Worked examples - Basic Concepts of Probability Theory

Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is $1 / 4$. Suppose that one face of a regular tetrahedron has three colors: red, green, and blue. The three faces each have only one color: red, blue, and green, respectively. We throw the tetrahedron once and let R, G, and B be the events that the face on which it lands contains red, green and blue, respectively. Then, $P(R \mid G)=1 / 2=P(R), P(R \mid B)=1 / 2=P(R)$, and $P(B \mid G)=1 / 2=P(B)$. Thus the events R, B and G are pairwise independent. However, R, B and G are not independent events since $P(R \mid G B)=1 \neq P(R)$.

Example 2 A box contains 7 red and 13 blue balls. Two balls are selected at random and are discarded without their colors being seen. If a third ball is drawn randomly and observed to be red, what is the probability that both of the discarded balls were blue?

Solution Let $B B, B R$, and $R R$ be the events that the discarded balls are blue and blue, blue and red, red and red, respectively. Also, let R be the event that the third ball drawn is red. Since $\{B B, B R, R R\}$ is a partition of the sample space, Bayes' formula can be used to calculate $P(B B \mid R)$.

$$
P(B B \mid R)=\frac{P(R \mid B B) P(B B)}{P(R \mid B B) P(B B)+P(R \mid B R) P(B R)+P(R \mid R R) P(R R)}
$$

Now

$$
P(B B)=\frac{13}{20} \times \frac{12}{19}=\frac{39}{95}, \quad P(R R)=\frac{7}{20} \times \frac{6}{19}=\frac{21}{190},
$$

and

$$
P(B R)=\frac{13}{20} \times \frac{7}{19}+\frac{7}{20} \times \frac{13}{19}=\frac{91}{190}
$$

where the last equation follows since $B R$ is the union of two disjoint events: namely, the first ball discarded was blue, the second was red, and vice versa. Thus

$$
P(B B \mid R)=\frac{\frac{7}{18} \times \frac{39}{95}}{\frac{7}{18} \times \frac{39}{95}+\frac{6}{18} \times \frac{91}{190}+\frac{5}{18} \times \frac{21}{190}} \approx 0.46
$$

Example 3 Let X be the number of births in a hospital until the first girl is born. Determine the probability function and the distribution function of X. Assume that the probability is $1 / 2$ that a baby born is a girl.

Solution $\quad X$ is a random variable that can assume any positive integer i. $p(i)=P(X=i)$, and $X=i$ occurs if the first $i-1$ births are all boys and the i th birth is a girl. Thus $p(i)=(1 / 2)^{i-1}(1 / 2)=(1 / 2)^{i}$ for $i=1,2,3, \cdots$, and $p(x)=0$ if $x \neq 1,2,3, \cdots$. To determine $F(t)$, note that for $t<1, F(t)=0$; for $1 \leq t<2, F(t)=1 / 2$; for $2 \leq t<$ $3, F(t)=1 / 2+1 / 4=3 / 4$; for $3 \leq t<4, F(t)=1 / 2+1 / 4+1 / 8=7 / 8$; and in general for $n-1 \leq t<n$,

$$
\begin{aligned}
F(t) & =\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n-1}}=\sum_{i=1}^{n-1}\left(\frac{1}{2}\right)^{i} \\
& =\frac{1-(1 / 2)^{2}}{1-1 / 2}-1=1-\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

by the partial sum formula for geometric series. Thus

$$
F(t)= \begin{cases}0 & t<1 \\ 1-(1 / 2)^{n-1} & n-1 \leq t<n, \quad n=2,3,4, \cdots\end{cases}
$$

Example 4 Independent trials, consisting of rolling a pair of fair dice, are performed. What is the probability that an outcome of 5 appears before an outcome of 7 when the outcome of a roll is the sum of the dice?

Solution If we let E_{n} denote the event that no 5 or 7 appears on the first $n-1$ trials and a 5 appears on the nth trial, then the desired probability is

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right) .
$$

Now, since $P\{5$ on any trial $\}=\frac{4}{36}$ and $P\{7$ on any trial $\}=\frac{6}{36}$, we obtain, by the independence of trials

$$
P\left(E_{n}\right)=\left(1-\frac{10}{36}\right)^{n-1} \frac{4}{36}
$$

And thus

$$
\begin{aligned}
P\left(\bigcup_{n=1}^{\infty} E_{n}\right) & =\frac{1}{9} \sum_{n=1}^{\infty}\left(\frac{13}{18}\right)^{n-1} \\
& =\frac{1}{9} \frac{1}{1-\frac{13}{18}} \\
& =\frac{2}{5}
\end{aligned}
$$

