Poisson Random Variable

Counting the number of occurrences of an event in a certain time period or a certain region in space, e.g. counts of emissions from radioactive substances.

The pmf for a Poisson random variable N is

$$P[N = k] = \frac{\alpha^k}{k!} e^{-\alpha}, \quad k = 0, 1, 2, \dots$$

where α is the average number of event occurrences in a specified time interval or region in space.

Note that
$$\sum_{k=0}^{\infty} \frac{\alpha^k}{k!} e^{-\alpha} = 1$$
.

Approximation of binomial probabilities by Poisson probabilities

When n is large and p is small and $\alpha = np$ is finite, then

$$p_k = {}_{n}C_k p^k (1-p)^{n-k} \approx \frac{\alpha^k}{k!} e^{-\alpha}, \quad k = 0, 1, 2, \cdots.$$

Proof Consider

$$\frac{p_{k+1}}{p_k} = \frac{k!(n-k)!p}{(k+1)!(n-k-1)!q} = \frac{(n-k)p}{(k+1)q}, \quad (\text{with } q = 1-p)$$

$$= \frac{\left(1 - \frac{k}{n}\right)\alpha}{(k+1)\left(1 - \frac{\alpha}{n}\right)} \longrightarrow \frac{\alpha}{k+1} \quad \text{as } n \to \infty.$$

Hence, the limiting probabilities satisfy

$$p_{k+1} = \frac{\alpha}{k+1} p_k$$
 $k = 0, 1, 2, \cdots$

$$p_1 = \frac{\alpha}{1}p_0, \quad p_2 = \frac{\alpha}{2}p_1 = \frac{\alpha^2}{2!}p_0, \dots, p_k = \frac{\alpha^k}{k!}p_0, \quad k = 0, 1, 2 \dots$$

To determine p_0 , we use $\sum_{k=0}^{\infty} p_k = p_0 \sum_{k=0}^{\infty} \frac{\alpha^k}{k!} = p_0 e^{\alpha} = 1$, so that $p_0 = e^{-\alpha}$.

Example

Suppose 300 misprints are distributed randomly throughout a book of 500 pages. Find the probability that a given page contains exactly 2 misprints.

Solution

We view the number of misprints on one page as the number of successes in a sequence of Bernoulli trials. Here, there are 300 misprints; so number of trials n=300. Let p be the probability that a particular misprint (considered as a particular trial) falls on a given page.

Here, p = 1/500 and $\alpha = np = 0.6$.

Hence,
$$P[N=2] = \frac{(0.6)^2 e^{-0.6}}{2!} = \frac{(0.36)(0.549)}{2} \approx 0.0988.$$

Extension of the question

Suppose we assume M misprints to be randomly distributed on N pages, find the probability that k misprints occur on ℓ particular pages.

Solution

Consider ℓ particular pages among N pages ($\ell \ll N$), the probability that a given misprint falls onto these ℓ pages is ℓ/N . This is one trial experiment associated with one misprint. There are M misprints which are falling on these ℓ particular pages at random. This can be treated as M trials.

In the terminology of binomial experiment, number of trials is n=M and probability of success is $p=\ell/N$. The corresponding average number of occurrences is $\alpha=np=\frac{M\ell}{N}$. We then have

$$P[X = k] = e^{-\alpha} \frac{\alpha^k}{k!},$$

where X = number of misprints on ℓ pages.

Example (White blood-cell count)

The white blood-cell count of a healthy individual can average as low as 6,000 per mm³. To detect a white blood cell deficiency, a 0.001 mm³ drop of blood is taken and the number of white blood cells X is found.

Viewed as a Poisson process: discrete event of interest is the occurrence of a white cell.

Query

How to find the parameter α , which in this case corresponds to the average number of white blood cells within a droplet of blood of volume 0.001mm³?

Here, $\alpha = 6,000 \times 0.001 = 6$, that is a healthy individual should be expected to have 6 white cells on average in one drop of blood.

Suppose in the test, not more than two white blood cells are found, is there evidence of a white-cell deficiency? Consider the probability of not having more than 2 white blood cells of a healthy individual:

$$P[X \le 2] = \sum_{k=0}^{2} \frac{e^{-6}6^k}{k!} = e^{-6} + \frac{e^{-6} \cdot 6^1}{1} + \frac{e^{-6} \cdot 6^2}{2} = 0.062.$$

The probability of mis-judgement of a healthy individual to have a white-cell deficiency is 6.2%.

