Random variables

Some random experiments may yield a sample space whose elements (events) are numbers, but some do not. For mathematical purposes, it is desirable to have numbers associated with the outcomes.

A random variable X is a function that assigns a real number, $X(\zeta)$, to each outcome ζ in the sample space of a random experiment.

The sample space S is the domain of the random variable and the set S_{X} of all values taken on by X is the range of the random variable. Note that $S_{X} \subset \mathrm{R}, \mathrm{R}$ is set of all real numbers.

Example A random experiment of tossing 3 fair coins. Sample space $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$. Let X be the number of heads; then $S_{X}=\{0,1,2,3\}$.
eg.

$$
X(T H H)=2 ; P[X=0]=\frac{1}{8}, P[X=1]=\frac{3}{8}, P[X=2]=\frac{3}{8}, P[X=3]=\frac{1}{8} .
$$

Equivalent events

Let A be the set of outcomes ζ in S that leads to the set of values $X(\zeta)$ in B.

$$
A=X^{-1}(B)=\{\zeta \in S: X(\zeta) \in B\}
$$

eg. in the above coins tossing example,

$$
X^{-1}(\{2,3\})=\{H H T, H T H, T H H, H H H\}
$$

= set of all preimages of elements in $B=\{2,3\}$.

Since event B in S_{X} occurs whenever event A in S occurs, and vice versa. Hence $P[B]=P[A]=P[\{\zeta: X(\zeta)$ in $B\}]$. A and B are called equivalent events with respect to X.

If we assign probabilities in this manner, then the probabilities assigned to subsets of the real line will satisfy the three axioms of probability.

1. $P[B] \geq 0$ for all $B \subset S_{X}$.
2. $P\left[S_{X}\right]=1$.
3. If B_{1} and B_{2} are mutually exclusive, then

$$
P\left[B_{1} \cup B_{2}\right]=P\left[B_{1}\right]+P\left[B_{2}\right] .
$$

In the tossing coins experiment, we observe

$$
P[X \leq 0]=\frac{1}{8}, P[X \leq 1]=\frac{1}{2}, P[X \leq 2]=\frac{7}{8}, P[X \leq 3]=1 .
$$

Hence, $P[X \leq x]$ is a number whose value depends on x, and so it is a function of x.

Example

Consider the random experiment of tossing 3 coins
$S=\{H H H, ~ Н Н Т, ~ Н T H, ~ H T T, ~ T H H, ~ T H T, ~ T T H, ~ T T T ~\} ~$

$$
\begin{aligned}
& X=\text { no of heads in the } 3 \text { coins, } S_{X}=\{0,1,2,3\} \\
& A_{1}=\{H T T, T T T\} \\
& A_{2}=\{H H T, H T H, T H H, T T T\} \\
& A_{3}=\{H T T, T H T, T T H, T T T\}
\end{aligned}
$$

$X\left(A_{1}\right)=\{0,1\}=$ set of all values taken by $X(\zeta), \zeta \in A_{1}$
$X\left(A_{2}\right)=\{0,2\}$
$X^{-1}(\{0,1\})=$ set of all preimages of elements in $\{0,1\}$

$$
=\{H T T, T H T, T T H, T T T\}=A_{3} .
$$

Note that A_{3} and $\{0,1\}$ are equivalent events since
$\frac{1}{2}=P\left[A_{3}\right]=P[X=0$ or $X=1]$.
Note that $A_{3} \subset S$ and $\{0,1\} \subset S_{X}$.
Consider another random variable:

$$
Y=\text { number of heads }- \text { number of tails }
$$

then Y can assume the values $-3,-1,1$ and 3 .
Now, $Y^{-1}(\{-3,-1\})=\{T T T, H T T, T H T, T T H\}$, so $\{T T T, H T T, T H T, T T H\}$, and $\{-3,-1\}$ are equivalent events.

Example

A point is selected at random from inside the unit circle centered at the origin. Let Y be the random variable representing the distance of the point from the origin.
(a) $S_{Y}=\{y: 0 \leq y \leq 1\}=$ range of Y.

(b) The equivalent event in the sample space S for the event $\{Y \leq y\}$ in S_{Y} is that the selected point falls inside the region centered at the origin and with radius y.
(c) $\quad P[Y \leq y] \quad(0 \leq y \leq 1)$
= probability of selecting a point inside the unit circle, and whose distance is less than or equal to $y=\frac{\pi y^{2}}{\pi}=y^{2}$.

Let Z be the random variable representing the distance of the selected point from $\left(\frac{1}{2}, 0\right)$.
(a) $S_{z}=\left\{z: 0 \leq z \leq \frac{3}{2}\right\}$
(b) The equivalent event in S for the event $\{Z \leq z\}$ is the region formed by the intersection of the circles:

$$
\left\{\begin{array}{l}
x^{2}+y^{2} \leq 1 \\
\left(x-\frac{1}{2}\right)^{2}+y^{2} \leq z^{2}
\end{array}\right.
$$

Cumulative distribution function (cdf)

The cdf of a random variable X is defined as

$$
F_{X}(x)=P[X \leq x], \quad-\infty<x<\infty .
$$

Axioms of probability \Rightarrow following properties of cdf

1. $0 \leq F_{X}(x) \leq 1$
2. $\lim _{x \rightarrow \infty} F_{X}(x)=1 \quad$ (sure event)
3. $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ (impossible event)
4. $\quad F_{X}(x)$ is a non-decreasing function of x

This is obvious since for $x_{2}>x_{1}$, we have

$$
P\left[X \leq x_{1}\right] \leq P\left[X \leq x_{2}\right] .
$$

5. $F_{X}(x)$ is continuous from the right i.e. for $h>0$

$$
F_{X}(b)=\lim _{h \rightarrow 0^{+}} F_{X}(b+h)=F_{X}\left(b^{+}\right)
$$

Example The tossing coins experiment again, where $X=$ number of heads appearing in tossing 3 coins.

Take $h>0$ and $h \rightarrow 0^{+}$,

$$
\begin{aligned}
& F_{X}(1-h)=P[X \leq 1-h]=P\{0 \text { head }\}=\frac{1}{8} \\
& F_{X}(1)=P[X \leq 1]=P\{0 \text { or } 1 \text { head }\}=\frac{1}{2} \\
& F_{X}(1+h)=P[X \leq 1+h]=\frac{1}{2} .
\end{aligned}
$$

Hence, the cdf of X is continuous from the right.

Define the unit step function:

$$
u(x)= \begin{cases}0 & x<0 \\ 1 & x \geq 0\end{cases}
$$

$F_{X}(x)=\frac{1}{8} u(x)+\frac{3}{8} u(x-1)+\frac{3}{8} u(x-2)+\frac{1}{8} u(x-3)$.
The jump at $x=0$ is given by $P[X=0]$, and similarly, for the jump at $x=1,2$ and 3 .
6. $P[a<X \leq b]=F_{X}(b)-F_{X}(a)$
since $\{\mathrm{X} \leq a\} \cup\{a<X \leq b\}=\{\mathrm{X} \leq b\}$,
and $\{X \leq a\}$ and $\{a<X \leq b\}$ are mutually exclusive
so $F_{X}(a)+P[a<X \leq b]=F_{X}(b)$.
Suppose we take $a=b-h, h>0$,
$P[b-h<X \leq b]=F_{X}(b)-F_{X}(b-h)$.
As $h \rightarrow 0^{+}, \quad P[X=b]=F_{X}(b)-F_{X}\left(b^{-}\right)$.
The probability that X takes on the special value b is given by the magnitude of the jump of the $\operatorname{cdf} F_{X}(x)$ at b.

- If the cdf is continuous at b, then the event $\{X=b\}$ has probability zero (essentially).
- If the cdf is continuous at $x=a$ and $x=b$, then $P[a<X<b]$, $P[a \leq X<b], P[a<X \leq b], P[a \leq X \leq b]$ have the same value.

7. $P[X>x]=1-F_{X}(x)$.

Example Let T be the random variable which equals the life of a diode. Suppose the cdf of T takes the form

$$
\begin{aligned}
F_{T}(t) & =P[T \leq t] \\
& =\left\{\begin{array}{cc}
0 & t<0 \\
1-e^{-\mu t} & t \geq 0
\end{array}=u(t)\left(1-e^{-\mu t}\right),\right.
\end{aligned}
$$

then the probability that the diode fails between times a and b is $P[a<T \leq b]=P[T \leq b]-P[T \leq a]=e^{-\mu a}-e^{-\mu b}$.

Three types of random variables

1. Discrete random variable

The cdf is a right-continuous, staircase function of x with jumps at a countable set of points x_{1}, x_{2}, \ldots

$$
F_{X}(x)=\sum_{k} P_{X}\left(x_{k}\right) u\left(x-x_{k}\right)
$$

where $P_{X}\left(x_{k}\right)=P\left[X=x_{k}\right]$ gives the magnitude of the jump at $X=x_{k}$ in the cdf.
2. Continuous random variable

The cdf $F_{X}(x)$ is continuous everywhere, so

$$
P[X=x]=0 \text { for all } x .
$$

3. Random variable of mixed type

The cdf has jumps on a countable set of points and also increases continuously over at least one interval of values of x

$$
F_{X}(x)=p F_{1}(x)+(1-p) F_{2}(x), \quad 0<p<1
$$

Example Let X be the time instant that a customer in a queue is being served. We have: X is zero if the system is idle and exponentially distributed if the system is busy.

$$
P[X \leq x]=P[X \leq x \mid \text { idle }] P[\text { idlee }]+P[X \leq x \mid \text { busy }] P[\text { bus } y]
$$

$p=$ probability that the system is idle. ${ }_{F_{x}(x)}$

$$
\begin{aligned}
X= & p X_{\text {idle }}+(1-p) X_{\text {busy }} . \\
F_{X}(x) & = \begin{cases}0 & x<0 \\
p+(1-p)\left(1-e^{-2 x}\right) & x \geq 0\end{cases} \\
& =p u(x)+(1-p) u(x)\left(1-e^{-\lambda x}\right)
\end{aligned}
$$

$X_{\text {idle }}$ is a discrete random variable with $P\left[X_{\text {idle }}=0\right]=1$ so that $F_{X_{\text {idle }}}(x)=u(x) ; X_{\text {busy }}$ is continuous with $F_{X_{\text {busy }}}(x)=u(x)\left(1-e^{-\lambda x}\right)$.

Probability density function

 pdf, if exists, is defined as $f_{X}(x)=\frac{d F_{X}(x)}{d x}$ since$P[x<X \leq x+\Delta x]$
$=F_{X}(x+\Delta x)-F_{X}(x)=\frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x} \Delta x$.

Properties of pdf

1. $f_{X}(x) \geq 0$ since cdf is a non-decreasing function of x
2. $F_{x}(x)=\int_{-\infty}^{x} f_{x}(t) d t$

Proof: From $f_{X}(x)=\frac{d}{d x} F_{X}(x)$, we obtain

$$
F_{X}(x)=\int_{c}^{x} f_{X}(t) d t .
$$

The constant c is determined by $F_{X}(-\infty)=0$, given $c=-\infty$.
3. $P[a<X \leq b]=\int_{a}^{b} f_{X}(t) d t$

Proof:

$$
P[a<X \leq b]=F_{X}(b)-F_{X}(a)
$$

4. $1=\int_{-\infty}^{\infty} f_{X}(t) d t$

$$
=\int_{-\infty}^{b} f_{X}(t) d t-\int_{-\infty}^{a} f_{X}(t) d t=\int_{a}^{b} f_{X}(t) d t
$$

Example Let radius of bull-eye $=b$ and radius of target $=a$.

Probability of the dart striking between r and $r+d r$ is
$P[r \leq R \leq r+d r]=C\left[1-\left(\frac{r}{a}\right)^{2}\right] d r$.
$R=$ distance of hit from the center of the target.
The density function takes the form

$$
f_{R}(r)=C\left[1-\left(\frac{r}{a}\right)^{2}\right] .
$$

How to determine C ?
Assume that the target is always hit:

$$
C \int_{0}^{a} 1-\left(\frac{r}{a}\right)^{2} d r=1 \Rightarrow C=\frac{3}{2 a},
$$

probability of hitting bull-eye $=P[0 \leq R \leq b]=\int_{0}^{b} f_{R}(r) d r=\frac{b\left(3 a^{2}-b^{2}\right)}{2 a^{3}}$.

pdf for a discrete random variable

The delta function $\delta(x)$ is related to $u(x)$ via

$$
\delta(x)=\frac{d}{d x} u(x) \text { or } u(x)=\int_{-\infty}^{x} \delta(t) d t . \text { Note that } \int_{-\infty}^{\infty} \delta(t) d t=1
$$

Recall that

$$
F_{X}(x)=\sum_{k} P_{X}\left(x_{k}\right) u\left(x-x_{k}\right)
$$

probability mass function
According to $F_{X}(x)=\int_{-\infty}^{x} f_{x}(t) d t$, we then have $f_{X}(x)=\sum_{k} P_{X}\left(x_{k}\right) \delta\left(x-x_{k}\right)$, where $\delta\left(x-x_{k}\right)=\left\{\begin{array}{ll}\infty & \text { when } x=x_{k} \\ 0 & \text { otherwise }\end{array}\right.$.

$$
\delta\left(x-x_{k}\right)
$$

Example The coins tossing experiment
cdf: $\quad F_{X}(x)=\frac{1}{8} u(x)+\frac{3}{8} u(x-1)+\frac{3}{8} u(x-2)+\frac{1}{8} u(x-3)$.
pdf: $\quad f_{X}(x)=\frac{1}{8} \delta(x)+\frac{3}{8} \delta(x-1)+\frac{3}{8} \delta(x-2)+\frac{1}{8} \delta(x-3)$.

$$
P[1<X \leq 2]=\int_{1^{+}}^{2} f_{X}(x) d x=P[X=2]=\frac{3}{8} .
$$

Note that the delta function located at 1 is excluded but the delta function located at 2 is included.

Similarly,

$$
P[2 \leq X<3]=\int_{2}^{3^{-}} f_{X}(x) d x=P[X=2]=\frac{3}{8} .
$$

Conditional cdf of X given A

$$
F_{X}(x \mid A)=\frac{P[\{X \leq x\} \cap A]}{P[A]} \text { if } P[A]>0 .
$$

- cdf of X with reference to the reduced sample space A

Conditional pdf of X given A

$$
f_{X}(x \mid A)=\frac{d}{d x} F_{X}(x \mid A) .
$$

Example

The lifetime X of a machine has a continuous cdf, $F_{X}(x)$. Find the conditional cdf and pdf given the event $A=\{X>t\}$, that is, the machine is still working at time t.

Conditional cdf

$$
\begin{aligned}
F_{X}(x \mid X>t) & =P[X \leq x \mid X>t] \\
& =\frac{P[\{X \leq x\} \cap\{X>t\}]}{P[X>t]} .
\end{aligned}
$$

(i) $x \leq t$
(ii) $x>t$

Note that
so

$$
\begin{aligned}
& \{X \leq x\} \cap\{X>t\}=\left\{\begin{array}{ll}
\phi & x \leq t \\
\{t<X \leq x\} & x>t
\end{array},\right. \\
& F_{X}(x \mid X>t)=\left\{\begin{array}{cl}
0 & x \leq t \\
\frac{F_{X}(x)-F_{X}(t)}{1-F_{X}(t)} & x>t
\end{array}\right.
\end{aligned}
$$

Conditional pdf is found by differentiating $F_{X}(x \mid X>t)$ with respect to x

$$
f_{X}(x \mid X>t)=\left\{\begin{array}{cl}
0 & x \leq t \\
\frac{f_{X}(x)}{1-F_{X}(t)} & x>t .
\end{array}\right.
$$

Note that $F_{X}(x \mid X>t)$ is continuous at $x=t$, but $f_{X}(x \mid X>t)$ has a jump at $x=t$.

Example Tossing of 3 coins; $X=$ number of heads; $A=\{X>2\}$.
$F_{X}(x \mid A)=F_{X}(x \mid X>2)$

$$
=\frac{P[\{X \leq x\} \cap\{X>2\}]}{P[X>2]}
$$

$$
= \begin{cases}0 & \text { if } x \leq 2 \\ \frac{P[2<X \leq x]}{1-P[X \leq 2]} & \text { if } x>2\end{cases}
$$

$$
=\left\{\begin{array}{lll}
0 & \text { if } x<3 \\
1 & \text { if } & x \geq 3
\end{array}\right.
$$

Note that $P[X>2]=P[X=3]=\frac{1}{8}$ and
$P[2<X \leq x]=\left\{\begin{array}{lll}0 & \text { if } & x<3 \\ \frac{1}{8} & \text { if } & x \geq 3\end{array}\right.$.

