Random variables

Some random experiments may yield a sample space whose elements (events) are numbers, but some do not. For mathematical purposes, it is desirable to have numbers associated with the outcomes.

A *random variable X* is a function that assigns a real number, $X(\zeta)$, to each outcome ζ in the sample space of a random experiment.

The sample space *S* is the **domain** of the random variable and the set S_X of all values taken on by *X* is the **range** of the random variable. Note that $S_X \subset \mathbb{R}$, \mathbb{R} is set of all real numbers.

Example A random experiment of tossing 3 fair coins. Sample space $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. Let *X* be the number of heads; then $S_X = \{0, 1, 2, 3\}$.

$$X(THH) = 2; P[X = 0] = \frac{1}{8}, P[X = 1] = \frac{3}{8}, P[X = 2] = \frac{3}{8}, P[X = 3] = \frac{1}{8}$$

Equivalent events

Let A be the set of outcomes ζ in S that leads to the set of values $X(\zeta)$

$$A = X^{-1}(B) = \{\zeta \in S : X(\zeta) \in B\}$$

eg. in the above coins tossing example, $X^{-1}(\{2, 3\}) = \{HHT, HTH, THH, HHH\}$ = set of **all** preimages of elements in $B = \{2, 3\}.$ Since event *B* in S_X occurs whenever event *A* in *S* occurs, and vice versa. Hence $P[B] = P[A] = P[\{\zeta; X(\zeta) \text{ in } B\}]$. *A* and *B* are called *equivalent events* with respect to *X*.

If we assign probabilities in this manner, then the probabilities assigned to subsets of the real line will satisfy the three axioms of probability.

1.
$$P[B] \ge 0$$
 for all $B \subset S_X$.

2.
$$P[S_X] = 1$$
.

3. If B_1 and B_2 are mutually exclusive, then

$$P[B_1 \cup B_2] = P[B_1] + P[B_2].$$

In the tossing coins experiment, we observe

$$P[X \le 0] = \frac{1}{8}, P[X \le 1] = \frac{1}{2}, P[X \le 2] = \frac{7}{8}, P[X \le 3] = 1.$$

Hence, $P[X \le x]$ is a number whose value depends on *x*, and so it is a function of *x*.

Example

Consider the random experiment of tossing 3 coins

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

X = no of heads in the 3 coins,
$$S_X = \{0, 1, 2, 3\}$$

$$A_1 = \{HTT, TTT\}$$

- $A_2 = \{HHT, HTH, THH, TTT\}$
- $A_3 = \{HTT, THT, TTH, TTT\}$

 $X(A_1) = \{0, 1\} = \text{set of all values taken by } X(\zeta), \zeta \in A_1$

 $X(A_2) = \{0, 2\}$

 $X^{-1}(\{0, 1\}) = \text{set of all preimages of elements in } \{0, 1\}$ $= \{HTT, THT, TTH, TTT\} = A_3.$

Note that A_3 and $\{0, 1\}$ are equivalent events since

$$\frac{1}{2} = P[A_3] = P[X = 0 \text{ or } X = 1].$$

Note that $A_3 \subset S$ and $\{0, 1\} \subset S_X$.

Consider another random variable:

Y = number of heads – number of tails

then *Y* can assume the values -3, -1, 1 and 3.

Now, $Y^{-1}(\{-3, -1\}) = \{TTT, HTT, THT, TTH\}$, so $\{TTT, HTT, THT, TTH\}$, and $\{-3, -1\}$ are equivalent events.

Example

A point is selected at random from inside the unit circle centered at the origin. Let *Y* be the random variable representing the distance of the point from the origin.

(a)
$$S_{y} = \{y: 0 \le y \le 1\} = \text{range of } Y.$$

(b) The equivalent event in the sample space *S* for the event $\{Y \le y\}$ in S_Y is that the selected point falls inside the region centered at the origin and with radius *y*.

(c)
$$P[Y \le y]$$
 $(0 \le y \le 1)$
= probability of selecting a point inside

= probability of selecting a point inside the unit circle, and whose distance is less than or equal to $y = \frac{\pi y^2}{\pi} = y^2$.

Let *Z* be the random variable representing the distance of the selected point from $\left(\frac{1}{2}, 0\right)$. (a) $S_z = \left\{z: 0 \le z \le \frac{3}{2}\right\}$

(b) The equivalent event in *S* for the event $\{Z \le z\}$ is the region formed by the intersection of the circles:

$$\begin{cases} x^2 + y^2 \le 1\\ \left(x - \frac{1}{2}\right)^2 + y^2 \le z^2 \end{cases}$$

Cumulative distribution function (cdf)

The cdf of a random variable *X* is defined as

$$F_X(x) = P[X \le x], \qquad -\infty < x < \infty.$$

Axioms of probability \Rightarrow following properties of cdf

1. $0 \le F_X(x) \le 1$

- 2. $\lim_{x \to \infty} F_X(x) = 1$ (sure event)
- 3. $\lim_{x \to -\infty} F_x(x) = 0$ (impossible event)
- 4. $F_X(x)$ is a non-decreasing function of x

This is obvious since for $x_2 > x_1$, we have

 $P[X \le x_1] \le P[X \le x_2].$

5. $F_X(x)$ is continuous from the right i.e. for h > 0 $F_X(b) = \lim_{h \to 0^+} F_X(b+h) = F_X(b^+)$

Example The tossing coins experiment again, where X = number of heads appearing in tossing 3 coins.

