Conditional probabilities

Interested in calculating probabilities when some partial information about the outcome of the random experiment is available.

Example Tossing 2 dice
Suppose the first die is ' 3 '; given this information, what is the probability that the sum of the 2 dice equals 8 ?

There are 6 possible outcomes, given the first dice is ' 3 ':
$(3,1),(3,2),(3,3),(3,4),(3,5)$, and $(3,6)$.

The outcomes are equally probable. Hence, the probability that the sum is 8 , given the first dice is ' 3 ', is $\frac{1}{6}$.

Definition

The probability of an event A occurring when it is known that some event B has occurred is called the conditional probability $P[A \mid B]$. It is defined by

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}, P[B]>0 .
$$

Remark: $P[A \mid B]$ is meaningless if $P[B]=0$.

We may view the experiment as now having the reduced sample space B.

Example

Let $A=$ sum of the 2 dice is 8

$$
\begin{aligned}
& B=\text { first dice is ' } 3 \text { '. } \\
& P[A \mid B]=P[A \cap B] / P[B]=1 / 6 .
\end{aligned}
$$

Example

$S=$ set of all human beings;
$A=$ set of people with IQ ≥ 120;
$B=$ set of people currently attending universities

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{\text { number of university students with IQ } \geq 120}{\text { total number of university students }}
$$

Example

From the set of all families with 2 children, a family is selected at random and is found to have a girl. What is the probability that the other child of the family is a girl? Assume that in two-child families all sex distributions are equally probable.
Solution
$A=$ family has 2 girls
$B=$ family has a girl; $P(B)=3 / 4$ and $P(A \cap B)=1 / 4$

$$
\text { so } \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{3 / 4}=1 / 3 .
$$

The reduced sample space $B=\{(g, b),(b, g),(g, g)\}$.

Example

Let A be the event that a married man watches the show, B be the event that a married woman watches the show.
Given $P(A)=0.4$ and $P(B)=0.5$; also

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=0.7 .
$$

(a) Probability that a married couple watch the show

$$
=P(A \cap B)=P(B) P(A \mid B)=(0.5)(0.7)=0.35 \text {. }
$$

(b) Probability that a wife watches the show given that her husband does

$$
=P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{0.35}{0.4}=0.875 \text {. }
$$

(c) Probability that at least 1 person watches the show

$$
=P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.4+0.5-0.35=0.55 .
$$

Example The probability that a component lasts for at least t hours before it fails is $\exp \left(-a t^{2}\right)$. Knowing that the component is working until time t_{w}, find the probability that it will fail within the time interval [t_{1}, t_{2}], where $t_{w}<t_{1}<t_{2}$.

Let $\quad A_{1}=$ failure in time interval $\left(t_{1}, \infty\right) ; P\left(A_{1}\right)=\exp \left(-a t_{1}^{2}\right)$
$A_{2}=$ failure in time interval $\left(t_{2}, \infty\right) ; P\left(A_{2}\right)=\exp \left(-a t_{2}^{2}\right)$ $A_{12}=$ failure in time interval $\left(t_{1}, t_{2}\right]$.

Events A_{12} and A_{2} are mutually exclusive and $A_{2} \cup A_{12}=A_{1}$.

Hence, $P\left[A_{2} \cup A_{12}\right]=P\left[A_{2}\right]+P\left[A_{12}\right]=P\left[A_{1}\right]$; we then have $P\left[A_{12}\right]=P\left[A_{1}\right]-P\left[A_{2}\right]=\exp \left(-a t_{1}^{2}\right)-\exp \left(-a t_{2}^{2}\right)$.

The conditional event $B=$ failure in time interval $\left[t_{w}, \infty\right)$, whose probability is

$$
P[B]=\exp \left(-a t_{w}^{2}\right) .
$$

It is obvious that $A_{12} \cap B=A_{12}$ since $A_{12} \subset B$.

