MATH246 — Probability and Random Processes
Solution to Homework Four

1. Note that for all n,
X - { 1 if the outcome is H
n —

—1 if the outcome is T~

(a) The only two sample paths:

Xp Xy
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(b) Given that the coin is fair, we have
1
P[X,, = 1] = Ploutcome is H| = 3
1
P[X, = —1] = Ploutcome is T| = 7
() P[Xp =1, Xpip = 1] = P[X, = 1] = %

PXy = =1, Xp1p = —1] = P[X;, = —1] =

PlXp=1,Xpu=—1=Pl¢| =0
P[X,=—1,Xps =1 = P[¢] =0

Hence, the joint pmf

Cx(n1,n2) = E[{Xn, — E[Xp, [H{Xn, — E[Xp,]}]
= E[XTMX?VJ
= (1)(1)P[Xn1 = 1’Xn2 = 1] + (_1)(_1)P[Xn1 = _17Xn2 = _1]



2.

(a) E[Z(t)] = E[Xt+Y]|=tmx +my

Cy(t,t2) = E[{(Xt1 +Y) — (timx +my)H{(Xta +Y) — (tamx +my)}]
E{t1(X —mx) + (Y —my)Ht2(X —mx) + (Y —my)}]
tito E[{X — mx 2] + tLE[(X — mx)(Y — my)]

+ E{Y —my }| + t2B[(Y — my)(X —mx)]

= tthO%( + (tl + tQ)O'Xo'YPXY + 0'52/.

(b) For joint Gaussian random variables (see Example 4.50, page 244 of textbook), if X and Y are
jointly Gaussian random variables, then Z(t) = Xt +Y is also a Gaussian random variable for any
fixed ¢.

By part (a),

mz(t) =tmx +my
VAR[Z(t)] = Cyz(t,t) = t°0% + 2toxoypxy + 0%

Hence, the pdf of Z(t) is

1 1

fzw(2) = m XP {QVAR[Z(t)]

(e - mz(®)}.

3. Note that a binomial counting process has independent and stationary increments.

(a) Without loss of generality, we assume n’ > n.

P[Sn :j7Sn’ —Z]
=P[S, =7,y —S,=i—j] for i>j0<j<n0<i<n
= P[S, = j|P[Sn — Sp =1 — j]
= P[S, = j]P[Sn—n =1 — J]
# P[Sp = j|P[Sn = 1]
(b) Note that ny > ny = Sp, > Sy,.
When ¢ > j,
P[Sn, = j|Sn, =1i] = P[¢] = 0.
When i < j,

P[Snz :.]|S7l1 = Z] = P[S’ﬂz - S’ﬂ1 =j- 7’|STL1 = Z]
:P[Snz_STLl:J_Z]
= P[Sn2*n1 =j- 7’]
_ no—mni . Jj—1i no—ni—j+1i
= iji P (1-p) I

(c) We only need to prove the case when j > ¢ > k > 0, otherwise, the probabilities on both sides are
Zero.



For no >ny >ng,j>i> k>0,

P[Sn, = j|Sn, =i, Sn, = k|

P[Sn, = j, Sn, =i, S, = K|

P[Sn, =i, S, = k]
P[Sn, — Sp, =5 — i, Sn, — Sng =i — k, Sy = K]
P[Sn, — Spy =i —k, Spy = K|
P[Sn, — S, = j — i|P[Sn, — Spy = i — k] P[Sn, = k]
P[Sn, — Spy = i — k|P[Sny = K|
= P[Sp, — Sn, =j — 1
P[Sny — Sn, = j — i]P[Sn, = i]

P[S,, =]
_ P[Snz —Sny =7 =150 :Z]
- P[S,, =i
= PlSna =3 Sm =1 _ prg g, =)

P[Sm = Z]

4. Let N(t) = number of cars passing the intersection in [0, ]
X (t) = number of cars disregarding the stop-sign in [0, ¢].
Given A = 40 per hour,

k
P[N(t) = k] = (42? e 0k =0,1,2,---.
Set the reference time point at 12:00, ie.,
: : L time (hours)
0 1 2
(12:00) (13:00) (14:00)

Plat least 1 car disregarding the stop-sign between 12:00 and 13:00] = P[X (1) > 1]
Let p = probability that a car will disregard the stop-sign = 0.8%.
Note that {X(¢)|N(¢) = k} has a binomial distribution with parameters k and p, that is,

P[X(t) = iIN(t) = k] = Cfp'(1 - p)*".
By the rule of total probabilities, we have

PIX(t)=1i]= > P[X(t) =iN(t) = k]P[N(t) = k]
k=0

e k
_ Z Cfpi(]. o p)k—i (42? e 40t
k=0 ’

= 40F
PIX(1) =0] = chpo(l —p)kje 0
k=0 ’
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10 o= [(1 — p)40]*
_ ooy -p
k=0

— o0

— o—40p _ ,—40x0.8% _ ,—0.32

1—p)40

PIX(1)>1] = 1- P[X(1) = 0]
1 — o032

Hence,

= 0.2739.

