Functions of a random variable

1. Linear function. Y =aX +b,a# 0

Suppose X is a continuous random variable and it has cdf Fyx(x), find

Fy (y);
{Y <y} occurs when A = {aX + b < y} occurs.

G)a>QA={X§y_b}
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: : dFF dF du
Using chain rule, — = — —
dy du dy

1 (y=b B
fy(y)={“le<“y_>b a>°=ifX(y b).
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5 , —oco<zr<oxo
TO

e.d. fx(x) =

1 e—(y—b—am)2/2(aa)2.

then fy(y) = Varlao]

Y has mean b + am and standard derivation |a|o, and Y remains to be

Gaussian.
Example
1 _ _
Suppose we take a = —,b = —am = “™ that is, Y = ™ then fy(y) =
o o
1
\/7 6_92/2. Now, Y is the standard Gaussian random variable with zero mean
T

and unit standard deviation.



2. Y = X2 X is a continuous random variable

{Y <y} occurs when {X? <y} or {—5 < X < /y},y > 0. The event is
null when vy is negative.

_ ] 0 y <0
) = {FXW@—FX(—@ y>0

fx(WVY)  fx (=)

fy(y) = >y oy y >0
_ x(Vy) n fx(=/¥)
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e.d. Let X be Gaussian with mean m = 0 and o = 1 where fy(x) = Vol

then

o~ (VD22 (=32 —y/2
— y > 0.
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General case

Suppose g(x) = y has n solutions, then

n dx
fy(y) = kzzjl fx(zg) dy

LT=XT

where z4,---,xn are the solutions.

e.g. g(X) = X?; for y > 0,y = 22 has two solutions: ,/y and —,/y.

+Ix(—VD) 5

L dy _ 1
since ¥ = 2z, 0 fy (1) = Fx(Vi) - s

=y

_ Ix(Vw) n fx(=v%)
NG 2./




Illustration of the result
Consider the event

Cy ={y <Y <y-+dy} and B, be its equivalent event

By={r1 < X <z14+dri}U{rs +dro < X <ap}U{x3 < X <23+ dz3}

P[Cy] = fy(y)|dy|

and
P[By] = fx(z1)|dx1| + fx(z2)|dro| + fx(23)|dz3|;
SO
_ fx(ep) dx
fy(y) = zk: dy) o zk:fx(fb’k) 3y s,

Note that each fx(x.) is multiplied by the scaling factor |dx/dy|

T=T"



v =gl ‘F

v +dv

XX + d.xl X +(i¥2 X X3 X3 + dx3

Example

Consider Y = cos X, where X is uniformly distributed in [0, 27]. Since X is uni-

oo
formly distributed, fx(z) ={ 8 ]‘:g: i;{ggﬂ . By observing/ Fx(x) de =
9 — 0

_ 1
1, we obtain ¢ = —.
2T

For —1 <y < 1,y = cosx has two solutions: =1 = cos— 1y and ro = 2r—cos 1y.

d : . _
atd — —sinz; = —sin(cos ty) = —\/1—93°, O0<azi <.

dx'r1



d
Similarly, d—yac — \/1 — y2,7T < xo < 27w. By applying the formula:
€T 'L2
1 1 1
fy(y) = + = for —1<y<l1.
277\/1—y2 2my/1 — y? 7T\/1—y2
y (0 y < —1
—1
cdf of Y =Fy()= [ A dy=] L4500 _1<y<1
\ 1 y>1

Y is called the arc sine distribution.
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Some properties on expected value

Suppose the pdf is symmetric about a point m, that is,
fx(m—2z) = fxy(m-+=z), for all z.
Assuming E[X] exists and consider
m— [ trx@®dt = [ (m—0)fx(t) dt
= [ m=0sx® dit [ (m—fx (@) de
— /O —ufx(m 4 u) du-l—/OOO—UfX(m-I-U) du, uw=t-m

—0

a /Ooofo(m—x) d:z;—/oooqu(m—I—u) du = 0,

so that m = F[X].



For example, the pdf of a Gaussian random variable is symmetric about x = m,
and so E[X] = m.

When X is a non-negative random variable

() E[X] = /000[1 _ Fy()] dt, X is continuous

©.@)
(ii) E[X] = ) P[X > k], if X is discrete and assumes non-negative integer

k=0
values.



Proof

(i) Write
o0 o0 o0
/ P[X > 2] da =/ / Fx(t) dt dr.
0 0 €T
Interchange the order of integration
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/OOOP[X > x] der = /OOO </tdx> fx(t) dt = /Oooth(t) dt = E[X].
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N N N
(i) Consider  P[X >k]= > > Px({) = > kPx(k).
k=0 k=0 t=k+1 k=0

k=0;: P.()+P,(2)+---+ P.(N)
k=1: +P,(2)+---+ P.(N)
k=N-—1: P (N)

Pe()+ 2P (2)++--+ NP (N)

Taking the limit N — oo, we have

N PIX > k] = i kPx (k) = E[X].
k=0 k=0



Expected value of Y = ¢(X)
Direct approach: we first find the pdf of Y

ElY]1~ ) yify(yr)h.
k
Suppose g(x) is strictly increasing

fy(yp)h = fx(zp)hy
E[Y] > g(zp) fx (@p) by
k

Q

o0
Taking h — 0, E[Y] = / 9(z) fx(z) dz. The result is valid even if g(z) is

— 0

not strictly increasing. ‘= an *

\'.qhL 7/

/ — hk,




Example Indicator function

O X notinC
Y=9(X)=IC(X)={1 X not

o0

~9(@)fx(@) do = /C fx(z) dz = P[X in C].

The integration over C refers to the integration over the interval of = that
corresponds to the occurrence of the event C.

E[Y] =/

For example, C is the event that “5” appears in a tossing of a fair dice. We
have E[Io(X)] = 1/6, where X is the discrete random variable representing the
number shown on the dice.



Linearity of expectation operator

n
Suppose Y = )  gi(X), we have

k=1
BlY] = E zgkm} = [ 3 @) fx(@) do
k=1 T k=1
= Y [ a@)ix@) de =Y Blgi(X))
k=1""°° k=1
Example Y =9(X)=ap+ a1 X+ +anX"
ElY] = Elag] + Ela12z] + -+ + E[anX"]

= ag+ a1 F[X]+- -+ anE[X"].

Remark .
nth moment of X = E[X"] =/ 2" fx(x) dux.
— 00
VAR[X] = E[X?] - E[X]?
— 2"9m0ment — (15tmoment)2.



Example A stick of unit length is split at a point U that is uniformly dis-
tributed over (0,1). Determine the expected length of the piece that contains
the particular point P. Here, let p be the distance of P from the left end 0",

0<p< 1

< 1—u >
|
0 U P 1
< Uu >
. I
0 P U 1

Solution Let u be the distance of U from the end “0" and L,(u) denote the
length of the substick that contains the point P, and note that

l—u u<p



Note that fiy(u) =1 for 0 <u <1 and

[ Lo ) o
/Op(l—u) du—l—/plu du

= (-5)+ (6-%)

1

= §—|—p(1—p).

E[Lp(u)]

1
Since p(1 — p) is maximized when p = 5 it is interesting to note that the

expected length of the substick containing thelpoint P is ma3><imized when P is
the midpoint of the original stick. When p = 5,E[Lp(u)] =7