Hence,

$$
P\left[A_{12} \mid B\right]=\frac{P\left[A_{12} \cap B\right]}{P[B]}=\frac{\exp \left(-a t_{1}^{2}\right)-\exp \left(-a t_{2}^{2}\right)}{\exp \left(-a t_{w}^{2}\right)} .
$$

Properties of conditional probabilities

1. If $B \subset A$, then $P[A \mid B]=1$.
2. For a given event $B, P[A \mid B]$ is a probability measure satisfying the following properties derived from the 3 axioms of probability law: Axiom I $\quad P[A \mid B] \geq 0$

Axiom II

$$
P[S \mid B]=1 \quad\left(\text { proof }: \frac{P[S \cap B]}{P[B]}=1\right)
$$

Axiom III If $A_{1} \cap A_{2}=\phi$, then

$$
P\left[A_{1} \cup A_{2} \mid B\right]=P\left[A_{1} \mid B\right]+P\left[A_{2} \mid B\right] .
$$

Remark:

$$
\begin{aligned}
P\left[A_{1} \cup A_{2} \mid B\right] & =\frac{\left.P\left[A_{1} \cup A_{2}\right) \cap B\right]}{P[B]} \\
& =\frac{\left.P\left[A_{1} \cap B\right) \cup\left(A_{2} \cap B\right)\right]}{P[B]} \\
& =\frac{P\left[A_{1} \cap B\right]}{P[B]}+\frac{P\left[A_{2} \cap B\right]}{P[B]},
\end{aligned}
$$

since $A_{1} \cap B$ and $A_{2} \cap B$ are mutually exclusive.

Independence

An event A is said to be independent of an event B if the probability that A occurs is not influenced by whether B has or has not occurred, that is

$$
P[A]=P[A \mid B] .
$$

It then follows that

$$
P[A \cap B]=P[B] P[A \mid B]=P[A] P[B] .
$$

Remark $\quad P[A]=P[A \mid B]$ would imply $P[B]=P[B \mid A]$.
Example Suppose a mother gave birth a baby girl as her first child, the event that the second child is a boy is independent of the event that her first child is a girl.

Example A urn contains 5 red balls and 5 blue balls. $R_{1}=$ a red ball is drawn in the first draw
$R_{2}=$ a red ball is drawn in the second draw
R_{1} and R_{2} are independent only if the ball drawn in the first draw is replaced.

Example A fair coin is tossed three times
$A=\{$ first toss is head $\}$
$B=\{$ second toss is head $\}$
$C=$ \{exactly two heads are tossed in consecutive tosses $\}$
which pair(s) of events are independent?

$$
\begin{aligned}
& A=\{H H H, H H T, H T H, H T T\} \\
& B=\{H H H, H H T, T H H, T H T\} \\
& C=\{H H T, T H H\}
\end{aligned}
$$

Since the sample space is equiprobable for a fair coin,

$$
P[A]=P[B]=\frac{1}{2} \quad \text { and } \quad P[C]=\frac{1}{4} ;
$$

$A \cap B=\{H H H, H H T\}, A \cap C=\{H H T\}, B \cap C=\{H H T, T H H\}$, then $P[A \cap B]=\frac{1}{4}=P[A] P[B]$. Hence, A and B are independent.
$P[A \cap C]=\frac{1}{8}=P[A] P[C]$. Hence, A and C are independent.
$P[B \cap C]=\frac{1}{4} \neq P[B] P[C]$. Hence, B and C are dependent.

Example

A random experiment of giving birth to two children. The sample space is $S=\{B B, B G, G B, G G\}$.

$B B$	$B G$
$G B$	$G G$

Suppose $p=$ prob of giving birth to a boy, then

$$
\begin{aligned}
& P[\{B B\}]=p^{2}, \quad P[\{B G\}]=P[\{G B\}]=p(1-p), \\
& P[\{G G\}]=(1-p)^{2} .
\end{aligned}
$$

There are many events that can be defined, which are subsets of S. Total number of subsets $=C_{0}^{4}+C_{1}^{4}+C_{2}^{4}+C_{3}^{4}+C_{4}^{4}=2^{4}=16$.

$$
\begin{array}{ll}
E_{1}=\{G B, G G\} & \text { (the senior child is a girl) } \\
E_{2}=\{B G, B B\} & \text { (the senior child is a boy) } \\
E_{3}=\{B B, B G, G B\} & \text { (at least one child is a boy) } \\
E_{4}=\{G G, G B, B G\} & \text { (at least one child is a girl) } \\
E_{5}=\{B B\} & \text { (both children are boys) } \\
E_{6}=\{G G\} & \text { (both children are girls) } \\
E_{7}=\{G G, B G\} & \text { (the junior child is a girl) } \\
E_{8}=\{B B, G B\} & \text { (the junior child is a boy) }
\end{array}
$$

