
Random process (or stochastic process)

In many real life situation, observations are made over a period of time and they

are influenced by random effects, not just at a single instant but throughout

the entire interval of time or sequence of times.

In a “rough” sense, a random process is a phenomenon that varies to some

degree unpredictably as time goes on. If we observed an entire time-sequence

of the process on several different occasions, under presumably “identical”

conditions, the resulting observation sequences, in general, would be different.

A random variable (RV) is a rule (or function) that assigns a real number to

every outcome of a random experiment, while a random process is a rule (or

function) that assigns a time function to every outcome of a random experi-

ment.



Example

Observe the demand per week for certain service over time.



Example

The closing price of HSBC stock observed from June 15 to Dec. 22, 2003.

Example

Outcomes from Mark Six in Years 2000, 2001. We have two sequences of

observations made twice per week. The actual sequence of observation is called

the realization of the random process associated with the random experiment

of Mark Six. The realizations in different years should differ, though the nature

of the random experiment remains the same (assuming no change to the rule

of Mark Six).

A random experiment may lead not only to a single random variable, but to an

entire sequence

{Xi : i = 1,2,3, · · ·} = {X1, X2, X3, · · ·}

of random variables (indexed family of random variables).



Consider the random experiment of tossing a dice at t = 0 and observing the

number on the top face. The sample space of this experiment consists of the

outcomes {1,2,3, · · · ,6}. For each outcome of the experiment, let us arbitrarily

assign a function of time t (0 ≤ t < ∞) in the following manner.

Outcome: 1 2 3 4 5 6
Function of time: x1(t) = −4 x2(t) = −2 x3(t) = 2 x4(t) = 4 x5(t) = −t/2 x6(t) = t/2

The set of functions {x1(t), x2(t), · · · , x6(t)} represents a random process.

Definition: A random process is a collection (or ensemble) of RVs {X(s, t)}

that are functions of a real variable, namely time t where s ∈ S (sample space)

and t ∈ T (parameter set or index set).

The set of possible values of any individual member of the random process is

called state space. Any individual member itself is called a sample function or

a realisation of the process.



Classification of Random Processes

Depending on the continuous or discrete nature of the state space S and

parameter set T , a random process can be classified into four types:

1. If both T and S are discrete, the random process is called a discrete random

sequence. For example, if Xn represents the outcome of the nth toss of

a fair dice, then {Xn, n ≥ 1} is a discrete random sequence, since T =

{1,2,3, · · ·} and S = {1,2,3,4,5,6}.

2. If T is discrete and S is continuous, the random process is called a contin-

uous random sequence.

For example, if Xn represents the temperature at the end of the nth hour

of a day, then {Xn,1 ≤ n ≤ 24} is a continuous random sequence, since

temperature can take any value in an interval and hence continuous.



3. If T is continuous and S is discrete, the random process is called a discrete

random process.

For example, if X(t) represents the number of telephone calls received in

the interval (0, t) then {X(t)} is a discrete random process, since S =

{0,1,2,3, · · ·}.

4. If both T and S are continuous, the random process is called a continuous

random process. For example, if X(t) represents the maximum temperature

at a place in the interval (0, t), {X(t)} is a continuous random process. In

the names given above, the word ‘discrete’ or ‘continuous’ is used to refer

to the nature of S and the word ‘sequence’ or ‘process’ is used to refer to

the nature of T .



Specifying a random process

Let X1, X2, · · ·Xk be the k random variables obtained by sampling the random

process X(t, ζ) at times t1, t2, · · · , tk:

X1 = X(t1, ζ), X2 = X(t2, ζ), · · · , Xk = X(tk, ζ).

The joint behavior of the random process at these k time instants is specified by

the joint cumulative distribution of the vector random variable (X1, X2, · · · , Xk).

A stochastic process is specified by the collection of kth-order joint cumulative

distribution functions:

FX1···Xk
(x1, x2, · · · , xk) = P [X1 ≤ x1, X2 ≤ x2, · · · , Xk ≤ xk],

for any k and any choice at sampling instants t1, · · · , tk.