5. (a) Note that N(t) = Ny(t) + Na(t), we have
{Nu(t) =, Na(t) = kIN(t) = k+j}
& ANi(t) =JIN(t) = k+j}.

This is because

{N1(t) = j, N2(t) = k[N (t) = k + j}
& AN(t) =4, N(t) — Ni(t) = kN (t) = k + 5}
& ANi(t) =4, Ni(t) = N(t) — kIN(t) = k + j}
& ANi(t) =4, Ni(t) =k +j — kIN({) =k + j}
& {Ni(t) =4, Ni(t) = jIN(t) = k + j}
& {MNit) =JIN@®) =k +j}

Since p is the probability of a head showing up and Nj(t) is the number of heads recorded up to
time ¢, {N1(¢)|N (¢) = k + j} has a binomial distribution with parameters k + j and p, we have

P[N1(t) = j, N2(t) = k[N (t) = k + j]
= P[Ni(t) = jIN(t) = k + j]
=P (1= p)".
(b) Note that for an integer n # k + j,
P[Ny(t) = j, Na(t) = k|N(t) = n]
= P[N1(t) = j, Na(t) = k|N1(t) + Na(t) = n]
= P[¢] = 0.
By the rule of total probabilities, we obtain

P[Ny(t) = j, Na(t) = k] = ZP[Nl(t) = Jj, N2(t) = k[N (t) = n]P[N(t) = n]
n=0
= P[Ni(t) = j, N2(t) = k[N (t) = k + jIP[N(t) = k + j]

+ Y PINi(t) = j, No(t) = k[N(t) = n]P[N(t) = n]
n#k+j
= PINi(t) = j, Na(t) = kIN(t) = k+ jIP[N(t) = & + j]
_ j AT
k+3)! AR i (1—p
_ (j!kf) pi(l— )k((k)+(j)!) o~ Xtlp+(1-p)]
_ 0 [
T k!

e—(1-p)xt. (1)



We then have

e}
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I
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P[Ny(t) = j, Na(t) = K]

=~
Il
<

(MY _pa (1= DX s
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NE

2 !
_ (pAt)? o P~ (1-P)AE i [(1— p)At]F
i 2 H
_ (pAt)? ePM L o= (1-)AE | (1-p)AE
4!
A\t
_ (p]') eprt (2)

which indicates that N;(t) is a Poisson random variable with rate pA. Similarly, we can obtain

P[Ns(t) = k] = Kl*}ﬂ#ﬂkefuwm 3)

and so Ny(t) is a Poisson random variable with rate (1 — p)A. Finally, from equations (1), (2) and
(3), we can see that

P[Ny(t) = j, Na(t) = k] = P[Ny(t) = j]P[Na(t) = kJ.

Hence, N;(t) and N»(t) are independent.

6. Let N(t) be the number of soft drinks dispensed up to time ¢, and X (¢) be the number of customer
arrivals up to time ¢.

P[N(t)=k] = Z P[N(t) = k| X (t) = n|P[X(t) = n]
n=k
0 — At )™
= > Ot —p* {e (, ) ]
ot n!
0 — A\t At)m—l-k
= k 1— mL . —
mz::Oerkap (1-p) TR ,setn=m+k
o) e —p)m | Qwt)”
- {ZO m! k!
k Y k
_ e QPO eTWORDT gy
k! k!
7. (a) We need to show that
“Y'(t) is a random telegraph signal” (*)

If (*) holds, together with the fact that the random telegraph signal is equally likely to be +1 at
any time ¢t > 0, we have

PIY(t) = +1] = %



The proof of () goes below.

Assume X (0) and Y'(0) have the same distribution. Let Nx(t) be the Poisson process of rate «
such that Nx(t) is corresponding to the random telegraph signal X ().

Consider Ny (t) = number of times that Y (¢) has changed the polarity over [0, ¢].
Then (*) holds if and only if Ny (t) is a Poisson random process.

Since Y (t) changes the polarity with probability p if X (¢) changes polarity, the conditional random
process { Ny (t)|Nx(t) = n} is a binomial random variable with parameters n and p, i.e.,

P[Ny(t) = k|Nx(t) =n] = Cpp"(1 —=p)" ™", n=0,1,2,--;k=0,1,---,n.

where Nx (t) = number of times that X (¢) has changed the polarity over [0, ¢].

In general, for 0 < t; < t9 < 0o, we have

P[Ny (t2) — Ny (t1) = k|Nx (t2) — Nx (t) = n]
=Corp*1—p)* n=0,1,2,--;k=0,1,---,n.