E_{5} and E_{6} are mutually exclusive since $E_{5} \cap E_{6}=\phi$. E_{3} and E_{6} are mutually exclusive.

$$
P\left[E_{6} \mid E_{4}\right]=\frac{P\left[E_{6} \cap E_{4}\right]}{P\left[E_{4}\right]}=\frac{(1-p)^{2}}{1-p^{2}} \text { since } E_{6} \cap E_{4}=\{G G\}
$$

Consider E_{1} and $E_{8}, E_{1} \cap E_{8}=\{G B\}$

$$
P\left[E_{1} \mid E_{8}\right]=\frac{P\left[E_{1} \cap E_{8}\right]}{P\left[E_{8}\right]}=\frac{p(1-p)}{p^{2}+p(1-p)}=1-p=P\left[E_{1}\right] .
$$

Since $P\left[E_{1} \mid E_{8}\right]=P\left[E_{1}\right], E_{1}$ and E_{8} are said to be independent. Intuitively, the event that the senior child is a girl should be independent from the event that the junior child is a boy.

Note that $E_{1} \cap E_{8}=\{G B\} \neq \phi$, so E_{1} and E_{8} are not mutually exclusive.

Events E_{5} and E_{6} are mutually exclusive, but

$$
P\left[E_{5} \mid E_{6}\right]=\frac{P\left[E_{5} \cap E_{6}\right]}{P\left[E_{6}\right]}=\frac{P[\phi]}{P\left[E_{6}\right]}=0 \neq P\left[E_{5}\right],
$$

so E_{5} and E_{6} are not independent.
For events E_{5} and E_{3}, we have

$$
P\left[E_{5} \mid E_{3}\right]=\frac{P\left[E_{5} \cap E_{3}\right]}{P\left[E_{3}\right]}=\frac{p^{2}}{1-(1-p)^{2}} \neq P\left[E_{5}\right] ;
$$

so E_{3} and E_{5} are not independent.
Lastly, we observe that

$$
P\left[E_{3} \mid E_{5}\right]=\frac{P\left[E_{3} \cap E_{5}\right]}{P\left[E_{5}\right]}=\frac{p^{2}}{p^{2}}=1 \text { since } E_{5} \subset E_{3} .
$$

Lemma

If A and B are independent events, then A and B^{C} are independent and A^{C} and B are independent.
Proof
Since events A and B are independent, then

$$
P[A \cap B]=P[A] P[B] .
$$

From set theory, we have

$$
A=(A \cap B) \cup\left(A \cap B^{C}\right) .
$$

Also, $A \cap B$ and $A \cap B^{C}$ are mutually exclusive events. By Axiom 3 of probability theory

$$
\begin{aligned}
& P[A]=P[A \cap B]+P\left[A \cap B^{C}\right] . \\
P\left[A \cap B^{C}\right] & =P[A]-P[A \cap B]=P[A]-P[A] P[B] \\
& =P[A][1-P[B]]=P[A] P\left[B^{C}\right],
\end{aligned}
$$

so A and B^{C} are independent.

Three events A, B and C are independent if
(1) The events are pairwise independent, that is,
$P[A \cap B]=P[A] P[B]$,
$P[A \cap C]=P[A] P[C]$,
$P[B \cap C]=P[B] P[C]$.
(2) $P[A \cap B \cap C]=P[A] P[B] P[C]$.

Remark

1. Three events can be pairwise independent, but not independent.
2. The definition requires $P[A \cap B \cap C]=P[A] P[B] P[C]$ in additional to pairwise independence. This is because independence naturally requires that A should be independent of any event formed from B and C. For example, we may require $P[A \mid B \cap C]=P[A]$. Now, $P[A \mid B \cap C]=\frac{P[A \cap B \cap C]}{P[B \cap C]}$ and since B and C are independent so $P[B \cap C]=P[B] P[C]$. Hence, we also require $P[A \cap B \cap C]=P[A \mid B \cap C] P[B \cap C]=P[A] P[B] P[C]$.

