
Poisson process

Events occur at random instants of time at an average rate of λ events per

second.

e.g. arrival of a customer to a service station or breakdown of a component in

some system.

Let N(t) be the number of event occurrences in [0, t], N(t) is a nondecreasing,

integer valued, continuous-time random process.

Suppose [0, t] is divided into n subintervals of width ∆t =
t

n
.



Two assumptions:

1. The probability of more than one event occurences in a subinterval is neg-

ligible compared to the probability of observing one or zero events. That

is, outcome in each subinterval is a Bernoulli trial.

2. Whether or not an event occurs in a subinterval is independent of the

outcomes in other intervals. That is, these Bernoulli trials are independent.

These two assumptions together imply that the counting process N(t) can

be approximated by the binomial counting process that counts the number of

successes in the n Bernoulli trials.



If the probability of an event occurrence in each subinterval is p, then the

expected number of event occurrences in [0, t] is np. Since events occur at the

rate λ events per second, then

λt = np.

Let n → ∞, p → 0 while λt = np remains fixed, the binomial distribution ap-

proaches a Poisson distribution with parameter λt.

p[N(t) = k] =
(λt)k

k!
e−λt, k = 0,1, · · · .

The Poisson process N(t) inherits properties of independent and stationary

increments from the underlying binomial process. Hence, the pmf for the

number of event occurrences in any interval of length t is given by the above

formula.



1. Independent increments for non-overlapping intervals

[t1, t2] and [t3, t4] are non-overlapping time intervals

N [t2] − N [t1] = increment over the interval [t1, t2]

N [t4] − N [t3] = increment over the interval [t3, t4].

If N(t) is a Poisson process, then

N [t2] − N [t1] and N [t4] − N [t3] are independent.



2. Stationary increments property

Increments in intervals of the same length have the same distribution re-

gardless of when the interval begins.

P [N(t2) − N(t1) = k] = P [N(t2 − t1) − N(0) = k]

= P [N(t2 − t1) = k] (N(0) = 0)

=
e−λ(t2−t1)[λ(t2 − t1)]

k

k!
, k = 0,1, · · · .

For t1 < t2, the joint pmf is

P [N(t1) = i, N(t2) = j] = P [N(t1) = i]P [N(t2) − N(t1) = j − i]

= P [N(t1) = i]P [N(t2 − t1) = j − i]

=
(λt1)

ie−λt1

i!

[λ(t2 − t1)]
j−ie−λ(t2−t1)

(j − i)!
.



Use of the independent increments property leads to

CN(t1, t2) = E[(N(t1) − λt1)(N(t2) − λt2)], assuming t1 ≤ t2

= E[(N(t1) − λt1){N(t2) − N(t1) − λ(t2 − t1) + N(t1) − λt1}]

= E[(N(t1) − λt1){N(t2) − N(t1) − λ(t2 − t1)}] + E[(N(t1) − λt1)
2]

= E[N(t1) − λt1]E[N(t2) − N(t1) − λ(t2 − t1)] + VAR[N(t1)]

= VAR[N(t1)] = λt1 = λmin(t1, t2).



Example Inquiries arrive at the rate 15 inquiries per minute as a Poisson

process. Find the probability that in a 1-minute period, 3 inquiries arrive during

the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

Solution The arrival rate in seconds is λ =
15

60
=

1

4
. The probability of interest

is

P [N(10) = 3, N(60) − N(45) = 2]

= P [N(10) = 3]P [N(60) − N(45) = 2] (independent increments)

= P [N(10) = 3]P [N(60 − 45) = 2] (stationary increments)

=

(

10
4

)3
e−10/4

3!
·

(

15
4

)2
e−15/4

2!
.



Consider the time T between event occurrences in a Poisson process. The

probability that the inter-event time T exceeds t seconds is equivalent to no

event occurring in t seconds (that is, no event in n Bernoulli trials)

P [T > t] = P [no event in t seconds]

= (1 − p)n =

(

1 −
λt

n

)n

→ e−λt, as n → ∞.

The random variable T is an exponential random variable with parameter λ.

Since the times between event occurrences in the underlying binomial process

are independent geometric random variables, the sequence of interevent times in

a Poisson process is composed of independent random variables. The interevent

times in a Poisson process form an iid sequence of exponential random variables

with mean 1/λ.



Example

Show that the inter-event times in a Poisson process with rate λ are independent

and identically distributed exponential random variables with parameter λ.

Solution

Let Z1, Z2, · · · be the random variables representing the length of inter-event

times. First, note that {Z1 > t} happens if and only if no event occurs in [0, t]

and thus

P [Z1 > t] = P [X(t) = 0] = e−λt.

Since P [X(t) = k] =
(λt)k

k!
e−λt, so FZ1

(t) = 1−e−λt. Hence, Z1 is an exponential

random variable with parameter λ. Note that

{Z2 > t|Z1 = τ} = {No event occur in [τ, τ + t]}

= {X(τ + t) − X(τ) = 0}.



Let f1(t) be the pdf of Z1. By the rule of total probabilities, we have

P [Z2 > t] =
∫ ∞

0
P [Z2 > t|Z1 = τ ]f1(τ) dτ

=
∫ ∞

0
P [X(τ + t) − X(τ) = 0]f1(τ) dτ

=
∫ ∞

0
P [X(t) = 0]f1(τ) dτ by stationary increments

= e−λt
∫ ∞

0
f1(τ) dτ = e−λt.

Therefore, Z2 is also an exponential random variable with parameter λ and it is

independent of Z1. Repeating the same argument, we conclude that Z1, Z2, · · ·

are iid exponential random variables with parameter λ.



Occurrence of nth event

Write tj as the random time corresponding to the occurence of the jth event,

j = 1,2, · · ·. Let Tj denote the iid exponential interarrival times, then Tj =

tj − tj−1, t0 = 0.

Sn = time at which the nth event occurs in a Poisson process

= T1 + T2 + · · · + Tn.

Example With λ = 1/4 inquiries per second, find the mean and variance of

the time until the arrival of the 10th inquiry.

E[S10] = 10E[T ] =
10

λ
= 40 sec

VAR[S10] = 10VAR[T ] =
10

λ2
= 160 sec2.



Example Messages arrive at a computer from two telephone lines according

to independent Poisson processes of rates λ1 and λ2, respectively.

(a) Find the probability that a message arrives first on line 1.

(b) Find the pdf for the time until a message arrives on either line.

(c) Find the pmf for N(t), the total number of messages that arrive in an

interval of length t.



Solution

(a) Let X1 and X2 be the number of messages from line 1 and line 2 in time

t, respectively.

Probability that a message arrives first on line 1

= P [X1 = 1|X1 + X2 = 1] =
P [X1 = 1, X2 = 0]

P [X1 + X2 = 1]
.

Since X1 and X2 are independent Poisson processes, their sum X1 + X2

is a Poisson process with rate λ1 + λ2. Further, since X1 and X2 are

independent,

P [X1 = 1, X2 = 0] = P [X1 = 1]P [X2 = 0]

so P [X1 = 1|X1 + X2 = 1] =
P [X1 = 1]P [X2 = 0]

P [X1 + X2 = 1]

=
e−λ1t(λ1t)e−λ2t(λ2t)0

e−(λ1+λ2)t(λ1+λ2)t
=

λ1

λ1 + λ2
.



(b) Let Ti be the time until the first message arrives in line i, i = 1,2; T1 and

T2 are independent exponential random variables.

The time until the first message arrives at a computer = T = min(T1, T2).

P [T > t] = P [min(T1, T2) > t] = P [T1 > t, T2 > t]

= P [T1 > t]P [T2 > t]

= e−λ1te−λ2t

pdf of T = fT (t) = −
d

dt
P [T > t] = (λ1 + λ2)e

−(λ1+λ2)t.



(c) N = total number of messages that arrive in an interval of time t

= X1 + X2.

It is known that the sum of independent Poisson processes remains to be

Poisson. Hence,

P [N = n] =
e−(λ1+λ2)t[(λ1 + λ2)t]

n

n!
.



Example

Show that given one arrival has occurred in the interval [0, t], then the customer

arrival time is uniformly distributed in [0, t]. Precisely, let X denote the arrival

time of the single customer, then for 0 < x < t, P [X ≤ x] = x/t.

Solution

P [X ≤ x] = P [N(x) = 1|N(t) = 1]

=
P [N(x) = 1 and N(t) = 1]

P [N(t) = 1]

=
P [N(x) = 1 and N(t) − N(x) = 0]

P [N(t) = 1]

=
P [N(x) = 1]P [N(t) − N(x) = 0]

P [N(t) = 1]

=
λxe−λxe−λ(t−x)

λte−λt
=

x

t
.



