Continuous uniform random variables

Example

It is known that a bus will arrive at random at the bus stop in between 8 : 00
am to 8 : 30 am. A man decides that he will go at random to the bus stop

between the above period of time and will wait at most 5 minutes for the bus.
Find the probability that he can take on the bus.



Solution The time durations (measured in minutes) of the arrival times of the
bus and the man counting from 8 : 00 am are numbers randomly chosen from
the interval [0,30]. Let t,,. and t;,an denote the random variables representing
the arrival times of the bus and the man lapsed from 8 : 00 am. The man can

catch the bus if
The probability that he can take on the bus
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Example
Find the probability that three points chosen at random on the circumference

of a circle lie on a semi-circle.

Solution
Without loss of generality, we take the third point to lie on the z-axis with

radian measure zero.

Let X7 and X, denote the random variables representing the radian measure
of the first point and second point;, — 71 < X1 <7 and —7 < X < 7.
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We consider four mutually exclusive events: both points on the upper semi-
circle or lower semi-circle or they lie on different semi-circles. These events form
a partition. They are also exhaustive. The three points lie on a semi-circle if

(i) O< X1 <mand 0< Xo <7

(both the first and second points lie on the upper semi-circle)

(ii) —n<Xy7<0and —7<X», <0

(both the first and second points lie on the lower semi-circle)

(iii)OSXl—XQSTF, O< X1 <mand - m< X», <0

(first point in the upper semi-circle, second point in the lower semi-circle)

(iv)O§X2—X1§7r, O0< Xo <7mand —m < X7 <0.

(first point in the lower semi-circle, second point in the upper semi-circle)
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The above 4 conditions are satisfied by points inside the shaded area.

: . area of shaded region 3
Required probability = _ = —,
total area of the rectangular region 4




Exponential random variable (with parameter )\)
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A IS the rate at which events occur, that is, the average number of event
occurrences over unit time.



Uses of the exponential distribution

Example

1. Arrivals of customers to a servicing station, including the waiting time
between event occurrences.

2. Earthquakes or terror attack.

3. Life of a device (ageing or human error).

Query The device “forgets’ how long it has been running, and its eventual
breakdown is the result of some sudden arrival of failure event (not of gradual
deterioration).



Occurrence of the first success in a Poisson process

Y = Poisson variable that counts the number of occurrences over time ¢

A = mean number of occurrences per unit time

Probability of at least one occurrence over time t
PlY > 1] =1 - P[Y = 0]
— 1-—eM=P[X <{]

where X is the waiting time for the arrival of the first customer.



The exponential random variable is obtained as the limiting form of the goe-

metric random variables
An interval of duration T is divided into n subintervals, where n is infinitely

large.
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Each subinterval may be visualized as a Bernoulli trial if

(i) at most one event can occur in a subinterval (probability of more than one

event occurrence is negligible);

(ii) outcomes in different subintervals are independent.

Let A be the average number of events per unit time,

a = average number of events over T-period = \T.



Let p be the probability of event occurrence in each subinterval,

o’ AT
where p = — = —,
n n

Let X be the random time for the first occurrence of event and M be the
geometric random variable for the associated (independent) Bernoulli trials.
The continuous random variable X and the discrete random variable M are

related by

T
X =M—.
n

The probability that this time exceeds t seconds is

PIX>1 = P|\M>n_|=@a-p"/7

= [(2- g)”r” e T a5 oo

Since A = o/T,P[X >t] — e M as n — .



Expected value of exponential random variable

Fx(z) = (1 — e M)u(z) and fx(z) = e u(z).

F[X] = /oo a:fX(a:) da:—/ Are M dx

Example

Suppose a device has an average life of 5 years, what is the probability that it
lasts more than 7 years?

1 1
Hence, average life = X — 5 so that A = c

PIX>7]=Fx(7)=e /5



Memoryless property

Let X be the time for the arrival of the first customer. Given that there is no
customer arriving for t units of time, the probability that no customer arrives
for the next h units of time is given by

P[X >t+ h|X > t].
The memoryless property means

P[X >t+ h|X >t] = P[X > h].