Example

Let a pair of fair coins be tossed. The sample space $S=\{H H, H T, T H, T T\}$ is an equiprobable sample space. Define the events

$$
\begin{array}{ll}
A=\{\text { head on the first coin }\} & =\{H H, H T\} \\
B=\{\text { head on the second coin }\} & =\{H H, T H\} \\
C=\{\text { head on exactly one coin }\} & =\{H T, T H\} .
\end{array}
$$

Show that the events are pairwise independent but not independent.
Now $P[A]=P[B]=P[C]=\frac{1}{2}$ and
$P[A \cap B]=P[\{H H\}]=\frac{1}{4}, P[A \cap C]=P[\{H T\}]=\frac{1}{4}, P[B \cap C]=P[\{T H\}]=\frac{1}{4}$.
Thus condition (1) is satisfied, that is, the events are pairwise independent. However $A \cap B \cap C=\phi$, so $P[A \cap B \cap C]=0$; but

$$
P[A] P[B] P[C]=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \neq 0 .
$$

Thus, condition (2) is not satisfied. Events A, B and C are not independent.

Example Two numbers x and y are selected at random between zero and one. Let events A, B and C be defined by

$$
A=\left\{y>\frac{1}{2}\right\}
$$

$$
B=\left\{x<\frac{1}{2}\right\} \quad C=\left\{x<\frac{1}{2}, y<\frac{1}{2}\right\} \cup\left\{x>\frac{1}{2}, y>\frac{1}{2}\right\}
$$

$P[A \cap B]=\frac{1}{4}=P[A] P[B]$
$P[A \cap C]=\frac{1}{4}=P[A] P[C]$
$P[B \cap C]=\frac{1}{4}=P[B] P[C]$
However, $A \cap B \cap C=\phi$, so

$$
P[A \cap B \cap C]=P[\phi]=0 \neq P[A] P[B] P[C]=\frac{1}{8}
$$

Properties of independence and mutual exclusiveness

(1) If $A \cap B=\phi$, then $P[A \mid B]=0$.
A can never occur if B has occurred.
(2) If $A \neq \phi, B \neq \phi$ and A and B are independent, then A and B are not mutually exclusive. This is because

$$
P[A \cap B]=P[A] P[B] \neq 0
$$

Remarks We have seen that if A and B are mutually exclusive, then A and B cannot be independent.
(3) If A and B are independent and $A \cap B=\phi$, then either $A=\phi$ or $B=\phi$ or both. This is because

$$
0=P[A \cap B]=P[A] P[B]
$$

so that either $P[A]=0, P[B]=0$ or both are equal.

BAYES' THEOREM

Suppose the events $A_{1}, A_{2}, \ldots, A_{n}$ form a partition of a sample space S.
A partition of set S is a set $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ with the following properties:
(i) $A_{j} \subseteq S$
($j=1,2, \ldots, n$)
(ii) $A_{j} \cap A_{k}=\phi \quad(j=1,2, \ldots, n ; k=1,2, \ldots, n ; j \neq k)$
(iii) $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S$

A partition of a set S is a set of subsets of S [property (i)] that are disjoint [property (ii)] and exhaustive [property (iii)]. Every element of S is a member of one and only one of the subsets in the partition.

Bayes' theorem: Suppose $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a partition of S and B is any event. Then for any event A_{j}

$$
P\left[A_{j} \mid B\right]=\frac{P\left[A_{j}\right] P\left[B \mid A_{j}\right]}{P\left[A_{1}\right] P\left[B \mid A_{1}\right]+P\left[A_{2}\right] P\left[B \mid A_{2}\right]+\ldots+P\left[A_{n}\right] P\left[B \mid A_{n}\right]} .
$$

The theorem is useful when it is relatively easier to compute $P\left[B \mid A_{j}\right]$, $j=1, \ldots, n$.

