MATH 246 - Probability and Random Processes

Solution to Final Examination

Fall 2004
Course Instructor: Prof. Y. K. Kwok
Time allowed: 100 minutes

1. Now $E[X \mid Y=1]=3, E[X \mid Y=2]=5+E[X]$ and $E[X \mid Y=3]=7+E[X]$. We then have

$$
E[X]=\frac{1}{3}(3+5+E[X]+7+E[X]) \quad \text { so that } \quad E[X]=15 .
$$

2.

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}\frac{2}{\pi} \sqrt{1-x^{2}}, & -1 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases} \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x= \begin{cases}\frac{2}{\pi} \sqrt{1-y^{2}}, & -1 \leq y \leq 1 \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

When $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$,

$$
f_{X}(x) f_{Y}(y) \neq f_{X Y}(x, y)
$$

so that X and Y cannot be independent. On the other hand

$$
\begin{aligned}
E[X] & =\int_{-1}^{1} \frac{2 x}{\pi} \sqrt{1-x^{2}} d x=0 \\
E[Y] & =\int_{-1}^{1} \frac{2 y}{\pi} \sqrt{1-y^{2}} d y=0 \\
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y \\
& =\int_{-1}^{1} d x \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{x y}{\pi} d y=0
\end{aligned}
$$

so that

$$
\operatorname{COV}(X, Y)=E[X Y]-E[X] E[Y]=0
$$

Hence, X and Y are uncorrelated.
3. Let T_{S} and T_{L} denote the times between now and the next earthquake in San Francisco and Los Angeles, respectively. To calculate $P\left[T_{S}>T_{L}\right]$, we condition on T_{L} :

$$
\begin{aligned}
P\left[T_{S}>T_{L}\right] & =\int_{0}^{\infty} P\left[T_{S}>T_{L} \mid T_{L}=y\right] f_{T_{L}}(y) d y \\
& =\int_{0}^{\infty} P\left[T_{S}>y\right] \lambda_{2} e^{-\lambda_{2} y} d y \\
& =\int_{0}^{\infty} e^{-\lambda_{1} y} \lambda_{2} e^{-\lambda_{2} y} d y=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

4. $f_{X}(x)=\left\{\begin{array}{cc}\frac{1}{2} & -1<x<1 \\ 0 & \text { otherwise }\end{array}, \quad f_{Y}(y)=\left\{\begin{array}{cc}\frac{1}{2} & 0<y<2 \\ 0 & \text { otherwise }\end{array}\right.\right.$
$f_{Z}(z)=\int_{-\infty}^{\infty}|y| f_{X Y}(y z, y) d y$ and observe that

$$
f_{X Y}(y z, y)= \begin{cases}\frac{1}{4} & -1<y z<1 \text { and } 0<y<2 \\ 0 & \text { otherwise }\end{cases}
$$

$f_{X Y}(y z, y)$ is non-zero over the above shaded region.
(i) $z>\frac{1}{2}$

$$
f_{Z}(z)=\int_{0}^{\frac{1}{z}} \frac{y}{4} d y=\frac{1}{8 z^{2}}
$$

(ii) $-\frac{1}{2} \leq z \leq \frac{1}{2}$

$$
f_{Z}(z)=\int_{0}^{2} \frac{y}{4} d y=\frac{1}{2}
$$

(iii) $z<-\frac{1}{2}$

$$
f_{Z}(z)=\int_{0}^{-\frac{1}{z}} \frac{y}{4} d y=\frac{1}{8 z^{2}}
$$

In summary

$$
f_{z}(z)= \begin{cases}\frac{1}{2} & |z| \leq \frac{1}{2} \\ \frac{1}{8 z^{2}} & |z|>\frac{1}{2}\end{cases}
$$

As a check

$$
\begin{aligned}
\int_{-\infty}^{\infty} f_{Z}(z) d z & =\int_{-\infty}^{-\frac{1}{2}} \frac{1}{8 z^{2}} d z+\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} d z+\int_{\frac{1}{2}}^{\infty} \frac{1}{8 z^{2}} d z \\
& =-\left.\frac{1}{8 z}\right|_{-\infty} ^{-\frac{1}{2}}+\frac{1}{2}-\left.\frac{1}{8 z}\right|_{\frac{1}{2}} ^{\infty}=\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=1
\end{aligned}
$$

5. (a) Assume $t_{1}<t_{2}$

$$
\begin{aligned}
C_{N}\left(t_{1}, t_{2}\right) & =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left(N\left(t_{2}\right)-\lambda t_{2}\right)\right] \\
& \left.=E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left\{N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]+N\left(t_{1}\right)-\lambda t_{1}\right\}\right] \\
& =E\left[\left[N\left(t_{1}\right)-\lambda t_{1}\right]\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]\right]+\operatorname{var}\left(N\left(t_{1}\right)\right)
\end{aligned}
$$

