Random experiments

A random experiment is a process characterized by the following properties:
(i) It is performed according to some set of rules,
(ii) It can be repeated arbitrarily often,
(iii) The result of each performance depends on chance and cannot be predicted uniquely.

Example: Tossing of a coin
The outcome of a trial can be either head or tail showing up.

Sequential random experiments performing a sequence of simple random sub-experiments eg First toss a coin, then throw a dice.

Sometimes, the second sub-experiment depends on the outcome of the first; eg Toss a coin first, if it is a head, then throw a dice.

A random experiment may involve a continuum of measurements. Say, the height of a student takes some value between 1.4 m to 2 m .

Sample space S of a random experiment is defined as the set of all possible outcomes.

Outcomes are mutually exclusive in the sense that they cannot occur simultaneously.

A sample space can be finite, countably infinite or uncountably infinite.

1. Toss a coin two times

$$
S_{1}=\{(H, H),(H, T),(T, H),(T, T)\}
$$

S_{1} is countable, S_{1} is called a discrete sample space. Define $B=\{H, T\}$, then $S_{1}=B \times B$.
2. Toss a dice until a 'six' appears and count the number of times the dice was tossed.
$S_{2}=\{1,2,3, \ldots\} ;$
S_{2} is discrete and countably infinite (one-to-one correspondence with positive integers)
3. Pick a number X at random between zero and one, then pick a number Y at random between zero and X.
$S_{3}=\{(x, y): 0 \leq y \leq x \leq 1\} ;$
S_{3} is a continuous sample space.

- An event or event set is a set of possible outcomes of an experiment, so an event is a subset of sample space S.
- The whole sample space is an event and is called the sure event.
- The empty set ϕ is called the impossible event.

Example Tossing of a dice

Event E : dice turns up an even number; $E=\{2,4,6\}$, which is a subset of the sample space $S=\{1,2,3,4,5,6\}$.
E^{C} - complement of E in S : defined as the set of elements not in E. $E^{C}=\{1,3,5\}$, the dice turns up an odd number.

Suppose A and B are events in S, the following events are called derived events
(i) $A \cup B$
(either A or B or both)
(ii) $A \cap B$
(iii) $A-B$
(both A and B)
(A but not B)

Two events A and B are mutually exclusive if both cannot occur simultaneously, that is, $A \cap B=\phi$.

$A \subset B$

Event A is a subset of event B, then event B will occur whenever event A occurs.
(i) $A \cap B \subset A$ and $A \cap B \subset B$
(ii) $A \subset A \cup B$ and $B \subset A \cup B$
$\boldsymbol{A}=\boldsymbol{B}$ Two events are equal if they contain the same set of outcomes.

Notation

$$
\bigcup_{k=1}^{n} A_{k}=A_{1} \cup A_{2} \cdots \cup A_{n} \text { and } \bigcap_{k=1}^{n} A_{k}=A_{1} \cap A_{2} \cdots \cap A_{n}
$$

For countably infinite sequence of events, we have

$$
\bigcup_{k=1}^{\infty} A_{k} \quad \text { and } \quad \bigcap_{k=1}^{\infty} A_{k}
$$

De Morgan's rules

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \quad \text { and } \quad(A \cup B)^{c}=A^{c} \cap B^{c}
$$

Proof of the second rule:
Suppose $x \in(A \cup B)^{c}$
$\Leftrightarrow x$ is not contained in any of the events A and B
$\Leftrightarrow x$ is contained in A^{c} and B^{c}

$\Leftrightarrow x \in A^{c} \cap B^{c}$.
Proof of the first rule:
Based on the second rule, take $A \rightarrow A^{c}$ and $B \rightarrow B^{c}$, we then have

$$
\left(A^{c} \cup B^{c}\right)^{c}=A \cap B .
$$

Taking complement on both sides, we obtain the first rule.

What do we mean by the probability $P[E]$ of an event E ? For example, what is the probability of getting a head in the toss of a coin?

Statistically, the probability $P[E]$ is defined as

$$
P[E]=\lim _{n \rightarrow \infty} \frac{f_{n}[E]}{n},
$$

where n is the number of trials and $\frac{f_{n}[E]}{n}$ is the relative frequency of the occurrence of the event E. This is the frequency approach.

Statistical regularity
Averages obtained in long sequences of trials of random experiments consistently yield approximately the same value.

Can we estimate (calculate) the probability from the knowledge of the nature of the experiment?

