MATH246 - Probability and Random Processes

Solution to Homework Four

1. Note that for all n,

$$
X_{n}= \begin{cases}1 & \text { if the outcome is } H \\ -1 & \text { if the outcome is } T\end{cases}
$$

(a) The only two sample paths:

(b) Given that the coin is fair, we have
$P\left[X_{n}=1\right]=P[$ outcome is $H]=\frac{1}{2}$
$P\left[X_{n}=-1\right]=P[$ outcome is $T]=\frac{1}{2}$.
(c) $P\left[X_{n}=1, X_{n+k}=1\right]=P\left[X_{n}=1\right]=\frac{1}{2}$

$$
\begin{aligned}
& P\left[X_{n}=-1, X_{n+k}=-1\right]=P\left[X_{n}=-1\right]=\frac{1}{2} \\
& P\left[X_{n}=1, X_{n+k}=-1\right]=P[\phi]=0 \\
& P\left[X_{n}=-1, X_{n+k}=1\right]=P[\phi]=0
\end{aligned}
$$

Hence, the joint pmf

$$
P\left[X_{n}=i, X_{n+k}=j\right]=\left\{\begin{array}{ll}
\frac{1}{2}, & i=j \\
0, & i \neq j
\end{array} .\right.
$$

(d) $P\left[X_{n}\right]=(1) P\left[X_{n}=1\right]+(-1) P\left[X_{n}=-1\right]=\frac{1}{2}-\frac{1}{2}=0$.

$$
\begin{aligned}
C_{X}\left(n_{1}, n_{2}\right) & =E\left[\left\{X_{n_{1}}-E\left[X_{n_{1}}\right]\right\}\left\{X_{n_{2}}-E\left[X_{n_{2}}\right]\right\}\right] \\
& =E\left[X_{n_{1}} X_{n_{2}}\right] \\
& =(1)(1) P\left[X_{n_{1}}=1, X_{n_{2}}=1\right]+(-1)(-1) P\left[X_{n_{1}}=-1, X_{n_{2}}=-1\right] \\
& =\frac{1}{2}+\frac{1}{2}=1 .
\end{aligned}
$$

2. (a) $E[Z(t)]=E[X t+Y]=t m_{X}+m_{Y}$

$$
\begin{aligned}
C_{Z}\left(t_{1}, t_{2}\right)= & E\left[\left\{\left(X t_{1}+Y\right)-\left(t_{1} m_{X}+m_{Y}\right)\right\}\left\{\left(X t_{2}+Y\right)-\left(t_{2} m_{X}+m_{Y}\right)\right\}\right] \\
= & E\left[\left\{t_{1}\left(X-m_{X}\right)+\left(Y-m_{Y}\right)\right\}\left\{t_{2}\left(X-m_{X}\right)+\left(Y-m_{Y}\right)\right\}\right] \\
= & t_{1} t_{2} E\left[\left\{X-m_{X}\right\}^{2}\right]+t_{1} E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right] \\
& +E\left[\left\{Y-m_{Y}\right\}^{2}\right]+t_{2} E\left[\left(Y-m_{Y}\right)\left(X-m_{X}\right)\right] \\
= & t_{1} t_{2} \sigma_{X}^{2}+\left(t_{1}+t_{2}\right) \sigma_{X} \sigma_{Y} \rho_{X Y}+\sigma_{Y}^{2} .
\end{aligned}
$$

(b) For joint Gaussian random variables (see Example 4.50, page 244 of textbook), if X and Y are jointly Gaussian random variables, then $Z(t)=X t+Y$ is also a Gaussian random variable for any fixed t.
By part (a),

$$
\begin{aligned}
& m_{Z}(t)=t m_{X}+m_{Y} \\
& \operatorname{VAR}[Z(t)]=C_{Z}(t, t)=t^{2} \sigma_{X}^{2}+2 t \sigma_{X} \sigma_{Y} \rho_{X Y}+\sigma_{Y}^{2}
\end{aligned}
$$