Take h > 0 and $h \rightarrow 0^+$,

$$F_X(1-h) = P[X \le 1-h] = P\{0 \text{ head}\} = \frac{1}{8}$$
$$F_X(1) = P[X \le 1] = P\{0 \text{ or } 1 \text{ head}\} = \frac{1}{2}$$
$$F_X(1+h) = P[X \le 1+h] = \frac{1}{2}.$$

Hence, the cdf of *X* is continuous from the right.

C De

effine the unit step function:

$$u(x) = \begin{cases} 0 & x < 0 & \frac{1}{2} & ---- 0 \\ 1 & x \ge 0, & \frac{1}{8} & 0 & \frac{1}{12} & ---- 0 \\ & & \frac{1}{8} & 0 & \frac{1}{12} & ---- 0 \\ & & & \frac{1}{12} & 0 & \frac{1}{12} & 0 \\ & & & \frac{1}{12} & 0 & \frac{1}{12} & 0 \\ & & & \frac{1}{12} & 0 & 0 \\ & & & & \frac{1}{12} & 0 \\ & & & & \frac{1}{12} & 0 \\ & & & & \frac{1}{12} & 0 & 0 \\ & & & & \frac{1}{12} & 0 \\ & & & & & \frac{1}{12} & 0 \\ & & & & & \frac{1}{12} & 0 \\ & & & & & & \frac{1}{12} & 0 \\ & & & & & & \frac{1}{12} & 0 \\ & & & & & & \frac{1}{12} & 0 \\ & & & & & & \frac{1}{12} & 0 \\ & & & &$$

 $F_X(x)$

O

 $\frac{7}{8}$

$$F_X(x) = \frac{1}{8}u(x) + \frac{3}{8}u(x-1) + \frac{3}{8}u(x-2) + \frac{1}{8}u(x-3).$$

The jump at x = 0 is given by P[X = 0], and similarly, for the jump at *x* = 1, 2 and 3.

6.
$$P[a < X \le b] = F_X(b) - F_X(a)$$

since $\{X \le a\} \cup \{a < X \le b\} = \{X \le b\}$,
and $\{X \le a\}$ and $\{a < X \le b\}$ are mutually exclusive
so $F_X(a) + P[a < X \le b] = F_X(b)$.

Suppose we take
$$a = b - h$$
, $h > 0$,
 $P[b - h < X \le b] = F_X(b) - F_X(b - h)$.
As $h \rightarrow 0^+$, $P[X = b] = F_X(b) - F_X(b^-)$.

The probability that X takes on the special value b is given by the magnitude of the jump of the cdf $F_X(x)$ at b.

- If the cdf is continuous at *b*, then the event $\{X = b\}$ has probability zero (essentially).
- If the cdf is continuous at x = a and x = b, then P[a < X < b], $P[a \le X < b]$, $P[a < X \le b]$, $P[a \le X \le b]$ have the same value.

7.
$$P[X > x] = 1 - F_X(x)$$
.

Example Let *T* be the random variable which equals the life of a diode. Suppose the cdf of *T* takes the form

$$F_T(t) = P[T \le t] = \begin{cases} 0 & t < 0 \\ 1 - e^{-\mu t} & t \ge 0 \end{cases} = u(t)(1 - e^{-\mu t}),$$

then the probability that the diode fails between times *a* and *b* is $P[a < T \le b] = P[T \le b] - P[T \le a] = e^{-\mu a} - e^{-\mu b}$.

Three types of random variables

1. Discrete random variable

The cdf is a right-continuous, staircase function of x with jumps at a countable set of points $x_1, x_2, ...$

$$F_X(x) = \sum_k P_X(x_k)u(x - x_k)$$

where $P_X(x_k) = P[X = x_k]$ gives the magnitude of the jump at $X = x_k$ in the cdf.

2. Continuous random variable

The cdf $F_X(x)$ is continuous everywhere, so

P[X = x] = 0 for all x.

3. *Random variable of mixed type*

The cdf has jumps on a countable set of points and also increases continuously over at least one interval of values of x

$$F_X(x) = p F_1(x) + (1-p) F_2(x), \qquad 0$$

cdf of a discrete random variable cdf of a continuous random variable **Example** Let *X* be the time instant that a customer in a queue is being served. We have: *X* is zero if the system is idle and exponentially distributed if the system is busy.