Alternative approach using conditional probabilities

This result may be obtained by using conditional probabilities. If we let E be the event that 5 occurs before 7 , then we can obtain the desired probability, $P(E)$, by conditioning on the outcome of the first trial, as follows: Let F be the event that the first trial results in 5 ; let G be the event that it results in 7 ; and let H be the event that the first trial results in neither 5 nor 7. Conditioning on which one of these events occurs gives

$$
P(E)=P(E \mid F) P(F)+P(E \mid G) P(G)+P(E \mid H) P(H)
$$

However,

$$
P(E \mid F)=1, \quad P(E \mid G)=0, \quad \text { and } \quad P(E \mid H)=P(E) .
$$

The first two equalities are obvious. The third follows because if the first outcome results in neither 5 nor 7 , then at that point the situation is exactly as when the problem first started; namely, the experimenter will continually roll a pair of fair dice until either 5 or 7 appears. As the trials are independent, the outcome of the first trial will have no effect on subsequent rolls of dice. Since $P(F)=\frac{4}{36}, P(G)=\frac{6}{36}$, and $P(H)=\frac{26}{36}$, we see that

$$
P(E)=\frac{1}{9}+P(E) \frac{13}{18} \quad \text { or } \quad P(E)=\frac{2}{5} .
$$

Intuitive approach

Students should note that the answer is quite intuitive. That is, since a " 5 " occurs on any roll with probability $\frac{4}{36}$ and a " 7 " with probability $\frac{6}{36}$, it seems intuitive that the odds that a " 5 " appears before " 7 " should be 6 to 4 against. The probability should be $\frac{4}{10}$, and indeed it is.

The same argument shows that if E and F are mutually exclusive events of an experiment. When the independent trials of this experiment are performed, event E will occur before event F with probability

$$
\frac{P(E)}{P(E)+P(F)}
$$

Example 5 Adam tosses a fair coin $n+1$ times, Andrew tosses the same coin n times. What is the probability that Adam gets more heads than Andrew?

Solution Let H_{1} and H_{2} be the number of heads obtained by Adam and Andrew, respectively. Also let T_{1} and T_{2} be the number of tails obtained by Adam and Andrew, respectively. Since the coin is fair,

$$
P\left(H_{1}>H_{2}\right)=P\left(T_{1}>T_{2}\right) .
$$

But

$$
P\left(T_{1}>T_{2}\right)=P\left(n+1-H_{1}>n-H_{2}\right)=P\left(H_{1} \leq H_{2}\right) .
$$

Therefore, $P\left(H_{1}>H_{2}\right)=P\left(H_{1} \leq H_{2}\right)$. So

$$
P\left(H_{1}>H_{2}\right)+P\left(H_{1} \leq H_{2}\right)=1
$$

implies that

$$
P\left(H_{1}>H_{2}\right)=P\left(H_{1} \leq H_{2}\right)=\frac{1}{2} .
$$

Note that a combinatorial solution to this problem is neither elegent nor easy to handle:

$$
\begin{aligned}
& P\left(H_{1}>H_{2}\right)=\sum_{i=0}^{n} P\left(H_{1}>H_{2} \mid H_{2}=i\right) P\left(H_{2}=i\right) \\
&=\sum_{i=0}^{n} \sum_{j=i+1}^{n+1} P\left(H_{1}=j\right) P\left(H_{2}=i\right) \\
&=\sum_{i=0}^{n} \sum_{j=i+1}^{n+1} \frac{\frac{(n+1)!}{j!(n+1-j)!}}{2^{n+1}} \frac{n!}{i!(n-i)!} \\
& 2^{n} \\
&=\frac{1}{2^{2 n+1}} \sum_{i=0}^{n} \sum_{j=i+1}^{n+1}\binom{n+1}{j}\binom{n}{i} .
\end{aligned}
$$

We then encounter the difficulty of find the sum to the above double summation. However, comparing these two solutions, we obtain the following interesting identity:

$$
\sum_{i=0}^{n} \sum_{j=i+1}^{n+1}\binom{n+1}{j}\binom{n}{i}=2^{2 n}
$$

Example 6 An urn contains 10 white and 12 red chips. Two chips are drawn at random and, without looking at their colors, are discarded. What is the probability that a third chip drawn is red?