Hence, the pdf of $Z(t)$ is

$$
f_{Z(t)}(z)=\frac{1}{\sqrt{2 \pi \operatorname{VAR}[Z(t)]}} \exp \left\{\frac{-1}{2 \operatorname{VAR}[Z(t)]}\left(z-m_{Z}(t)\right)^{2}\right\} .
$$

3. Note that a binomial counting process has independent and stationary increments.
(a) Without loss of generality, we assume $n^{\prime}>n$.

$$
\begin{aligned}
& P\left[S_{n}=j, S_{n^{\prime}}=i\right] \\
= & P\left[S_{n}=j, S_{n^{\prime}}-S_{n}=i-j\right] \quad \text { for } \quad i \geq j, 0 \leq j \leq n, 0 \leq i \leq n^{\prime} \\
= & P\left[S_{n}=j\right] P\left[S_{n^{\prime}}-S_{n}=i-j\right] \\
= & P\left[S_{n}=j\right] P\left[S_{n^{\prime}-n}=i-j\right] \\
\neq & P\left[S_{n}=j\right] P\left[S_{n^{\prime}}=i\right] .
\end{aligned}
$$

(b) Note that $n_{2}>n_{1} \Rightarrow S_{n_{2}} \geq S_{n_{1}}$.

When $i>j$,

$$
P\left[S_{n_{2}}=j \mid S_{n_{1}}=i\right]=P[\phi]=0 .
$$

When $i \leq j$,

$$
\begin{aligned}
P\left[S_{n_{2}}=j \mid S_{n_{1}}=i\right] & =P\left[S_{n_{2}}-S_{n_{1}}=j-i \mid S_{n_{1}}=i\right] \\
& =P\left[S_{n_{2}}-S_{n_{1}}=j-i\right] \\
& =P\left[S_{n_{2}-n_{1}}=j-i\right] \\
& =C_{j-i}^{n_{2}-n_{1}} p^{j-i}(1-p)^{n_{2}-n_{1}-j+i} .
\end{aligned}
$$

(c) We only need to prove the case when $j \geq i \geq k \geq 0$, otherwise, the probabilities on both sides are zero.

For $n_{2}>n_{1}>n_{0}, j \geq i \geq k \geq 0$,

$$
\begin{aligned}
& P\left[S_{n_{2}}=j \mid S_{n_{1}}=i, S_{n_{0}}=k\right] \\
= & \frac{P\left[S_{n_{2}}=j, S_{n_{1}}=i, S_{n_{0}}=k\right]}{P\left[S_{n_{1}}=i, S_{n_{0}}=k\right]} \\
= & \frac{P\left[S_{n_{2}}-S_{n_{1}}=j-i, S_{n_{1}}-S_{n_{0}}=i-k, S_{n_{0}}=k\right]}{P\left[S_{n_{1}}-S_{n_{0}}=i-k, S_{n_{0}}=k\right]} \\
= & \frac{P\left[S_{n_{2}}-S_{n_{1}}=j-i\right] P\left[S_{n_{1}}-S_{n_{0}}=i-k\right] P\left[S_{n_{0}}=k\right]}{P\left[S_{n_{1}}-S_{n_{0}}=i-k\right] P\left[S_{n_{0}}=k\right]} \\
= & P\left[S_{n_{2}}-S_{n_{1}}=j-i\right] \\
= & \frac{P\left[S_{n_{2}}-S_{n_{1}}=j-i\right] P\left[S_{n_{1}}=i\right]}{P\left[S_{n_{1}}=i\right]} \\
= & \frac{P\left[S_{n_{2}}-S_{n_{1}}=j-i, S_{n_{1}}=i\right]}{P\left[S_{n_{1}}=i\right]} \\
= & \frac{P\left[S_{n_{2}}=j, S_{n_{1}}=i\right]}{P\left[S_{n_{1}}=i\right]}=P\left[S_{n_{2}}=j \mid S_{n_{1}}=i\right] .
\end{aligned}
$$