If the stochastic process is discrete-valued, then a collection of probability mass

functions can be used to specify the stochastic process:

PX1,···Xk
(x1, x2, · · · , xk) = P [X1 = x1, X2 = x2, · · · , Xk = xk].



Mean mX(t) of a random process X(t) is

mX(t) = E[X(t)] =
∫ ∞

−∞
xfX(t)(x) dx.

In general, mX(t) is a function of time. Suppose we write

X(t) = mX(t) + Y (t)

then Y (t) has zero mean. Trends in the behavior of X(t) are reflected in the

variation of mX(t) with time.

Autocorrelation RX(t1, t2) of a random process X(t) is the joint moment of

X(t1) and X(t2)

RX(t1, t2) = E[X(t1)X(t2)] =
∫ ∞

−∞

∫ ∞

−∞
xyfX(t1),X(t2)

dxdy.

Note that fX1(t),X2(t)
is the second order pdf of X(t) and RX(t1, t2) is a function

of t1 and t2.



Autocovariance CX(t1, t2) of a random process X(t) is defined as the covariance

of X(t1) and X(t2):

CX(t1, t2) = E[{X(t1) − mX(t1)}{X(t2) − mX(t2)}]

= RX(t1, t2) − mX(t1)mX(t2).

In particular, when t1 = t2 = t, we have

VAR[X(t)] = E[(X(t) − mX(t))2] = CX(t, t).

Correlation coefficient of X(t) is defined as

ρX(t1, t2) =
CX(t1, t2)

√

CX(t1, t1)
√

CX(t2, t2)
; |ρX(t1, t2)| ≤ 1.

The mean, autocorrelation and autocovariance functions provide only partial

description of a random process.



Example Sinusoid with random amplitude

Let X(t) = A cos 2πt, A is some random variable;

mX(t) = E[A cos 2πt] = E[A] cos 2πt.

Remark The process is always zero for those values of t where cos 2πt = 0.

The autocorrelation is RX(t1, t2) = E[A cos 2πt1A cos 2πt2]

= E[A2] cos 2πt1 cos 2πt2,

and

autocovariance is CX(t1, t2) = RX(t1, t2) − mX(t1)mX(t2)

= {E[A2] − E[A]2} cos 2πt1 cos 2πt2

= VAR[A] cos 2πt1 cos 2πt2.



Example Sinusoid with random phase

X(t) = cos(ωt + Θ),Θ is uniformly distributed in (−π, π).

Mean

mX(t) = E[cos(ωt + Θ)] =
1

2π

∫ π

−π
cos(ωt + θ) dθ = 0.

The autocorrelation and autocovariance are

CX(t1, t2) = RX(t1, t2) = E[cos(ωt1 + Θ)cos(ωt2 + Θ)]

=
1

2π

∫ π

−π

1

2
{cos[ω(t1 − t2)] + cos[ω(t1 + t2) + 2θ]} dθ

=
1

2
cos(ω(t1 − t2)).

mX(t) is a constant and CX(t1, t2) depends only on |t1 − t2|.



Example Discrete-time random process

A discrete-time random process is defined by Xn = sn, for n ≥ 0, where s is

selected at random from the interval (0,1).

(a) Find the cdf of Xn.

(b) Find the joint cdf for Xn and Xn+1.

(c) Find the mean and autovariance functions of Xn.

Solution

(a) For 0 < y < 1, P [Xn ≤ y] = P [sn ≤ y] = P [s ≤ y1/n] = y1/n, since s is

selected at random in (0,1).



(b) P [Xn ≤ r, Xn+1 ≤ t] = P [sn ≤ r, sn+1 ≤ t] = P [s ≤ r1/n, s ≤ t1/(n+1)]

= P [s ≤ min(r1/n, t1/(n+1)] = min(r1/n, t1/(n+1)).

(c)

E[Xn] =
∫ 1

0
sn ds

=

[

sn+1

n + 1

]1

0

=
1

n + 1
.

RX(n, n + k) = E[XnXn+k] =
∫ 1

0
s2n+k ds

=

[

s2n+k+1

2n + k + 1

]1

0

=
1

2n + k + 1
.

CX(n, n + k) = RX(n, n + k) − E[Xn]E[Xn+k]

=
1

2n + k + 1
−

(

1

n + 1

)(

1

n + k + 1

)

.



Example Sum of independent random variables

Let Z(t) = At + B, where A and B are independent random variables.

(a) Find the pdf of Z(t), t > 0.

(b) Find mZ(t) and CZ(t1, t2), t > 0 and t1 > 0, t2 > 0.



Solution

(a) Since A and B are independent, so do At and B. Let fA(x) and fB(y)

denote the pdf of A and B, respectively, then

fAt(x
′) =

1

t
fA

(

x′

t

)

.

fZ(t)(z) is given by the convolution between fAt(x) and fB(x):

fZ(t)(z) =
∫ ∞

−∞

1

t
fA

(

x′

t

)

fB(z − x′) dx′.

(b) mZ(t) = E[At + B] = tE[A] + E[B].

CZ(t1, t2) = COV(t1A + B, t2A + B)

= t1t2COV(A, A) + (t1 + t2)COV(A, B) + COV(B, B)

= t1t2VAR(A) + VAR(B) + (t1 + t2)COV(A, B).



Two random processes

The processes X(t) and Y (t) are said to be independent if the vector random

variables (X(t1), · · · , X(tk)) and (Y (t′1), · · · , Y (t′j)) are independent for all k, j,

and all choices of t1, · · · , tk and t′1, · · · , t′j.

Cross-covariance

CX,Y (t1, t2) = E[{X(t1) − mX(t1)}{Y (t2) − mY (t2)}]

= RX,Y (t1, t2) − mX(t1)mY (t2)

X(t) and Y (t) are uncorrelated if CX,Y (t1, t2) = 0 for all t1 and t2.



Example Sum of independent and identically distributed Gaussian random

variables

Let X(t) = A cosωt+B sinωt, where A and B are iid Gaussian random variables

with zero mean and variance σ2. Find the mean and autocovariance of X(t).

E[X(t)] = mX(t) = E[A] cosωt + E[B] sinωt = 0

since A and B both have zero mean.

CX(t1, t2) = RX(t1, t2)

= E[(A cosωt1 + B sinωt1)(A cosωt2 + B sinωt2)]

= E[A2 cosωt1 cosωt2 + AB(sinωt1 cosωt2 + cosωt1 sinωt2)

+B2 sinωt1 sinωt2]

= σ2[cosωt1 cosωt2 + sinωt1 sinωt2]

= σ2 cosω(t1 − t2).

Note that E[A2] = E[B2] = σ2 and E[AB] = E[A]E[B] = 0.



Independent and identically distributed discrete time random processes

Let Xn be a discrete time random process consisting of a sequence of inde-

pendent, identically distributed (iid) random variables with common cdf FX(x),

mean m and variance σ2. The joint cdf for any time instants n1, · · · , nk is given

by

FX1···Xk
(x1, x2, · · · , xk) = P [X1 ≤ x1, · · · , Xk ≤ xk]

= FX(x1)FX(x2) · · ·FX(xk).

mX(n) = E[Xn] = m, for all n;

CX(n1, n2) = E[(Xn1 − m)(Xn2 − m)] = E[Xn1 − m]E[Xn2 − m] = 0, n1 6= n2.

If n1 = n2, then CX(n1, n2) = σ2.

We write CX(n1, n2) = σ2δn1,n2, where δn1,n2 =

{

1 if n1 = n2
0 otherwise

.



Independent and stationary increments

1. Random changes of the form Xt+h−Xt, for fixed h > 0, are called increments

of the process.

2. If each set of increments, corresponding to non-overlapping collection of

time intervals, is mutually independent, then Xt is said to be a process with

independent increments.

That is, for any k and any choice of sampling instants t1 < t2 · · · < tk, the

random variables

X(t2) − X(t1), · · · , X(tk) − X(tk−1)

are independent random variables.

3. If Xt+h −Xt has a distribution that depends only on h, not on t, then Xt is

said to have stationary increments.



Markov process

A random process X(t) is said to be Markov if the future of the process given

the present is independent of the past. For discrete-valued Markov process

P [X(tk) = xk|X(tk−1) = xk−1, · · · , X(t1) = x1]

= P [X(tk) = xk|X(tk−1) = xk−1].



Example One dimensional random walk (frog hopping)

The initial position of a frog is taken to be at position 0. Let p and q = 1 − p

be the probabilities that the frog will choose to move to the right and to the

left, respectively. Let Xn be the position of the frog after n moves.

P [X1 = 1] = p, P [X1 = −1] = q

P [X2 = 2] = p2, P [X2 = 0] = 2pq, P [X2 = −2] = q2

P [X3 = 3] = P3, P [X3 = 1] = 3p2q, P [X3 = −1] = 3pq2, P [X3 = −3] = q3

{X1, · · · , Xn} is an indexed family of random variables. The random walk process

is a discrete-valued discrete time random process.



Questions

1. Is this random process Markovian? Check whether only the information of

the present position is relevant for predicting the future movements.

Suppose the frog is at position 4 after 10 moves, does the probability that

it will be in position 8 after 16 moves (6 more moves) depend on how it

moves to position 4 within the first 10 moves?

Answer The 11th to 16th moves are independent of the earlier 10 moves.

2. Are X10−X4 and X16−X12 independent? How about X10−X4 and X12−X8?

Hint We are considering increments over non-overlapping and overlapping

intervals, respectively.



Each move is an independent Bernoulli trial. The probability mass functions of

X3 are

PX3
(3) = p3, PX3

(1) = 3C1p2q, PX3
(−1) = 3C2pq2, PX3

(−3) = q3.

In general,

PXk
(j) = kCk+j

2

p
k+j
2 q

k−j
2 , −k ≤ j ≤ k,

Why? Let R and L be the number of right moves and left moves, respecitvely.

We have

R + L = k and R − L = j

so that R = (k + j)/2. Note that when k is odd (even), j must be odd (even).

How to find the joint pmf’s?

For example, P [X2 = 0, X3 = 3] = P [X3 = 3|X2 = 0]P [X2 = 0] = 0;

P [X2 = 2, X3 = 1] = P [X3 = 1|X2 = 2]P [X2 = 2] = qp2.



Sum processes

Sn =
n
∑

i=1

Xi, Xi’s are iid random variables. With Sn = Sn−1 + Xn, n = 2,3, · · ·

and S1 = X1, we take S0 = 0 for notational convenience.

• It is called a binomial counting process if Xi’s are iid Bernoulli random

variables.

1. Sn is Markovian:

P [Sn = αn|Sn−1 = αn−1]

= P [Sn = αn|Sn−1 = αn−1, Sn−2 = αn−2, · · · , S1 = α1].

This is because Sn = Sn−1 + Xn and the value taken by Xn is independent

of the values taken by X1, · · · , Xn−1.



2. Sn has independent increments in non-overlapping time intervals (no Xn’s

are in common).

3. Sn has stationary increments

P [Sn+k − Sk = β] = P [Sn − S0 = β] = P [Sn = β], independent of k.

This is because Sn+k − Sk = sum of n iid random variables.

Remark

Sn and Sm are not independent since

Sn = X1 + · · · + Xn and Sm = X1 + · · · + Xm.

Say, for n > m, both contain X1, · · · , Xm.



Example Find P [Sn = α, Sm = β], n > m.

Solution

P [Sn = α, Sm = β] = P [Sn − Sm = α − β, Sm = β]

= P [Sn − Sm = α − β]P [Sm = β],

due to independent increments over non-overlapping intervals. Further, from

stationary increments property, we have Sn − Sm = Sn−m − S0 = Sn−m so that

P [Sn = α, Sm = β] = P [Sn−m = α − β]P [Sm = β].