Proof
PIX>t+hX>t = THX> ;J[thirz]{X >4l o
“A(t+h)
_ P[X>t—|—h]:€ =e_/\h=P[X>h].
P[X > t] e~ At

The probability of the first arrival of an event is independent of how long you
have been waiting.



Inter-event waiting time

For a Poisson random variable, the time between events is an exponentially
distributed random variable with parameter \.

wWhy?

From the memoryless property, the arrival of a new customer is independent
of the number of earlier arrivals. Essentially, we can treat each new arrival as
if it is the first customer. Hence, the inter-event waiting time can be modeled
by the random variable representing the waiting time of the first customer.

1
Average inter-event waiting time = X



Example Suppose that the number of miles that a car can run before its
battery wears out is exponentially distributed with an average value of 10,000
miles. If a person desires to take a 5000-mile trip, what is the probability that
he or she will be able to complete the trip without having to replace the car
battery? What can be said when the distribution is not exponential?

Solution Let one unit of distance be 1,000 miles. We have an average one
battery failure over 10 units of distance. It follows by the memoryless property
of the exponential distribution that the remaining lifetime (in thousands of

1
miles) of the battery is exponential with parameter \ = E' Hence, the desired
probability is

P[remaining lifetime >5] =1 — F(5) = e °* = e~ 1/2 ~ 0.604.

Query Does it matter if different mileage amount is chosen for one unit of
distance?

For example, take 10,000 miles as one unit of distance. The new A becomes 1
and we are asked to find 1 — F(0.5). We again obtain e~ 92 the same answer.



Remark If the lifetime distribution F is not exponential, then the relevant
probability is

1— F(x+5)

1— F(x)
where z is the number of units of distance that the battery had been in use
prior to the start of the trip. Therefore, if the distribution is not exponential,

additional information is needed (namely, ) before the desired probability can
be calculated.

Pllifetime > z + 5|lifetime > z] =

Query With wearing effect in battery operation, is it reasonable to assume
exponential distribution for the life time of a battery?



Example Consider a post office that is staffed by two clerks. Suppose that
when Mr. Smith enters the system, he discovers that Ms. Jones is being served
by one of the clerks and Mr. Brown by the other. Suppose also that Mr. Smith
is told that his service will begin as soon as either Jones or Brown leaves. If
the amount of time that a clerk spends with every customer is exponentially
distributed with the same parameter A\, what is the probability that Mr. Smith
is the last to leave the post office?

Solution Consider the time at which Mr. Smith first finds a free clerk. At
this point either Ms Jones or Mr. Brown would have just left and the other one
would still be in service. However, by the lack of memory of the exponential
distribution, it follows that the additional amount of time that this other person
(either Jones or Brown) would still have to spend in the post office is exponen-
tially distributed with parameter A. That is, it is the same as if service for this
person were just starting at this point. Hence, by symmetry, the probability

that the remaining person finishes before Smith must equal >



Exponential density and memoryless property

The exponential density is the only continuous probability density that has the
memoryless property .

Proof

We would like to find F'x(t) such that

1—Fx(t+h
1 — Fx(t)
Write g(t) = 1 — Fx(t) for convenience, we find g(t) which satisfies
g(t+ h)
= g(h).
g(t)
t
Note that ¢g(0) = 9(t) _ 1.

g(t)



The only function which satisfies such property is g(t) = e~ At

To deduce the result, we consider

g(t+h)—g(t) g(h)g(t) —g(t)
h h

= o0 1=

o [gw) ;gm)] |

Taking the Iimit h — 0O
g'(t) = g(t)g'(0).

Note that ¢/(0) is just a constant. Recall that only the exponential function
has the property that the derivative of the function equals a multiple of that
function.

Since we must observe 0 <1 —g(t) <1 and ¢g(0) = 1, we then obtain

g®) =e M A>0 for t>0.



Gaussian (normal) random variable

Two-parameter density function with mean m and standard deviation o

pdf
1 —(x—m)2 /202
Tr) = e , —oo < x <00
fx(x) Joro
o0 _ o 2/5
Note that / fx(x) dr = 1. The proof relies on / e /2 4o = \/27.
— 00 — 00
o0
Mean = E[X] = / zfx(z) do
o0

= [T @-m
— 00 V21O
00 1 2 2
—(x—m)</20 _
-+ m/_oo 7@06 dr = m.

e—(x—m)2/202 dr

When m = 0 and ¢ = 1, we call it the standard Gaussian random variable 7,
where

1 2
fz(z) = e © /2, —0o0 < z < 0.

