(x, y, z) dxdydz

=
∫ 1

0

∫ 1

0

∫ 1

yz

dxdydz =
∫ 1

0

∫ 1

0

(1− yz) dydz

=
∫ 1

0

(
1− z

2

)
dz =

3
4
.

Example 8 The joint density of X and Y is given by

f(x, y) =
{

e−(x+y) 0 < x < ∞, 0 < y < ∞
0 otherwise

.

Find the density function of the random variable X/Y .

Solution We start by computing the distribution function of X/Y . For a > 0,

FX/Y (a) = P

[
X

Y
≤ a

]

=
∫ ∫

x/y≤a

e−(x+y) dxdy =
∫ ∞

0

∫ ay

0

e−(x+y) dxdy

=
∫ ∞

0

(1− e−ay)e−y dy =
[
−e−y +

e−(a+1)y

a + 1

] ∣∣∣∣
∞

0

= 1− 1
a + 1

=
a

a + 1
.

By differentiating FX/Y (a) with respect to a, the density function X/Y is given by

fX/Y (a) = 1/(a + 1)2, 0 < a < ∞.

Example 9 Let X and Y be a pair of independent random variables, where X is uni-
formly distributed in the interval (−1, 1) and Y is uniformly distributed in the interval
(−4,−1). Find the pdf of Z = XY .
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Solution Assume Y = y, then Z = XY is a scaled version of X. Suppose U = αW + β,

then fU (u) =
1
|α|fW

(
u− β

α

)
. Now, fZ(z|y) =

1
|y|fX

(
z

y

∣∣∣∣y
)

; the pdf of z is given by

fZ(z) =
∫ ∞

−∞

1
|y|fX

(
z

y

∣∣∣∣y
)

fY (y) dy =
∫ ∞

−∞

1
|y|fXY

(
z

y
, y

)
dy.

Since X is uniformly distributed over (−1, 1), fX(x) =
{

1
2 −1 < x < 1
0 otherwise

. Similarly, Y

is uniformly distributed over (−4,−1), fY (y) =
{

1
3 −4 < y < −1
0 otherwise

. As X and Y are

independent,

fXY

(
z

y
, y

)
= fX

(
z

y

)
fY (y) =

{
1
6 −1 <

z

y
< 1 and −4 < y < −1

0 otherwise
.

We need to observe −1 < z/y < 1, which is equivalent to |z| < |y|. Consider the following
cases:

(i) |z| > 4; now −1 < z/y < 1 is never satisfied so that fXY

(
z

y
, y

)
= 0.

(ii) |z| < 1; in this case, −1 < z/y < 1 is automatically satisfied so that

fZ(z) =
∫ −1

−4

1
|y|

1
6

dy =
∫ −1

−4

− 1
6y

dy = −1
6

ln |y|
]−1

−4

=
ln 4
6

.

(iii) 1 < |z| < 4; note that fXY

(
z

y
, y

)
=

1
6

only for −4 < y < −|z|, so that

fZ(z) =
∫ −|z|

−4

1
|y|

1
6

dy = −1
6

ln |y|
]−|z|

−4

=
1
6
[ln 4− ln |z|].

In summary, fZ(z) =





ln 4
6

if |z| < 1
1
6
[ln 4− ln |z|] if 1 < |z| < 4

0 otherwise

.

Remark Check that
∫ ∞

−∞
fZ(z) dz =

∫ −1

−4

1
6
[ln 4− ln |z|] dz

+
∫ 1

−1

ln 4
6

dz +
∫ 4

1

1
6
[ln 4− ln |z|] dz

=
∫ 4

−4

ln 4
6

dz − 2
∫ 4

1

ln |z|
6

dz

9



=
8
6

ln 4− 1
3
[z ln z − z]41 = 1.

Example 10 Let X and Y be two independent Gaussian random variables with zero
mean and unit variance. Find the pdf of Z = |X − Y |.

Solution We try to find FZ(z) = P [Z ≤ z]. Note that z ≥ 0 since Z is a non-negative
random variable.

x

y

Z = Y − X
when y > x

Z = X − Y
when x > y

Consider the two separate cases: x > y and x < y. When X = Y , Z is identically zero.

(i) x > y, Z ≤ z ⇔ x− y ≤ z, z ≥ 0; that is, x− z ≤ y < x.

x

y

Z = Y − X
when y > x

Z = X − Y
when x > y

×

×

x

x

x − z

x − z ≤ y < x

FZ(z) =
∫ ∞

−∞

∫ x

x−z

fXY (x, y) dydx

fZ(z) =
d

dz
FZ(z) =

∫ ∞

−∞
fXY (x, x− z) dx

=
∫ ∞

−∞

1
2π

e−[x2+(x−z)2]/2 dx

=
1

2
√

π
e−z2/4

∫ ∞

−∞

1√
π

e−(x− z
2 )

2

dx =
1

2
√

π
e−z2/4.
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(ii) x < y, Z ≤ z ⇔ y − x ≤ z, z ≥ 0; that is x < y ≤ x + z.

FZ(z) =
∫ ∞

−∞

∫ x+z

x

fXY (x, y) dydx

fZ(z) =
∫ ∞

−∞
fXY (x, x + z) dx =

1
2
√

π
e−z2/4

∫ ∞

−∞

1√
π

e−(x+z)2 dx =
1

2
√

π
e−z2/4.

Example 11 Suppose two persons A and B come to two separate counters for service.
Let their service times be independent exponential random variables with parameters λA

and λB , respectively. Find the probability that B leaves before A?

Solution Let TA and TB denote the continuous random service time of A and B, re-

spectively. Recall that the expected value of the service times are: E[TA] =
1

λA
and

E[TB ] =
1

λB
. That is, a higher value of λ implies a shorter average service time. One

would expect

P [TA > TB ] : P [TB > TA] =
1

λA
:

1
λB

;

and together with P [TA > TB ] + P [TB > TA] = 1, we obtain

P [TA > TB ] =
λB

λA + λB
and P [TB > TA] =

λA

λA + λB
.

Justification:- Since TA and TB are independent exponential random variables, their joint
density fTA,TB

(tA, tB) is given by

fTA,TB (tA, tB) dtAdtB

= P [tA < TA < tA + dtA, tB < TB < tB + dtB ]

= P [tA < TA < tA + dtA]P [tB < TB < tB + dtB ]

= (λAe−λAtAdtA)(λBe−λBtBdtB).

P [TA > TB ] =
∫ ∞

0

∫ tA

0

λAλBe−λAtAe−λBtB dtBdtA

=
∫ ∞

0

λAe−λAtA(1− e−λBtA) dtA

=
∫ ∞

0

λAe−λAtA dtA −
∫ ∞

0

λAe−(λA+λB)tA dtA

= 1− λA

λA + λB
=

λB

λA + λB
.
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