By the rule of total probabilities, we have

P[Ny(t) = k] = Y P[Ny(t) = k|Nx(t) = n] P[Nx (t) = n]
k—1
= Y P[Ny(t) = k[Nx(t) = n] P[Nx(t) = n]

n=~k
(o] t n
_ Z C]?pk(l 7p)n7k (a ') et
n.
n==k
_ i n|pk(1 _p)n—k (at)n—k-i-k -
— kEl(n —k)! n!
_ ot g [0 pa
k! — (n—k)!
(pat)* o i [(1 = pat]™
= e @ by m=n—k
k! = m!
_ (pz['t) e—ate(l—p)at
_ (pOét) —pat
N k!

which indicates that Ny (¢) is a Poisson random variable with parameter pa. Thus {Ny (¢),t > 0}
is a Poisson random process.

(b) Recall that Cx(t1,t2) = e—2alta—t1|
For t1 < to,

Cy (t1,t2) = E[Y (01)Y (t2)] — E[Y (1) E[Y (t2)].

Now,



Cy (t1,t2) = E[Y(t1)Y (t2)] — E[Y (t1)|E[Y (t2)]
= (DPY (t)Y(t2) = 1]+ (=) P[Y (t2)Y (t2) = —1]
[Y(t1) =Y (t2)] = P[Y(t2) # Y(t2)]
[Ny (t2) — Ny (t1) = even number]
— P[Ny (t2) — Ny (t1) = odd number]
= P[Ny(ty —t;) = even number] — P[Ny (t — t1) = odd number]

|
i)

P[Ny(t2 —t1) = 2k] — iP[NY(t2 —t1) =2k +1]
0 k=0

_ B (t ft . [pa(ty —ty) ]%+1
— p—ba(ta—t1) {Z [pau(t2 1) Z
(2k (2k +1

k=0

I
WK

=~
Il

— e palta—t1) {l[epa(t2—t1) + e—POé(tz—tl)]
2

_ l[epa(tzftl) _ eiﬂa(tztl)]}

2

— 672pa(t27t1).

Similarly,
Cy (tl,tg) = 672pa(t17t2) for t1 > to.
Hence, in general for any t1,ts,

Cy(thtg) = 6_2pa‘t2_t1‘ - [CX<t17t2)}p-

8. (a) Given S ={0,1,2}.
P[Xn+1 = j|X7L =4, Xp 1=Tp 1, ", Xo= -170}
= P[There are (j — i) more working parts on (n + 1)** day than those on n** day|X,, = i]
so X, is a three-state Markov Chain. Note that
Poo = P[Xn+1 = 0|Xn =0
Po1 = P[XnJrl == 1|Xn =0 = 2b(1 - b)
poz = P[Xny1 =2|X, =0]=0"

(1-0)

| =
| =
| =
pro= P[X,41=0X,=1=a(l-0)
pi1= P[Xni1=1X, =1 = ab+ (1 —a)(1—b)
p12 = PlX,41=2|X,=1]= (1 —a)b
P20 = P[Xnp1=0[X, =2]=
Po1 = Pl[Xni1 = 11X, =2] = 2a(1 —a)
P22 = P[Xny1=2|X, =2]=(1-a)?
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Hence, the one-step transition probability matrix is

(1 —b)? 2b(1 —b) b?
P=1a(l-b) ab+(1-a)(1-b) (1—a)b
a? 2a(1 —a) (1—a)?

Let T = [Moo,0 Too,1 Too2] =[p1 P2 D3] be the steady state pmf.
m=mP = [p1 p2 p3l=[p1 p2 p3lP
Expanding into individual components, we obtain

pr= (1—0)%p1 +a(l —Db)ps + a’ps
p2 = 2b(1 —b)p1 + [ab+ (1 —a)(1 — b)]p2 + 2a(1 — a)ps
ps = b*p1+ (1 —a)bps+ (1 —a)’ps

We drop the second equation and observe that the sum of probabilities equals one. Hence, we
obtain

—a’p3 = (b — 2b)p1 + a(l — b)py (4)
—b?p1 = (a® — 2a)p3 +b(1 — a)ps (i4)
p1+p2+ps= 1 (i74)
From Eqgs (i) and (ii), we have
9 a?—2a_, ,
—b°p1 =b(1 —a)ps — e [(b% —2b)p1 + a(1 — b)ps]
ab®py + ab(1 — a)py + (2 — a)[(b* — 2b)p1 + a(1 — b)pa] =0
2(b% 4 ab — 2b)p; = (a® + ab — 2a)p,
a
p1 = 27)?2
. ab 9 b
From Eq. (ii): P2 = (a® —2a)ps + b(1 — a)ps = p3 = 27
a b 2ab
From Eq. (iii): — —pe =1 =
om Eq. (iii) o2 +p2 + 2 P2 = P2 CEDE
a? b?
o) = = .
L= o2 BT (aro)p
Hence, the general form of steady state pmf is given by
i 2—i
ooy = C2 [ 2 LI Y
’ a+b a+b
Therefore, the entries of  are binomial coefficients with parameter p = P
For a machine that consists of n parts, the steady state pmf should still be binomial with parameters
b
dp=—.
nandp =~ "



