MA246
 Homework Four

Course Instructor: Prof. Y. K. Kwok

1. A discrete-time random process X_{n} is defined as follows. A fair coin is tossed. If the outcome is heads, $X_{n}=1$ for all n; if the outcome is tails, $X_{n}=-1$ for all n.
a. Sketch some sample paths of the process.
b. Find the pmf for X_{n}.
c. Find the joint pmf for X_{n} and X_{n+k}.
d. Find the mean and autocovariance functions of X_{n}.
2. The random process $Z(t)$ is defined by

$$
Z(t)=X t+Y
$$

where X and Y are a pair of random variables with means m_{X}, m_{Y}, variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$, and correlation coefficient $\rho_{X, Y}$.
a. Find the mean and autocovariance of $Z(t)$.
b. Find the pdf of $Z(t)$ if X and Y are jointly Gaussian random variables.
3. Let S_{n} denote a binomial counting process.
a. Show that $P\left[S_{n}=j, S_{n^{\prime}}=i\right] \neq P\left[S_{n}=j\right] P\left[S_{n^{\prime}}=i\right]$.
b. Find $P\left[S_{n_{2}}=j \mid S_{n_{1}}=i\right]$, where $n_{2}>n_{1}$.
c. Show that $P\left[S_{n_{2}}=j \mid S_{n_{1}}=i, S_{n_{0}}=k\right]=P\left[S_{n_{2}}=j \mid S_{n_{1}}=i\right]$, where $n_{2}>n_{1}>n_{0}$.
4. The number of cars which pass a certain intersection daily between 12:00 and 14:00 follows a homogeneous Poisson process with intensity $\lambda=40$ per hour. Among these, there are 0.8% which disregard the STOP-sign. What is the probability that at least one car disregards the STOP-sign between 12:00 and 13:00?
5. Let $N(t)$ be a Poisson random process with parameter λ. Suppose that each time an event occurs, a coin is flipped and the outcome (heads or tails) is recorded. Let $N_{1}(t)$ and $N_{2}(t)$ denote the number of heads and tails recorded up to time t, respectively. Assume that p is the probability of heads.
a. Find $P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right]$.
b. Use part a to show that $N_{1}(t)$ and $N_{2}(t)$ are independent Poisson random variables of rates $p \lambda t$ and $(1-p) \lambda t$, respectively:

$$
P\left[N_{1}(t)=j, N_{2}(t)=k\right]=\frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \frac{[(1-p) \lambda t]^{k}}{k!} e^{-(1-p) \lambda t} .
$$

6. Customers arrive at a soft drink dispensing machine according to Poisson process with rate λ. Suppose that each time a customer deposits money, the machine dispenses a soft drink with probability p. Find the pmf for the number of soft dispensed in time t. Assume that the machine holds an infinite number of soft drinks.
7. Let $X(t)$ denote the random telegraph signal, and let $Y(t)$ be a process derived from $X(t)$ as follows: Each time $X(t)$ changes polarity, $Y(t)$ changes polarity with probability p.
a. Find $P[Y(t)= \pm 1]$.
b. Find the autocovariance function of $Y(t)$. Compare it to that of $X(t)$.
8. A machine consists of two parts that fail and are repaired independently. A working part fails during any given day with probability a. A part that is not working is repaired by the next day with probability b. Let X_{n} be the number of working parts in day n.
a. Show that X_{n} is a three-state Markov chain and give its one-step transition probability matrix P.
b. Show that the steady state $\operatorname{pmf} \pi$ is binomial with parameter $p=b /(a+b)$.
c. What do you expect is steady state pmf for a machine that consists of n parts?