Variance of a Poisson random variable (with parameter α)

$$E[N] = \sum_{k=0}^{\infty} k P_N(k) = \sum_{k=0}^{\infty} k \frac{e^{-\alpha} \alpha^k}{k!} = e^{-\alpha} \sum_{k=1}^{\infty} \frac{\alpha(\alpha^{k-1})}{(k-1)!}$$
$$= e^{-\alpha} \alpha \sum_{\ell=0}^{\infty} \frac{\alpha^{\ell}}{\ell!} = \alpha, \quad \ell = k-1.$$

$$\sum_{k=0}^{\infty} k(k-1)P_N(k) = \sum_{k=2}^{\infty} \frac{e^{-\alpha}\alpha^{k-2}\alpha^2}{(k-2)!} = \alpha^2 e^{-\alpha} \sum_{m=0}^{\infty} \frac{\alpha^m}{m!} = \alpha^2, m = k-2.$$

Note that
$$E[N^2] - E[N] = \sum_{k=0}^{\infty} k^2 P_N(k) - \sum_{k=0}^{\infty} k P_N(k)$$
.

$$VAR(N) = E[N^2] - E[N]^2 = (E[N^2] - E[N]) + (E[N] - E[N]^2)$$

$$= \alpha^2 + \alpha - \alpha^2 = \alpha.$$

Interestingly, the mean and variance of N have the same value, namely, α .

Maximum of P[N = k] when N is a Poisson random variable

- (1) For $\alpha < 1, P[N = k]$ is a maximum at k = 0.
- (2) For $\alpha \geq 1$, P[N = k] is maximum at floor(α).

If α is a positive integer, then P[N=k] is maximum at both $k=\alpha$ and $k=\alpha-1$.

Proof

The ratio $P[N=k]/P[N=k-1]=\alpha/k$, which decreases with increasing k. For $\alpha<1,\alpha/k<1$ for $k\leq 1$ so that P[N=k] attains its maximum value at k=0. Suppose $\alpha\geq 1$ and α is not an integer, then the ratio is greater than 1 at k=1 at k=1 and k=1 and k=1 at k=1. When k=1 and k=1 at k=1 at k=1 at k=1.

Example

Requests for telephone connection arrive at a rate of λ calls per second. It is known that the number of requests during a time period of t seconds is a Poisson random variable.

Solution

The average number of call requests in a t-second period is $\alpha = \lambda t$.

$$P[N(t) = 0] = \frac{(\lambda t)^{0}}{0!} e^{-\lambda t} = e^{-\lambda t}$$

$$P[N(t) \ge n] = 1 - P[N(t) < n]$$

$$= 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}.$$

Waiting time

Find the probability density of the random variable Y, the *waiting time* until the first success. Here, the number of successes is a value of the discrete random variable N having the Poisson distribution with $\alpha = \lambda y$, $\lambda =$ number of occurrences per unit time.

$$\begin{split} F_Y(y) &= P[Y \leq y] = 1 - P[Y > y] \\ &= 1 - P[\text{zero success in a time interval of } y] \\ &= 1 - e^{-\lambda y} \quad \text{for } y \geq 0; \\ F_Y(y) &= 0 \quad \text{for } y < 0 \\ f_Y(y) &= \begin{cases} \lambda e^{-\lambda y} & y \geq 0 \\ 0 & y < 0 \end{cases}. \end{split}$$

Example

At a certain location on a highway, the number of cars exceeding the speed limit per half hour is 8.4. What is the probability of a waiting time of less than 5 minutes between cars exceeding the speed limit?

Solution

Using half an hour as one unit of time.

Now 5 minutes = 1/6 of one unit of time, and $f_Y(y) = 8.4e^{-8.4y}$, $\lambda = 8.4$.

Required probability =
$$P\left[0 \le Y \le \frac{1}{6}\right] = \int_0^{1/6} 8.4e^{-8.4y} \ dy$$

= $1 - e^{-1.4} \approx 0.75$.