 $P[X \le x] = P[X \le x | idle]P[idle] + P[X \le x | busy]P[busy]$ $p = probability that the system is idle._{F.(x)}$

 X_{idle} is a discrete random variable with $P[X_{\text{idle}} = 0] = 1$ so that $F_{X_{\text{idle}}}(x) = u(x)$; X_{busy} is continuous with $F_{X_{\text{busy}}}(x) = u(x)$ (1- $e^{-\lambda x}$).

Probability density function

pdf, if exists, is defined as $f_X(x) = \frac{dF_X(x)}{dx}$

since

 $P[x < X \le x + \Delta x]$

$$=F_{X}(x+\Delta x)-F_{X}(x)=\frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x}\Delta x.$$

Properties of pdf

1. $f_X(x) \ge 0$ since cdf is a non-decreasing function of x

2.
$$F_x(x) = \int_{-\infty}^x f_x(t) dt$$

Proof: From $f_x(x) = \frac{d}{dx} F_x(x)$, we obtain
 $F_x(x) = \int_c^x f_x(t) dt.$

The constant *c* is determined by $F_X(-\infty) = 0$, given $c = -\infty$.

3.
$$P[a < X \le b] = \int_{a}^{b} f_{X}(t) dt$$

Proof:
 $P[a < X \le b] = F_{X}(b) - F_{X}(a)$
 $= \int_{-\infty}^{b} f_{X}(t) dt - \int_{-\infty}^{a} f_{X}(t) dt = \int_{a}^{b} f_{X}(t) dt$

Example Let radius of bull-eye = *b* and radius of target = *a*. Probability of the dart striking between *r* and r + dr is

$$P[r \le R \le r + dr] = C \left[1 - \left(\frac{r}{a}\right)^2 \right] dr.$$

R = distance of hit from the center of the target.

The density function takes the form

$$f_R(r) = C \left[1 - \left(\frac{r}{a}\right)^2 \right].$$

How to determine *C*?

Assume that the target is always hit:

$$C\int_0^a 1 - \left(\frac{r}{a}\right)^2 dr = 1 \Longrightarrow C = \frac{3}{2a},$$

probability of hitting bull-eye = $P[0 \le R \le b] = \int_0^b f_R(r) dr = \frac{b(3a^2 - b^2)}{2a^3}$.

pdf for a discrete random variable

The delta function $\delta(x)$ is related to u(x) via

 $\rightarrow x$

 x_k

х

 x_k

Example The coins tossing experiment

cdf:
$$F_X(x) = \frac{1}{8}u(x) + \frac{3}{8}u(x-1) + \frac{3}{8}u(x-2) + \frac{1}{8}u(x-3).$$

pdf:
$$f_X(x) = \frac{1}{8}\delta(x) + \frac{3}{8}\delta(x-1) + \frac{3}{8}\delta(x-2) + \frac{1}{8}\delta(x-3).$$

$$P[1 < X \le 2] = \int_{1^+}^{2} f_X(x) \, dx = P[X = 2] = \frac{3}{8}.$$

Note that the delta function located at 1 is excluded but the delta function located at 2 is included.

Similarly,

$$P[2 \le X < 3] = \int_{2}^{3^{-}} f_{X}(x) \, dx = P[X = 2] = \frac{3}{8}.$$

Conditional cdf of *X* given *A*

$$F_X(x \mid A) = \frac{P[\{X \le x\} \cap A]}{P[A]}$$
 if $P[A] > 0$.

• cdf of *X* with reference to the reduced sample space *A*

Conditional pdf of X given A

$$f_X(x \mid A) = \frac{d}{dx} F_X(x \mid A).$$

Example

The lifetime *X* of a machine has a continuous cdf, $F_X(x)$. Find the conditional cdf and pdf given the event $A = \{X > t\}$, that is, the machine is still working at time *t*.

Conditional cdf

$$F_{X}(x \mid X > t) = P[X \le x \mid X > t]$$

=
$$\frac{P[\{X \le x\} \cap \{X > t\}]}{P[X > t]}.$$

(i) $x \le t$ (ii) $x > t$

Note that

So
$$\{X \le x\} \cap \{X > t\} = \begin{cases} \phi & x \le t \\ \{t < X \le x\} & x > t \end{cases}, \\ F_X(x \mid X > t) = \begin{cases} 0 & x \le t \\ \frac{F_X(x) - F_X(t)}{1 - F_X(t)} & x > t \end{cases}.$$

Conditional pdf is found by differentiating $F_X(x | X > t)$ with respect to x

$$f_X(x \mid X > t) = \begin{cases} 0 & x \le t \\ \frac{f_X(x)}{1 - F_X(t)} & x > t \end{cases}$$

Note that $F_X(x | X > t)$ is continuous at x = t, but $f_X(x | X > t)$ has a jump at x = t.

Example Tossing of 3 coins; X = number of heads; $A = \{X > 2\}$.

Note that
$$P[X > 2] = P[X = 3] = \frac{1}{8}$$
 and
 $P[2 < X \le x] = \begin{cases} 0 & \text{if } x < 3\\ \frac{1}{8} & \text{if } x \ge 3 \end{cases}$