Solution For $i \geq 1$, let R_{i} be the event that the i th chip drawn is red and W_{i} be the event that it is white. Intuitively, it should be clear that the two discarded chips provide no information, so $P\left(R_{3}\right)=12 / 22$, the same as if it were the first chip drawn from the urn. To prove this mathematically, note that $\left\{R_{2} W_{1}, W_{2} R_{1}, R_{2} R_{1}, W_{2} W_{1}\right\}$ is a partition of the sample space; therefore,

$$
\begin{aligned}
P\left(R_{3}\right)= & P\left(R_{3} \mid R_{2} W_{1}\right) P\left(R_{2} W_{1}\right)+P\left(R_{3} \mid W_{2} R_{1}\right) P\left(W_{2} R_{1}\right) \\
& +P\left(R_{3} \mid R_{2} R_{1}\right) P\left(R_{2} R_{1}\right)+P\left(R_{3} \mid W_{2} W_{1}\right) P\left(W_{2} W_{1}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& P\left(R_{2} W_{1}\right)=P\left(R_{2} \mid W_{1}\right) P\left(W_{1}\right)=\frac{12}{21} \times \frac{10}{22}=\frac{20}{77} \\
& P\left(W_{2} R_{1}\right)=P\left(W_{2} \mid R_{1}\right) P\left(R_{1}\right)=\frac{10}{21} \times \frac{12}{22}=\frac{20}{77} \\
& P\left(R_{2} R_{1}\right)=P\left(R_{2} \mid R_{1}\right) P\left(R_{1}\right)=\frac{11}{21} \times \frac{12}{22}=\frac{22}{77} \\
& P\left(W_{2} W_{1}\right)=P\left(W_{2} \mid W_{1}\right) P\left(W_{1}\right)=\frac{9}{21} \times \frac{10}{22}=\frac{15}{77} .
\end{aligned}
$$

Substituting these values into the above equation, we get

$$
P\left(R_{3}\right)=\frac{11}{20} \times \frac{20}{77}+\frac{11}{20} \times \frac{20}{77}+\frac{10}{20} \times \frac{22}{77}+\frac{12}{20} \times \frac{15}{77}=\frac{12}{22} .
$$

Example 7 Two boxes have red, green and blue balls in them; the number of balls of each color is given in Table 1. Our experiment will be to select a box and then a ball from the selected box. One box (number 2) is slightly larger than the other, causing it to be selected more frequently. Let B_{2} be the event "select the larger box" while B_{1} is the event "select the smaller box." Assume $P\left(B_{1}\right)=\frac{2}{10}$ and $P\left(B_{2}\right)=\frac{8}{10}$. (B_{1} and B_{2} are mutually exclusive and $B_{1} \cup B_{2}$ is the certain event, since some box must be selected; therefore, $P\left(B_{1}\right)+P\left(B_{2}\right)$ must equal unity.)

Table 1: Numbers of colored balls in two boxes

Solution Now define a discrete random variable X to have values $x_{1}=1, x_{2}=2$, and $x_{3}=3$ when a red, green, or blue ball is selected, and let B be an event equal to either B_{1} or B_{2}. From Table 1:

$$
\begin{array}{ll}
P\left(X=1 \mid B=B_{1}\right)=\frac{5}{100} & P\left(X=1 \mid B=B_{2}\right)=\frac{80}{150} \\
P\left(X=2 \mid B=B_{1}\right)=\frac{35}{100} & P\left(X=2 \mid B=B_{2}\right)=\frac{60}{150} \\
P\left(X=3 \mid B=B_{1}\right)=\frac{60}{100} & P\left(X=3 \mid B=B_{2}\right)=\frac{10}{150} .
\end{array}
$$

The conditional probability density $f_{X}\left(x \mid B_{1}\right)$ becomes

$$
f_{X}\left(x \mid B_{1}\right)=\frac{5}{100} \delta(x-1)+\frac{35}{100} \delta(x-2)+\frac{60}{100} \delta(x-3) .
$$

By direct integration of $f_{X}\left(x \mid B_{1}\right)$:

$$
F_{X}\left(x \mid B_{1}\right)=\frac{5}{100} u(x-1)+\frac{35}{100} u(x-2)+\frac{60}{100} u(x-3) .
$$

For comparison, we may find the density and distribution of X by determining the probabilities $P(X=1), P(X=2)$, and $P(X=3)$. These are found from the total probability theorem.

$$
\begin{aligned}
P(X=1) & =P\left(X=1 \mid B_{1}\right) P\left(B_{1}\right)+P\left(X=1 \mid B_{2}\right) P\left(B_{2}\right) \\
& =\frac{5}{100}\left(\frac{2}{10}\right)+\frac{80}{150}\left(\frac{8}{10}\right)=0.437 \\
P(X=2) & =\frac{35}{100}\left(\frac{2}{10}\right)+\frac{60}{150}\left(\frac{8}{10}\right)=0.390 \\
P(X=3) & =\frac{60}{100}\left(\frac{2}{10}\right)+\frac{10}{150}\left(\frac{8}{10}\right)=0.173 .
\end{aligned}
$$

Thus

$$
f_{X}(x)=0.437 \delta(x-1)+0.390 \delta(x-2)+0.173 \delta(x-3)
$$

and

$$
F_{X}(x)=0.437 u(x-1)+0.390 u(x-2)+0.173 u(x-3) .
$$

The distribution functions and density functions are plotted below:

