MATH246 — Probability and Random Processes

Solution to Homework One

1. (a) $P(A \cap B) = P(\phi) = 0$ (mutually exclusive).

Since P(A)P(B) > 0, so $P(A \cap B) \neq P(A)P(B)$.

Thus, A and B are not independent.

(b) A and B are independent and P(A)P(B) > 0.

Since $P(A \cap B) = P(A)P(B) > 0$, so A and B are not mutually exclusive.

(c) ϕ is the impossible event.

For any event $A \subset \Omega$, $P(A \cap \phi) = P(\phi) = 0 = P(\phi)P(A)$; so the impossible event is independent of any event (including itself).

2. $E_7 = \{(1,6), (2,5), (3,5), (4,3), (5,2), (6,1)\}$

$$F = \{(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)\}$$

 $T = \{(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)\}$

(a) $E_7 \cap F = \{(4,3)\}$ so $P(E_7 \cap F) = \frac{1}{36}$.

Since $P(E_7) = \frac{6}{36} = \frac{1}{6}$ and $P(F) = \frac{6}{36} = \frac{1}{6}$, so $P(E_7 \cap F) = \frac{1}{36} = \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) = P(E_7)P(F)$.

Hence, E_7 and F are independent.

$$E_7 \cap T = \{(4,3)\}, P(E_7 \cap T) = \frac{1}{36} \text{ and } P(T) = \frac{6}{36} = \frac{1}{6}, \text{ so } P(E_7 \cap T) = \frac{1}{36} = \left(\frac{1}{6}\right)\left(\frac{1}{6}\right) = \frac{1}{36} = \frac{1}{6}$$

 $P(E_7)P(T)$. Hence, E_7 and T are independent.

(b) $F \cap T = \{(4,3)\}$

$$E_7 \cap (F \cap T) = \{(4,3)\}$$

$$P(E_7 \cap (F \cap T)) = \frac{1}{36}$$

$$P(F \cap T) = \frac{1}{36}$$

$$P(E_7 \cap (F \cap T)) = \frac{1}{36} \neq \left(\frac{1}{6}\right) \left(\frac{1}{36}\right) = P(E_7)P(F \cap T)$$

so E_7 is not independent of $F \cap T$.

3. $E = \{\text{operator error occurs}\}\$

 $F = \{\text{equipment failure occurs}\}.$

Given
$$P(F \cap E^c) = 0.1$$
, $P(F \cap E) = 0.05$, $P(E) = 0.4$.

(a)
$$P(F \cup E) = P(F \cap E^c) + P(E)$$

$$= 0.1 + 0.4 = 0.5.$$

(b)
$$P(E \cap F^c) = P(E) - P(F \cap E)$$

$$= 0.4 - 0.05 = 0.35.$$

(c)
$$P((E \cup F)^c) = 1 - P(E \cup F)$$

$$= 1 - 0.5 = 0.5.$$

(d)
$$P(E|F) = P(E \cap F)/P(F)$$

$$= 0.05/\{P(E \cap F) - P(E \cap F^c)\}$$

$$= \frac{0.05}{0.5 - 0.35} = \frac{1}{3}$$
(e) $P(E|F^c) = P(E \cap F^c)/P(F^c)$

$$= \frac{0.35}{1 - 0.15} = \frac{7}{17}.$$

E and F are not independent since $P(E|F) \neq P(E)$.

4. Let R_i , i = 1, 2, 3 be the event that the plane is in region i; and let E be the event that a search of region 1 is unsuccessful. From Bayes' formula we obtain

$$P(R_1|E) = \frac{P(E \cap R_1)}{P(E)}$$

$$= \frac{P(E|R_1)P(R_1)}{\sum_{i=1}^{3} P(E|R_i)P(R_i)}$$

$$= \frac{(\alpha_1)(1/3)}{(\alpha_1)(1/3) + (1)(1/3) + (1)(1/3)}$$

$$= \frac{\alpha_1}{\alpha_1 + 2}.$$

For j = 2, 3

$$P(R_j|E) = \frac{P(E|R_j)P(R_j)}{P(E)}$$

$$= \frac{(1)(1/3)}{(\alpha_1)1/3 + 1/3 + 1/3}$$

$$= \frac{1}{\alpha_1 + 2}, \quad j = 2, 3.$$

Thus, for instance, if $\alpha_1 = 0.4$ then the conditional probability that the plane is in region 1 given that a search of that region fails is equal to 1/6.