4. Let $N(t)=$ number of cars passing the intersection in $[0, t]$

$$
X(t)=\text { number of cars disregarding the stop-sign in }[0, t] .
$$

Given $\lambda=40$ per hour,

$$
P[N(t)=k]=\frac{(40 t)^{k}}{k!} e^{-40 t}, \quad k=0,1,2, \cdots
$$

Set the reference time point at 12:00, ie.,

P at least 1 car disregarding the stop-sign between 12:00 and 13:00] $=P[X(1) \geq 1]$
Let $p=$ probability that a car will disregard the stop-sign $=0.8 \%$.
Note that $\{X(t) \mid N(t)=k\}$ has a binomial distribution with parameters k and p, that is,

$$
P[X(t)=i \mid N(t)=k]=C_{i}^{k} p^{i}(1-p)^{k-i} .
$$

By the rule of total probabilities, we have

$$
\begin{aligned}
P[X(t)=i] & =\sum_{k=0}^{\infty} P[X(t)=i \mid N(t)=k] P[N(t)=k] \\
& =\sum_{k=0}^{\infty} C_{i}^{k} p^{i}(1-p)^{k-i} \frac{(40 t)^{k}}{k!} e^{-40 t} \\
P[X(1)=0] & =\sum_{k=0}^{\infty} C_{0}^{k} p^{0}(1-p)^{k} \frac{40^{k}}{4!} e^{-40}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-40} \sum_{k=0}^{\infty} \frac{[(1-p) 40]^{k}}{k!} \\
& =e^{-40} \cdot e^{(1-p) 40} \\
& =e^{-40 p}=e^{-40 \times 0.8 \%}=e^{-0.32} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
P[X(1) \geq 1] & =1-P[X(1)=0] \\
& =1-e^{-0.32} \\
& =0.2739 .
\end{aligned}
$$

5. (a) Note that $N(t)=N_{1}(t)+N_{2}(t)$, we have

$$
\begin{aligned}
& \left\{N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j \mid N(t)=k+j\right\} .
\end{aligned}
$$

This is because

$$
\begin{array}{ll}
& \left\{N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j, N(t)-N_{1}(t)=k \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j, N_{1}(t)=N(t)-k \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j, N_{1}(t)=k+j-k \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j, N_{1}(t)=j \mid N(t)=k+j\right\} \\
\Leftrightarrow & \left\{N_{1}(t)=j \mid N(t)=k+j\right\}
\end{array}
$$

Since p is the probability of a head showing up and $N_{1}(t)$ is the number of heads recorded up to time $t,\left\{N_{1}(t) \mid N(t)=k+j\right\}$ has a binomial distribution with parameters $k+j$ and p, we have

$$
\begin{aligned}
& P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right] \\
= & P\left[N_{1}(t)=j \mid N(t)=k+j\right] \\
= & C_{j}^{k+j} p^{j}(1-p)^{k} .
\end{aligned}
$$

(b) Note that for an integer $n \neq k+j$,

$$
\begin{aligned}
& P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=n\right] \\
= & P\left[N_{1}(t)=j, N_{2}(t)=k \mid N_{1}(t)+N_{2}(t)=n\right] \\
= & P[\phi]=0 .
\end{aligned}
$$

By the rule of total probabilities, we obtain

$$
\begin{align*}
P\left[N_{1}(t)=j, N_{2}(t)=k\right]= & \sum_{n=0}^{\infty} P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=n\right] P[N(t)=n] \\
= & P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right] P[N(t)=k+j] \\
& +\sum_{n \neq k+j}^{\infty} P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=n\right] P[N(t)=n] \\
= & P\left[N_{1}(t)=j, N_{2}(t)=k \mid N(t)=k+j\right] P[N(t)=k+j] \\
= & C_{j}^{k+j} p^{j}(1-p)^{k} \cdot \frac{(\lambda t)^{k+j}}{(k+j)!} e^{-\lambda t} \\
= & \frac{(k+j)!}{j!k!} p^{j}(1-p)^{k} \frac{(\lambda t)^{k}(\lambda t)^{j}}{(k+j)!} e^{-\lambda t[p+(1-p)]} \\
= & \frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \frac{[(1-p) \lambda t]^{k}}{k!} e^{-(1-p) \lambda t} . \tag{1}
\end{align*}
$$