V2




o0 2 2
To compute the variance, we start from / e~ (x—m)=/20% 4. V2To
— 0

so that
d [o© d
/ 63_(‘76_777’)2/202 dr — d—\/ 2mo = V2T.
o

do J—oo
On the other hand, we differentiate under the integral sign and obtain

0 )2
12/ (x —m) e—(x—m)2/202 dr = /2,
o — 00

g
sO that
1 o0
VAR[X] = = /_oo(x )2 mm?/20% gy — 52
1 X / 2 2
cdf Fy(x)=P[X <z]|= / e~ (&'=m)=/20% .1
x () [X < ] Nor7

X
Define Z = m, the Z becomes the standard normal variable.




Let t = (' — m) /o, so that

(x—m)/o 1 2 r—m
F :13:/ e_t/th=N< >=F z),
x () . o - 7(2)
r—m T 1 2
where z = and N(x =/ e ! /2 dt.
o ( ) —00 /2T
) §~

Y-
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Example The mean weight of 500 male students at a certain college is 151
Ib and the standard deviation is 15 Ib. Assuming that the weights are normally
distributed, find how many students weigh (a) between 120 and 155 Ib, (b)
more than 185 Ib.

Solution

In this problem, we have m = 151 and ¢ = 15. Let W denote the weight of a
student chosen at random.

(a) Weights recorded as being between 120 and 155 Ib can actually have any
value from 119.5 to 155.5 |b, assuming they are recorded to the nearest
pound. The required probability is given by P[119.5 < W < 155.5]. Define

7 =
(0
mean and unit standard deviation.

so that Z is the standard normal random variable with zero

When W = 119.5, Z = (119.5 — 151) /15 = —2.10;

when W = 155.5, Z = (155.5 — 151)/15 = 0.30.



Statistics table gives values to the standard cumulative normal distribution
function

N(z) = /_Zoo \/1276_22/2 dz.

P[119.5 < W < 155.5]
P[-2.10 < Z < 0.30]

Required proportion of students

—00 V2T
= 0.6179 —0.0179 = 0.6000.

The number of students weighing between 120 and 155 Ib is 500 x 0.6 =
300.



(b) Students weighing more than 185 Ib must weigh at least 185.5 |b. We first
compute P[W > 185.5].

When W = 185.5,Z = (185.5 — 151) /15 = 2.30

o0 1
/ €_Z2/2 dz
2.30 /27

230 1

1 —
—o0 A 2T
— 1 —-0.9893 = 0.0107.

Required proportion of students

€_Z2/2 dz

Number of students weighing more than 185 Ib is 500 x 0.0107 = 5.35.



np(l—p)>1
—

Binomial distribution normal distribution.

Approximation is well acceptable if np(1 —p) > 10.
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Binomial distribution with n =50 and p =0.7.

T he probability histogram is computed by

Py (k) = 50C,(0.7)%(0.3)°0F,

The distribution looks almost like “normal’.



Example

Find the probability of getting between 3 and 6 heads inclusive in 10 tosses of
a fair coin by using (a) the binomial distribution, (b) the normal approximation
to the binomial distribution.

Solution

Let X be the random variable giving the number of heads in 10 tosses.

3 7
63 1\° /1\% 105
PIX =81 = oo PIX =61=10Co () (;) =g, =PIX =4l
P[3< X <6] = P[X =3]+ P[X =4]+ P[X =5]+ P[X = 6]
99

= —— =0.7734.
123



Normal approximation

Treating the data as continuous, 3 to 6 heads can be considered as 2.5 to 6.5

1\ /1
heads. The mean and variance of X arenp =5 and o = /npq = \/10 <2> <2> =
X -5

1.58, respectively. Define Z = , Z IS the standard normal variable.

25—
When X =25 7 = > =S _ 133
1.58
6.5—5
X =6.527= — 0.95.
1.58

P[2.5 < X < 6.5] P[-1.58 < Z < 0.95] = N(0.95) — N(—1.58)

0.8289 — 0.0571 =0.7718.