Partitions and Bayes' Theorem

Now let B be any other event. We decompose B as follows:

$$
\begin{aligned}
B=S \cap B & =\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) \cap B \\
& =\left(A_{1} \cap B\right) \cup \ldots \cup\left(A_{n} \cap B\right) .
\end{aligned}
$$

Since $A_{j} \cap B$ are also mutually exclusive, we have

$$
P[B]=P\left[A_{1} \cap B\right]+P\left[A_{2} \cap B\right]+\ldots+P\left[A_{n} \cap B\right] ;
$$

and by multiplication theorem

$$
\begin{equation*}
P[B]=P\left[A_{1}\right] P\left[B \mid A_{1}\right]+P\left[A_{2}\right] P\left[B \mid A_{2}\right]+\ldots+P\left[A_{n}\right] P\left[B \mid A_{n}\right] . \tag{i}
\end{equation*}
$$

This is called the law of total probabilities.
On the other hand,

$$
\begin{equation*}
P\left[A_{j} \mid B\right]=\frac{P\left[A_{j} \cap B\right]}{P[B]} \tag{ii}
\end{equation*}
$$

For any event A_{j}, we have

$$
\begin{equation*}
P\left[A_{j} \cap B\right]=P\left[A_{j}\right] P\left[B \mid A_{j}\right] . \tag{iii}
\end{equation*}
$$

Combining Eqs. (i), (ii) and (iii) together, we obtain the theorem.

Example 1

Three urns contain coloured balls:

Urn	Red	White	Blue
1	3	4	1
2	1	2	3
3	4	3	2

One urn is chosen at random and a ball is withdrawn.
(a) What is the probability that a white ball is drawn?
(b) Suppose a red ball is drawn. What is the probability that it came from urn 2?

Solution

Let E_{i} be the event that the i th urn is selected, $i=1,2,3$. Let S be the sample space of this experiment - selecting a urn and drawing a ball. Then E_{1}, E_{2} and E_{3} form a partition of S. Moreover, since the urn is selected at random, it must be

$$
P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=\frac{1}{3} .
$$

(a) Let W be the event that a white ball is drawn.

$$
\begin{gathered}
P(W)=P\left(E_{1}\right) P\left(W \mid E_{1}\right)+P\left(E_{2}\right) P\left(W \mid E_{2}\right)+P\left(E_{3}\right) P\left(W \mid E_{3}\right) . \\
P\left(W \mid E_{1}\right)=\frac{4}{8}, P\left(W \mid E_{2}\right)=\frac{2}{6} \text { and } P\left(W \mid E_{3}\right)=\frac{3}{9} .
\end{gathered}
$$

Then

$$
P(W)=\frac{1}{3} \cdot \frac{4}{8}+\frac{1}{3} \cdot \frac{2}{6}+\frac{1}{3} \cdot \frac{3}{9}=\frac{7}{18} .
$$

(b) Let B be the event that the ball withdrawn is red. The probability that the chosen red ball is from urn $2=P\left(E_{2} \mid B\right)$. By Bayes' theorem,

$$
P\left(E_{2} \mid B\right)=\frac{P\left(E_{2}\right) P\left(B \mid E_{2}\right)}{P\left(E_{1}\right) P\left(B \mid E_{1}\right)+P\left(E_{2}\right) P\left(B \mid E_{2}\right)+P\left(E_{3}\right) P\left(B \mid E_{3}\right)} .
$$

Now, $P\left(B \mid E_{i}\right)=$ probability of drawing a red ball given that the i th urn is chosen. Using the information from the table:

$$
P\left(B \mid E_{1}\right)=\frac{3}{8}, P\left(B \mid E_{2}\right)=\frac{1}{6} \text { and } P\left(B \mid E_{3}\right)=\frac{4}{9},
$$

we obtain

$$
P\left(E_{2} \mid B\right)=\frac{\frac{1}{3} \cdot \frac{1}{6}}{\frac{1}{3} \cdot \frac{3}{8}+\frac{1}{3} \cdot \frac{1}{6}+\frac{1}{3} \cdot \frac{4}{9}}=\frac{12}{71} .
$$

Example 2

Suppose we have 3 cards whose sides are coloured as follows
red/red black/black red/black

A card is chosen at random and placed on the ground. If the upper side of the card is red, what is the probability that the other side is black?