5. Let $I = \{\text{selected person is in good risks' class}\},$

 $II = \{ \text{selected person is in average risks' class} \},$

 $III = \{ \text{selected person is in bad risks' class} \},$

 $B = \{$ selected person will be involved in an accident over 1-year span $\}$.

Given
$$P(I) = 0.2$$
, $P(II) = 0.5$, $P(III) = 0.3$, $P(B|I) = 0.05$, $P(B|II) = 0.15$, $P(B|III) = 0.3$.

We have

$$P(B) = P(B \cap I) + P(B \cap II) + P(B \cap III)$$

$$= P(B|I)P(I) + P(B|II)P(II) + P(B|III)P(III)$$

$$= (0.05)(0.2) + (0.15)(0.5) + (0.3)(0.3)$$

$$= 0.175;$$

$$P(I|B^c) = \frac{P(I \cap B^c)}{P(B^c)} = \frac{P(B^c|I)P(I)}{1 - P(B)} = \frac{(1 - 0.05)(0.2)}{1 - 0.175} = \frac{19}{82.5} = 0.2303;$$

$$P(II|B^c) = \frac{P(II \cap B^c)}{P(B^c)} = \frac{P(B^c|II)P(II)}{1 - P(B)} = \frac{(1 - 0.15)(0.5)}{1 - 0.175} = \frac{17}{33} = 0.5152.$$

6. Let A be the prisoner who asks the question, B and C be the other two prisoners.
Let P_A, P_B and P_C be the respective probabilities that they will be executed, where P_A + P_B + P_C = 1.
Since the executed person is chosen at random, then P_A = P_B = P_C = 1/3. Let E_A, E_B and E_C be the events that A, B and C are executed, respectively. Suppose the jailer informs A that C will be set free (the event is denoted by E_C), then

$$P(E_A|E_{\widetilde{C}}) = \frac{P(E_{\widetilde{C}}|E_A)P_A}{P(E_{\widetilde{C}}|E_A)P_A + P(E_{\widetilde{C}}|E_B)P_B + P(E_{\widetilde{C}}|E_C)P_C}$$
$$= \frac{\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}{\left(\frac{1}{2}\right)\left(\frac{1}{3}\right) + (1)\left(\frac{1}{3}\right) + (0)\left(\frac{1}{3}\right)} = \frac{1}{3} = P(E_A).$$

Therefore, the probability that A will be chosen to be executed will not be altered by revealing the information that B or C is set free. Note that $P(E_{\widetilde{C}}|E_B)=1$. This is because when Prisoner B will be executed, then Prisoner C will be set free. Also, you should not get confused with "set free" as being equivalent to "non-executed". Here, "set free" refers to the action taken by the jailer to set free one of the two prisoners: B or C.

- 7. Y = no. of heads no. of tails
 - (a) When n is even, $S_Y = \{-n, -n+2, \dots, 0, \dots, n-2, n\}$. When n is odd, $S_Y = \{-n, -n+2, \dots, -1, 1, \dots, n-2, n\}$.
 - (b) Equivalent event for $\{Y = 0\}$
 - (i) When *n* is odd, $\{Y = 0\} = \phi$.
 - (ii) When n is even, $\{Y=0\}=\{$ outcomes that have n/2 heads and n/2 tails $\}$. There are ${}_{n}C_{n/2}$ combinations.
 - (c) Equivalent event for $\{Y \leq k\}$ If n = even,

Kis even:
$$\{Y \le k\} = \{Y = -n, -n+2, \cdots, 0, 2, 4, \cdots, k\}$$

Kis odd: $\{Y \le k\} = \{Y = -n, -n+2, \cdots, 0, 2, \cdots, k-1\}.$

If n = odd,

K is even:
$$\{Y \le k\} = \{Y = -n, -n+2, \cdots, -1, 1, \cdots, k-1\}$$

K is odd: $\{Y \le k\} = \{Y = -n, -n+2, \cdots, -1, 1, \cdots, k\}$

(i) If n is even, for any fixed even number $i \leq k$.