We then have

$$
\begin{align*}
P\left[N_{1}(t)=j\right] & =\sum_{k=0}^{\infty} P\left[N_{1}(t)=j, N_{2}(t)=k\right] \\
& =\sum_{k=0}^{\infty} \frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \frac{[(1-p) \lambda t]^{k}}{k!} e^{-(1-p) \lambda t} \\
& =\frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} e^{-(1-p) \lambda t} \sum_{k=0}^{\infty} \frac{[(1-p) \lambda t]^{k}}{k!} \\
& =\frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \cdot e^{-(1-p) \lambda t} \cdot e^{(1-p) \lambda t} \\
& =\frac{(p \lambda t)^{j}}{j!} e^{-p \lambda t} \tag{2}
\end{align*}
$$

which indicates that $N_{1}(t)$ is a Poisson random variable with rate $p \lambda$. Similarly, we can obtain

$$
\begin{equation*}
P\left[N_{2}(t)=k\right]=\frac{[(1-p) \lambda t]^{k}}{k!} e^{-(1-p) \lambda t} \tag{3}
\end{equation*}
$$

and so $N_{2}(t)$ is a Poisson random variable with rate $(1-p) \lambda$. Finally, from equations (1), (2) and (3), we can see that

$$
P\left[N_{1}(t)=j, N_{2}(t)=k\right]=P\left[N_{1}(t)=j\right] P\left[N_{2}(t)=k\right] .
$$

Hence, $N_{1}(t)$ and $N_{2}(t)$ are independent.
6. Let $N(t)$ be the number of soft drinks dispensed up to time t, and $X(t)$ be the number of customer arrivals up to time t.

$$
\begin{aligned}
P[N(t)=k] & =\sum_{n=k}^{\infty} P[N(t)=k \mid X(t)=n] P[X(t)=n] \\
& =\sum_{n=k}^{\infty}{ }_{c} C_{k} p^{k}(1-p)^{n-k}\left[\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}\right] \\
& =\sum_{m=0}^{\infty}{ }_{m+k} C_{k} p^{k}(1-p)^{m} \frac{e^{-\lambda t}(\lambda t)^{m+k}}{(m+k)!}, \text { set } n=m+k \\
& =e^{-\lambda t}\left\{\sum_{m=0}^{\infty} \frac{[\lambda t(1-p)]^{m}}{m!}\right\} \frac{(\lambda p t)^{k}}{k!} \\
& =e^{-\lambda t} e^{\lambda t(1-p)} \frac{(\lambda p t)^{k}}{k!}=\frac{e^{-\lambda p t}(\lambda p t)^{k}}{k!}, \quad k=0,1,2, \cdots .
\end{aligned}
$$

7. (a) We need to show that

$$
\begin{equation*}
\text { " } Y(t) \text { is a random telegraph signal" } \tag{*}
\end{equation*}
$$