Define $\quad R R=$ event that the red/red card is drawn
$R B=$ event that the red/black card is drawn
$B B=$ event that the black/black card is drawn
$R=$ event that the upturned card is red

By Bayes' theorem,

$$
\begin{aligned}
P[R B / R] & =\frac{P[R \mid R B] P[R B]}{P[R \mid R R] P[R R]+P[R \mid R B] P[R B]+P[R \mid B B] P[B B]} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{3}}{1 \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3}+0 \cdot \frac{1}{3}}=\frac{1}{3} .
\end{aligned}
$$

Remark

1. At the first glance, it appears that there are two possibilities: the card with two red sides and the card with red/black sides. One might expect the required probability to be $1 / 2$! Why this is incorrect?
2. This problem is analogous to Example 1, where the 3 cards can be visualized as 3 urns.
Alternative statement of the present problem:
Urn 1 has two red balls, Urn 2 has two black balls, Urn 3 has one red ball and one black ball. One red ball has been drawn, what is the probability that the red ball comes from Urn 3.

Example 3

In a trial, the judge is 65% sure that Susan has committed a crime. Person F (friend) and Person E (enemy) are two witnesses who know whether Susan is innocent or guilty.

- Person F is Susan's friend and will lie with probability 0.25 if Susan is guilty. He will tell the true if Susan is innocent.
- Person E is Susan's enemy and will lie with probability 0.30 if Susan is innocent. Person E will tell the truth if Susan is guilty.

What is the probability that Person F and Person E will give conflicting testimony?

Solution

Let I and G be the two mutually exclusive events that Susan is innocent and guilty, respectively. Let C be the event that the two witnesses will give conflicting testimony. Find $P[C]$ based on $P[C \mid I]$ and $P[C \mid G]$.

By the law of total probabilities

$$
\begin{aligned}
P[C] & =P[C \mid I] P[I]+P[C \mid G] P[G] \\
& =0.30 \times 0.35+0.25 \times 0.65=0.2675 .
\end{aligned}
$$

Example 4

A judge is 65% sure that a suspect has committed a crime. During the course of the trial, a witness convinces the judge that there is an 85% chance that the criminal is left-handed. If 23% of the population is left-handed and the suspect is also left-handed. With this new information, how certain should the judge be of the guilt of the suspect? Solution
$G=$ event that the suspect is guilty
$I=$ event that the suspect is innocent
$L=$ event that the suspect is left-handed
Since $\{G, I\}$ forms a partition of the sample space, by Bayes' Theorem:

$$
\begin{aligned}
P[G \mid L] & =\frac{P[L \mid G] P[G]}{P[L \mid G] P[G]+P[L \mid I] P[I]} \\
& =\frac{0.85 \times 0.65}{0.85 \times 0.65+0.23 \times 0.35}=0.87 .
\end{aligned}
$$

Remark

1. How to find $P[L \mid I]$? When the suspect is innocent, he is considered as an average Joe in the population, so his probability of being left-handed should be the same as that of the whole population.
2. Note that $P[L]$ is the probability that the suspect is left-handed, and its value is given by

$$
P[L]=P[L \mid G] P[G]+P[L \mid I] P[I]=0.85 \times 0.65+0.23 \times 0.35
$$

This is not the same as $P[L \mid I]$.
3. The statement "the suspect is also left-handed" does not mean $P[L]=1$. It just induces us to consider $P[G \mid L]$, the probability that the suspect is guilty, conditional on L occurs.
4. With the additional information that the suspect is left-handed, what would be the effect on the hypothesis that the suspect is guilty?

$$
\begin{aligned}
& P[G \mid L]=\frac{P[L \mid G] P[G]}{P[L \mid G] P[G]+P[L \mid I] P[I]} \\
& P[I \mid L]=\frac{P[L \mid I] P[I]}{P[L \mid G] P[G]+P[L \mid I] P[I]} \\
& \frac{P[G \mid L]}{P[I \mid L]}=\frac{P[L \mid G]}{P[L \mid I]} \cdot \frac{P[G]}{P[I]}=\frac{0.85}{0.23} \cdot \frac{0.65}{0.35} .
\end{aligned}
$$

The original odds ratio $P[G] / P[I]=0.65 / 0.35$ is increased by the factor $P[L \mid G] / P[L / I]=0.85 / 0.23$ to the new odds ratio $P[G \mid L] / P[I \mid L]$.