Axioms of probability

Let E be a random experiment with sample space S. A probability law for the experiment E is a rule that assigns to each event A a number $P[A]$, called the probability of A, that satisfies the following axioms:

Axiom I $\quad 0 \leq P[A]$
Axiom II $\quad P[S]=1$
Axiom III If $A \cap B=\phi$, then $P[A \cup B]=P[A]+P[B]$
(A and B are mutually exclusive events)

Corollary $1 \quad P\left[A^{c}\right]=1-P[A]$

As A $\cap A^{c}=\phi$, from Axiom III, $P\left[A \cup A^{c}\right]=P[A]+P\left[A^{c}\right]$
Since $S=A \cup A^{c}$, by Axiom II

$$
1=P[S]=P\left[A \cup A^{c}\right]=P[A]+P\left[A^{c}\right] .
$$

Corollary $2 \quad P[A] \leq 1$
From Corollary $1, P[A]=1-P\left[A^{c}\right] \leq 1$ since $P\left[A^{c}\right] \geq 0$.
Corollary $3 \quad P[\phi]=0$
Let $A=S, A^{c}=\phi$; so $P[\phi]=1-P[S]=0$.

Corollary 4 If $A_{1}, A_{2}, \ldots A_{n}$ are pairwise mutually exclusive, then

$$
P\left[\bigcup_{k=1}^{n} A_{k}\right]=\sum_{k=1}^{n} P\left[A_{k}\right], \quad n \geq 2
$$

Proof by mathematical induction. From Axiom III, it is valid for $n=2$. The trick is to observe that if A_{n+1} and $A_{j}, j=1, \ldots, n$ are pairwise mutually exclusive, then

$$
\left(\bigcup_{k=1}^{n} A_{k}\right) \cap A_{n+1}=\bigcup_{k=1}^{n}\left(A_{k} \cap A_{n+1}\right)=\bigcup_{k=1}^{n} \phi=\phi,
$$

we then have

$$
P\left[\bigcup_{k=1}^{n+1} A_{k}\right]=P\left[\left(\bigcup_{k=1}^{n} A_{k}\right) \cup A_{n+1}\right]=P\left[\bigcup_{k=1}^{n} A_{k}\right]+P\left[A_{n+1}\right] .
$$

Corollary 5

$P[A \cup B]=P[A]+P[B]-P[A \cap B]$
hence $P[A \cup B] \leq P[A]+P[B]$

Since $A \cap B^{c}, A \cap B$ and $A^{c} \cap B$ are disjoint events, we have $P[A \cup B]=P\left[A \cap B^{c}\right]+P\left[B \cap A^{c}\right]+P[A \cap B]$
$P[A]=P\left[A \cap B^{c}\right]+P[A \cap B]$
$P[B]=P\left[B \cap A^{c}\right]+P[A \cap B]$.

Generalization $P[A \cup B \cup C]=P[A]+P[B]+P[C]-P[A \cap B]$

$$
-P[A \cap C]-P[B \cap C]+P[A \cap B \cap C]
$$

For n events, we have

$$
P\left[\bigcup_{k=1}^{n} A_{k}\right]=\sum_{j=1}^{n} P\left[A_{j}\right]-\sum_{j<k} P\left[A_{j} \cap A_{k}\right]+\cdots+(-1)^{n+1} P\left[A_{1} \cap \cdots \cap A_{n}\right] .
$$

Corollary 6 If $A \subset B$, then $P[A] \leq P[B]$.
$B=A \cup\left(A^{c} \cap B\right)$
A and $A^{c} \cap B$ are mutually exclusive
$P[B]=P[A]+P\left[A^{c} \cap B\right] \geq P[A]$

Example Toss a coin three times and observe the sequence of heads and tails. There are 8 possible outcomes:
$S_{3}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$.
For a fair coin, the outcomes of S_{3} are equiprobable. The outcomes are mutually exclusive, so the probability of each of the above 8 elementary events is $\frac{1}{8}$.
$P[" 2$ heads in 3 tosses"] $=P[\{H H T\},\{H T H\},\{T H H\}]$

$$
=P[\{H H T\}]+P[\{H T H\}]+P[\{T H H\}]=\frac{3}{8} .
$$

Suppose we count the number of heads in the 3 tosses. The sample space is now $S_{4}=\{0,1,2,3\}$.

Are the above outcomes equiprobable?
If yes, then $P\left[\right.$ " 2 heads in 3 tosses"] $=P[\{2\}]=\frac{1}{4}$, a result contradicting to that of the above.

Similar question
Toss 2 dice and record the sum of face values. Is the chance of getting 'sum = 2' the same as that of 'sum = 3'?