If $\left(^{*}\right)$ holds, together with the fact that the random telegraph signal is equally likely to be ± 1 at any time $t>0$, we have

$$
P[Y(t)= \pm 1]=\frac{1}{2}
$$

The proof of $(*)$ goes below.
Assume $X(0)$ and $Y(0)$ have the same distribution. Let $N_{X}(t)$ be the Poisson process of rate α such that $N_{X}(t)$ is corresponding to the random telegraph signal $X(t)$.
Consider $N_{Y}(t)=$ number of times that $Y(t)$ has changed the polarity over $[0, t]$.
Then $(*)$ holds if and only if $N_{Y}(t)$ is a Poisson random process.
Since $Y(t)$ changes the polarity with probability p if $X(t)$ changes polarity, the conditional random process $\left\{N_{Y}(t) \mid N_{X}(t)=n\right\}$ is a binomial random variable with parameters n and p, i.e.,

$$
P\left[N_{Y}(t)=k \mid N_{X}(t)=n\right]=C_{k}^{n} p^{k}(1-p)^{n-k}, \quad n=0,1,2, \cdots ; k=0,1, \cdots, n .
$$

where $N_{X}(t)=$ number of times that $X(t)$ has changed the polarity over $[0, t]$.
In general, for $0 \leq t_{1}<t_{2}<\infty$, we have

$$
\begin{aligned}
& P\left[N_{Y}\left(t_{2}\right)-N_{Y}\left(t_{1}\right)=k \mid N_{X}\left(t_{2}\right)-N_{X}\left(t_{1}\right)=n\right] \\
= & C_{k}^{n} p^{k}(1-p)^{n-k}, \quad n=0,1,2, \cdots ; k=0,1, \cdots, n
\end{aligned}
$$

By the rule of total probabilities, we have

$$
\begin{aligned}
P\left[N_{Y}(t)=k\right]= & \sum_{n=0}^{\infty} P\left[N_{Y}(t)=k \mid N_{X}(t)=n\right] P\left[N_{X}(t)=n\right] \\
= & \sum_{n=0}^{k-1} P\left[N_{Y}(t)=k \mid N_{X}(t)=n\right] P\left[N_{X}(t)=n\right] \\
& +\sum_{n=k}^{\infty} P\left[N_{Y}(t)=k \mid N_{X}(t)=n\right] P\left[N_{X}(t)=n\right] \\
= & \sum_{n=k}^{\infty} C_{k}^{n} p^{k}(1-p)^{n-k} \frac{(\alpha t)^{n}}{n!} e^{-\alpha t} \\
= & \sum_{n=k}^{\infty} \frac{n!p^{k}(1-p)^{n-k}}{k!(n-k)!} \cdot \frac{(\alpha t)^{n-k+k}}{n!} e^{-\alpha t} \\
= & \frac{(p \alpha t)^{k}}{k!} e^{-\alpha t} \sum_{n=k}^{\infty} \frac{[(1-p) \alpha t]^{n-k}}{(n-k)!} \\
= & \frac{(p \alpha t)^{k}}{k!} e^{-\alpha t} \sum_{m=0}^{\infty} \frac{[(1-p) \alpha t]^{m}}{m!} \quad \text { by } m=n-k \\
= & \frac{(p \alpha t)^{k}}{k!} e^{-\alpha t} e^{(1-p) \alpha t} \\
= & \frac{(p \alpha t)^{k}}{k!} e^{-p \alpha t}
\end{aligned}
$$

which indicates that $N_{Y}(t)$ is a Poisson random variable with parameter $p \alpha$. Thus $\left\{N_{Y}(t), t \geq 0\right\}$ is a Poisson random process.
(b) Recall that $C_{X}\left(t_{1}, t_{2}\right)=e^{-2 \alpha\left|t_{2}-t_{1}\right|}$.

For $t_{1}<t_{2}$,

$$
C_{Y}\left(t_{1}, t_{2}\right)=E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]-E\left[Y\left(t_{1}\right)\right] E\left[Y\left(t_{2}\right)\right] .
$$