By the independent increments property, $N\left(t_{1}\right)-\lambda\left(t_{1}\right)$ and $\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]$ are independent so that

$$
\begin{aligned}
& E\left[\left[N\left(t_{1}\right)-\lambda t_{1}\right]\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]\right] \\
= & E\left[N\left(t_{1}\right)-\lambda t_{1}\right] E\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right] .
\end{aligned}
$$

Furthermore, using the stationary increments property, we have

$$
E\left[N\left(t_{2}\right)-N\left(t_{1}\right)\right]=E\left[N\left(t_{2}-t_{1}\right)\right]=\lambda\left(t_{2}-t_{1}\right)
$$

so that

$$
E\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]=0
$$

Hence,

$$
C_{N}\left(t_{1}, t_{2}\right)=\lambda t_{1}=\operatorname{var}\left(N\left(t_{1}\right)\right)=\lambda \min \left(t_{1}, t_{2}\right)
$$

When $t_{2} \leq t_{1}$, we can show similarly that

$$
C_{N}\left(t_{1}, t_{2}\right)=\lambda t_{2}=\lambda \min \left(t_{1}, t_{2}\right)
$$

(b) Consider

$$
\begin{aligned}
& P[N(t)=1 \mid N(1)=1] \\
= & \frac{P[N(t)=1, N(1)-N(t)=0]}{P[N(1)=1]} \\
= & \frac{P[N(t)=1] P[N(1-t)=0]}{P[N(1)=1]} \text { (independent increments and stationary increments properties) } \\
= & \frac{\lambda t e^{-\lambda t} e^{-\lambda(1-t)}}{\lambda e^{-\lambda}}=t .
\end{aligned}
$$

6. mean $=E[X(t)]=E[A \cos \omega t+B \sin \omega t]=\cos \omega t E[A]+\sin \omega t E[B]=0$

$$
\begin{aligned}
\text { autocovariance }= & E\left[\left\{X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right\}\left\{X\left(t_{2}\right)-m_{X}\left(t_{2}\right)\right\}\right] \\
= & E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
= & E\left[\left(A \cos \omega t_{1}+B \sin \omega t_{1}\right)\left(A \cos \omega t_{2}+B \sin \omega t_{2}\right)\right] \\
= & E\left[A^{2}\right] \cos \omega t_{1} \cos \omega t_{2}+E[A B]\left(\cos \omega t_{1} \sin \omega t_{2}+\sin \omega t_{1} \cos \omega t_{2}\right)+E\left[B^{2}\right] \sin \omega t_{1} \sin \omega t_{2} \\
= & \left(E\left[A^{2}\right]-E[A]^{2}\right) \cos \omega t_{1} \cos \omega t_{2}+\left(E\left[B^{2}\right]-E[B]^{2}\right) \sin \omega t_{1} \sin \omega t_{2} \\
= & \sigma^{2} \cos \omega\left(t_{1}-t_{2}\right) . \\
& (\text { since } A \text { and } B \text { are independent, } E[A B]=E[A] E[B] \text { and } E[A]=E[B]=0)
\end{aligned}
$$

7. (a)

$$
\begin{aligned}
& P=\left(\begin{array}{ccc}
(1-\beta)^{2} & 2 \beta(1-\beta) & \beta^{2} \\
\alpha(1-\beta) & \alpha \beta+(1-\alpha)(1-\beta) & (1-\alpha) \beta \\
\alpha^{2} & 2 \alpha(1-\alpha) & (1-\alpha)^{2}
\end{array}\right) \\
& P\left[X_{2}=1, X_{1}=2, X_{0}=0\right]=P\left[X_{2}=1 \mid X_{1}=2\right] P\left[X_{1}=2 \mid X_{0}=0\right] P\left[X_{0}=0\right] \\
&=\left[2 \alpha(1-\alpha) \beta^{2}\right](0.3)
\end{aligned}
$$

(b) From $\boldsymbol{\pi}_{j+1}=\boldsymbol{\pi}_{j} P, j=0,1, \cdots, n$, we deduce that

$$
\boldsymbol{\pi}_{n}=\boldsymbol{\pi}_{0} P^{n}
$$

Next, consider

$$
\boldsymbol{\pi}_{n+1}=\boldsymbol{\pi}_{n} P
$$

by taking the limit $n \rightarrow \infty$ on both sides, we obtain

$$
\pi_{\infty}=\pi_{\infty} P
$$

Suppose we take $\boldsymbol{\pi}_{0}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$, we have

$$
\boldsymbol{\pi}_{n}=\boldsymbol{\pi}_{0} P^{n}=\text { first row in } P^{n}
$$

Similarly, ($\left.\begin{array}{lll}0 & 1 & 0\end{array}\right) P^{n}=$ second row of P^{n} and $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right) P^{n}=$ third row of P^{n}. By taking $n \rightarrow \infty$, the steady state pmf vector $\boldsymbol{\pi}_{\infty}$ should be independent of $\boldsymbol{\pi}_{0}$ so that we expect all rows of $\lim _{n \rightarrow \infty} P^{n}$ to be identical.