This verifies that Sn and Sm are not independent since

P [Sn = α, Sm = β] 6= P [Sn = α]P [Sm = β].



Mean, variance and autocovariance of sum processes

Let m and σ2 denote the mean and variance of Xi, for any i. Since the sum

process Sn is the sum of n iid random variables, its mean and variance are

mS(n) = E[Sn] = nE[Xi] = nm

VAR[Sn] = nVAR[Xi] = nσ2.

Note that both mS(n) and VAR[Sn] grow linearly with n. The autocovariance

of Sn is

CS(n, k) = E[(Sn − E[Sn])(Sk − E[Sk])]

= E











n
∑

i=1

(Xi − m)













k
∑

j=1

(Xj − m)











=
n
∑

i=1

k
∑

j=1

E[(Xi − m)(Xj − m)]

=
min(n,k)
∑

i=1

CX(i, i) = min(n, k)σ2

since E[(Xi − m)(Xj − m)] = σ2δi,j and only those terms with i = j survive.



Alternative method

Without loss of generality, we let n ≤ k so that n = min(n, k).

CS(n, k) = E[(Sn − nm)(Sk − km)]

= E[(Sn − nm) {Sn − nm + (Sk − km) − (Sn − nm)}]

= E[(Sn − nm)2] + E[(Sn − nm)(Sk − Sn − (k − n)m)],

and since Sn and Sk − Sn are independent, so

CS(n, k) = E[(Sn − nm)2] + E[Sn − nm]E[Sk − Sn − (k − n)m]

= E[(Sn − nm)2] = Var[Sn] = nσ2 = min(n, k)σ2.



Binomial counting process

Let Sn be the sum of n independent Bernoulli random variables, that is, Sn is a

binomial random variable with parameters n and p. When there are j successes

out of n trials, then Sn = j.

P [Sn = j] =

{

nCjp
j(1 − p)n−j for 0 ≤ j ≤ n

0 otherwise
.

Note that Sn has mean np and variance np(1 − p).



To prove the claim on the variance of Sn, we consider

VAR[Sn] = E[S2
n] − E[Sn]2, where E[S2

n] =
n
∑

j=0

j2nCjp
jqn−j.

Note that
n
∑

j=0

j2nCjp
jqn−j =

n
∑

j=2

j(j − 1)nCjp
jqn−j +

n
∑

j=0

jnCjp
jqn−j

= n(n − 1)p2
n−2
∑

j′=0
n−2Cj′p

j′qn−2−j′ + np, where j′ = j − 2.

Lastly, VAR[Sn] = n(n − 1)p2 + np − n2p2 = np − np2 = npq.



One-dimensional random walk revisited

mean = E[Xn] = 0

variance = Var(Xn) = 4p(1 − p)

Hence, the autocovariance

CX(n, k) = min(n, k)4p(1 − p).



Example Let Xn consist of an iid sequence of Poisson random variables with

mean α.

(a) Find the pmf of the sum process Sn.

(b) Find the joint pmf of Sn and Sn+k.

(c) Find COV(Sn+k, Sn).

Solution

(a) Recall that the sum of independent Poisson variables remains to be Poisson

distributed. Let α be the common mean of these independent Poisson

variables. The sum of these n variables is a Poisson variable with mean

µ = E[X1] + · · · + E[Xn] = nα.

Now, Sn is a Poisson variable with mean nα.

P [Sn = m] =
(nα)me−nα

m!
.



(b) P [Sn = m, Sn+k = `] = P [Sn+k = `|Sn = m]P [Sn = m], ` ≥ m

= P [Sk = ` − m]P [Sn = m] (stationary increments)

=
(kα)`−me−kα

(` − m)!

(nα)me−nα

m!
.

(c) VAR(Sn) = VAR(Sn+k − Sk) = VAR(Sn+k) + VAR(Sk) − 2COV(Sk, Sn+k)

so that COV(Sk, Sn+k) =
1

2
[VAR(Sn+k) + VAR(Sk) − VAR(Sn)]

=
1

2
[(n + k)α + kα − nα] = kα.