Now,

$$
\begin{aligned}
E[Y(t)] & =(1) P[Y(t)=1]+(-1) P[Y(t)=-1] \\
& =(1)\left(\frac{1}{2}\right)+(-1)\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

so

$$
\begin{aligned}
C_{Y}\left(t_{1}, t_{2}\right)= & E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]-E\left[Y\left(t_{1}\right)\right] E\left[Y\left(t_{2}\right)\right] \\
= & (1) P\left[Y\left(t_{1}\right) Y\left(t_{2}\right)=1\right]+(-1) P\left[Y\left(t_{1}\right) Y\left(t_{2}\right)=-1\right] \\
= & P\left[Y\left(t_{1}\right)=Y\left(t_{2}\right)\right]-P\left[Y\left(t_{1}\right) \neq Y\left(t_{2}\right)\right] \\
= & P\left[N_{Y}\left(t_{2}\right)-N_{Y}\left(t_{1}\right)=\text { even number }\right] \\
& -P\left[N_{Y}\left(t_{2}\right)-N_{Y}\left(t_{1}\right)=\text { odd number }\right] \\
= & P\left[N_{Y}\left(t_{2}-t_{1}\right)=\text { even number }\right]-P\left[N_{Y}\left(t_{2}-t_{1}\right)=\text { odd number }\right] \\
= & \sum_{k=0}^{\infty} P\left[N_{Y}\left(t_{2}-t_{1}\right)=2 k\right]-\sum_{k=0}^{\infty} P\left[N_{Y}\left(t_{2}-t_{1}\right)=2 k+1\right] \\
= & e^{-p \alpha\left(t_{2}-t_{1}\right)}\left\{\sum_{k=0}^{\infty} \frac{\left[p \alpha\left(t_{2}-t_{1}\right)\right]^{2 k}}{(2 k)!}-\sum_{k=0}^{\infty} \frac{\left[p \alpha\left(t_{2}-t_{1}\right)\right]^{2 k+1}}{(2 k+1)!}\right\} \\
= & e^{-p \alpha\left(t_{2}-t_{1}\right)}\left\{\frac{1}{2}\left[e^{p \alpha\left(t_{2}-t_{1}\right)}+e^{-p \alpha\left(t_{2}-t_{1}\right)}\right]\right. \\
& \left.-\frac{1}{2}\left[e^{p \alpha\left(t_{2}-t_{1}\right)}-e^{-p \alpha\left(t_{2}-t_{1}\right)}\right]\right\} \\
= & e^{-2 p \alpha\left(t_{2}-t_{1}\right)} .
\end{aligned}
$$

Similarly,

$$
C_{Y}\left(t_{1}, t_{2}\right)=e^{-2 p \alpha\left(t_{1}-t_{2}\right)} \text { for } t_{1}>t_{2}
$$

Hence, in general for any t_{1}, t_{2},

$$
C_{Y}\left(t_{1}, t_{2}\right)=e^{-2 p \alpha\left|t_{2}-t_{1}\right|}=\left[C_{X}\left(t_{1}, t_{2}\right)\right]^{p}
$$

8. (a) Given $S=\{0,1,2\}$.

$$
\begin{aligned}
& P\left[X_{n+1}=j \mid X_{n}=i, X_{n-1}=x_{n-1}, \cdots, X_{0}=x_{0}\right] \\
= & P\left[\text { There are }(j-i) \text { more working parts on }(n+1)^{\text {th }} \text { day than those on } n^{\text {th }} \text { day } \mid X_{n}=i\right] \\
= & P\left[X_{n+1}=j \mid X_{n}=i\right]
\end{aligned}
$$

so X_{n} is a three-state Markov Chain. Note that

$$
\begin{aligned}
& p_{00}=P\left[X_{n+1}=0 \mid X_{n}=0\right]=(1-b)^{2} \\
& p_{01}=P\left[X_{n+1}=1 \mid X_{n}=0\right]=2 b(1-b) \\
& p_{02}=P\left[X_{n+1}=2 \mid X_{n}=0\right]=b^{2} \\
& p_{10}=P\left[X_{n+1}=0 \mid X_{n}=1\right]=a(1-b) \\
& p_{11}=P\left[X_{n+1}=1 \mid X_{n}=1\right]=a b+(1-a)(1-b) \\
& p_{12}=P\left[X_{n+1}=2 \mid X_{n}=1\right]=(1-a) b \\
& p_{20}=P\left[X_{n+1}=0 \mid X_{n}=2\right]=a^{2} \\
& p_{21}=P\left[X_{n+1}=1 \mid X_{n}=2\right]=2 a(1-a) \\
& p_{22}=P\left[X_{n+1}=2 \mid X_{n}=2\right]=(1-a)^{2}
\end{aligned}
$$