Let $A_i = \{Y = i\} = \left\{ \text{outcomes that have } \frac{n+i}{2} \text{ heads and } \frac{n-i}{2} \text{ tails} \right\}$. There are ${}_{n}C_{\frac{n-i}{2}}$ combinations.

When K is even,
$$\{Y \le k\} = \bigcup_{i=-n}^{k} A_i$$
.

When K is odd,
$$\{Y \leq k\} = \bigcup_{i=-n}^{k-1} A_i$$
.

(ii) If n is odd, for any fixed odd number $i \leq k$.

Let $A_i = \{Y = i\} = \{$ outcomes that have $\frac{n+i}{2}$ heads and $\frac{n-i}{2}$ tails $\}$. There are ${}_nC_{\frac{n+i}{2}}$ combinations.

When k is even,
$$\{Y \le k\} = \bigcup_{i=-n}^{k-1} B_i$$
.

When k is odd,
$$\{Y \leq k\} = \bigcup_{i=-n}^{k} B_i$$
.

8. (a) The square is
$$\{(x, y) : 0 \le x \le b, 0 \le y \le b\}$$
.
For $Z = X + Y$, we have $S_Z = \{z : 0 \le z \le 2b\}$.

(b) We divide
$$(-\infty, \infty)$$
 into four subintervals:

(i)
$$(-\infty,0]$$
, (ii) $(0,b]$, (iii) $(b,2b]$, (iv) $(2b,\infty)$.

Consider the following cases:

(1)
$$z \in (-\infty, 0], \quad \{Z \le z\} = \phi$$

(2)
$$z \in (0, b], \quad \{Z \le z\} = \{(x, y) : x + y \le z, x > 0, y > 0\}$$

(3)
$$z \in (b, 2b], \quad \{Z \le z\} = \{(x, y) : x + y \le z, 0 < x \le b, 0 < y \le b\}$$

(4)
$$z \in (2b, \infty)$$
, $\{Z \le z\} = \{(x, y) : 0 \le x \le b, 0 \le y \le b\}$.

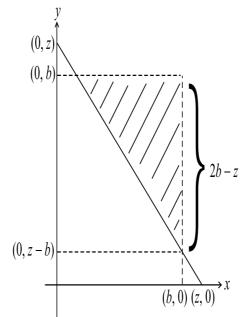
(i)
$$z \in (-\infty, 0], P(Z \le z) = 0$$

(iv)
$$z \in (2b, \infty)$$
, $P(Z \le z) = 1$.

Now, consider cases (ii) and (iii),

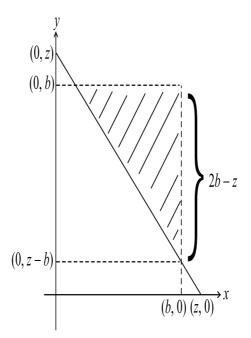
(ii)
$$z \in (0, b]$$

$$P(Z \le z) = \frac{z^2}{2} \bigg/ b^2 = \frac{z^2}{2b^2};$$



(iii)
$$z \in (b, 2b]$$

$$P(Z \le z) = \left[b^2 - \frac{(2b-z)^2}{2} \right] / b^2.$$



Hence, we have

$$P(Z \le z) = \begin{cases} 0 & -\infty < z \le 0 \\ z^2/2b & 0 < z \le b \\ \frac{b^2 - \frac{(2b-z)^2}{2}}{b^2} & b < z \le 2b \\ 1 & 2b < z < \infty \end{cases}$$