Hence, the one-step transition probability matrix is

$$
P=\left[\begin{array}{ccc}
(1-b)^{2} & 2 b(1-b) & b^{2} \\
a(1-b) & a b+(1-a)(1-b) & (1-a) b \\
a^{2} & 2 a(1-a) & (1-a)^{2}
\end{array}\right]
$$

(b) Let $\boldsymbol{\pi}=\left[\begin{array}{lll}\pi_{\infty, 0} & \pi_{\infty, 1} & \pi_{\infty, 2}\end{array}\right]=\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right]$ be the steady state pmf.

$$
\boldsymbol{\pi}=\boldsymbol{\pi} P \quad \Rightarrow \quad\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right]=\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right] P
$$

Expanding into individual components, we obtain

$$
\begin{aligned}
& p_{1}=(1-b)^{2} p_{1}+a(1-b) p_{2}+a^{2} p_{3} \\
& p_{2}=2 b(1-b) p_{1}+[a b+(1-a)(1-b)] p_{2}+2 a(1-a) p_{3} \\
& p_{3}=b^{2} p_{1}+(1-a) b p_{2}+(1-a)^{2} p_{3}
\end{aligned}
$$

We drop the second equation and observe that the sum of probabilities equals one. Hence, we obtain

$$
\begin{align*}
-a^{2} p_{3} & =\left(b^{2}-2 b\right) p_{1}+a(1-b) p_{2} \tag{i}\\
-b^{2} p_{1} & =\left(a^{2}-2 a\right) p_{3}+b(1-a) p_{2} \tag{ii}\\
p_{1}+p_{2}+p_{3} & =1 \tag{iii}
\end{align*}
$$

From Eqs (i) and (ii), we have

$$
\begin{aligned}
& -b^{2} p_{1}=b(1-a) p_{2}-\frac{a^{2}-2 a}{a^{2}}\left[\left(b^{2}-2 b\right) p_{1}+a(1-b) p_{2}\right] \\
& a b^{2} p_{1}+a b(1-a) p_{2}+(2-a)\left[\left(b^{2}-2 b\right) p_{1}+a(1-b) p_{2}\right]=0 \\
& 2\left(b^{2}+a b-2 b\right) p_{1}=\left(a^{2}+a b-2 a\right) p_{2} \\
& p_{1}=\frac{a}{2 b} p_{2} .
\end{aligned}
$$

From Eq. (ii): $-\frac{a b}{2} p_{2}=\left(a^{2}-2 a\right) p_{3}+b(1-a) p_{2} \Rightarrow p_{3}=\frac{b}{2 a} p_{2}$.
From Eq. (iii): $\frac{a}{2 b} p_{2}+p_{2}+\frac{b}{2 a} p_{2}=1 \Rightarrow p_{2}=\frac{2 a b}{(a+b)^{2}}$

$$
\text { so } \quad p_{1}=\frac{a^{2}}{(a+b)^{2}}, \quad p_{3}=\frac{b^{2}}{(a+b)^{2}}
$$

Hence, the general form of steady state pmf is given by

$$
\pi_{\infty, i}=C_{i}^{2}\left(\frac{a}{a+b}\right)^{i}\left(1-\frac{b}{a+b}\right)^{2-i}, \quad i=0,1,2
$$

Therefore, the entries of $\boldsymbol{\pi}$ are binomial coefficients with parameter $p=\frac{b}{a+b}$.
(c) For a machine that consists of n parts, the steady state pmf should still be binomial with parameters n and $p=\frac{b}{a+b}$.