Random telegraph signal

Consider a random process X(t) that assumes the values ±1. Suppose that

X(0) = ±1 with probability
1

2
and X(t) then changes polarity with each occur-

rence of an event in a Poisson process of rate α.

The figure shows a sample path of a random telegraph signal. The times

between transitions Xj are iid exponential random variables. It can be shown

that the random telegraph signal is equally likely to be ±1 at any time t > 0.



Note that P [X(t) = ±1] = P [X(t) = ±1|X(0) = 1]P [X(0) = 1]

+ P [X(t) = ±1|X(0) = −1]P [X(0) = −1].

(i) X(t) will have the same polarity as X(0) only when an even number of

events occurs in (0, t].

P [X(t) = ±1|X(0) = ±1] = P [N(t) = even integer]

=
∞
∑

j=0

(αt)2j

(2j)!
e−αt

= e−αte
αt + e−αt

2
=

1

2
(1 + e−2αt).

(ii) X(t) and X(0) will differ in sign if the number of events in t is odd

P [X(t) = ±1|X(0) = ∓1] =
∞
∑

j=0

(αt)2j+1

(2j + 1)!
e−αt

= e−αte
αt − e−αt

2
=

1 − e−2αt

2
.



Now, P [X(t) = 1] =
1

2

[

1 + e−2αt

2
+

1 − e−2αt

2

]

=
1

2

and P [X(t) = −1] = 1 − P [X(t) = 1] =
1

2
.

Next, mX(t) = 1P [X(t) = 1] + (−1)P [X(t) = −1] = 0

VAR[X(t)] = E[X(t)2] − mX(t)2

= 12P [X(t) = 1] + (−1)2P [X(t) = −1] = 1

CX(t1, t2) = E[X(t1)X(t2)]

= 1P [X(t1) = X(t2)] + (−1)P [X(t1) 6= X(t2)]

=
1

2
[1 + e−2α|t2−t1|] −

1

2
[1 − e−2α|t2−t1|] = e−2α|t2−t1|.

The autocovariance tends to zero when |t2 − t1| → ∞.



Example

Find P [N(t− d) = j|N(t) = k] with d > 0, where N(t) is a Poisson process with

rate λ.

Solution

P [N(t − d) = j|N(t) = k]

=
P [N(t − d) = j, N(t) = k]

P [N(t) = k]

=
P [N(t − d) = j, N(t) − N(t − d) = k − j]

P [N(t) = k]

=
P [N(t − d) = j]P [N(t) − N(t − d) = k − j]

P [N(t) = k]
(independent increments)

=
P [N(t − d) = j]P [N(d) = k − j]

P [N(t) = k]
(stationary increments)

=

[λ(t−d)]je−λ(t−d)

j!
(λd)k−je−λd

(k−j)!

(λt)ke−λt

k!

= kCj
[λ(t − d)]j(λd)k−j

(λt)k
= kCj

(

t − d

t

)j (

d

t

)k−j

.



This is same as the probability of choosing j successes out of k trials, with

probability of success =
t − d

t
. Conditional on k occurrences over [0, t], we find

the probability of j occurrences over [0, t − d].



Example Customers arrive at a soft drink dispensing machine according to

a Poisson process with rate λ. Suppose that each time a customer deposits

money, the machine dispenses a soft drink with probability p. Find the pmf for

the number of soft drinks dispensed in time t. Assume that the machine holds

an infinite number of soft drinks.



Solution

Let N(t) be the number of soft drinks dispensed up to time t, and X(t) be the

number of customer arrivals up to time t.

P [N(t) = k] =
∞
∑

n=k

P [N(t) = k|X(t) = n]P [X(t) = n]

=
∞
∑

n=k

nCk pk(1 − p)n−k

[

e−λt(λt)n

n!

]

=
∞
∑

m=0
m+kCk pk(1 − p)me−λt(λt)m+k

(m + k)!
, set n = m + k

= e−λt







∞
∑

m=0

[λt(1 − p)]m

m!







(λpt)k

k!

= e−λteλt(1−p)(λpt)k

k!
=

e−λpt(λpt)k

k!
, k = 0,1,2, · · ·



Conditional Expectation

The conditional expectation of Y given X = x is given by

E[Y |x] =
∫ ∞

−∞
yfY (y|x) dy.

When X and Y are both discrete random variables

E[Y |x] =
∑

yj

yjPY (yj|x).

On the other hand, E[Y |x] can be viewed as a function of x:

g(x) = E[Y |x].

Correspondingly, this gives rise to the random variable: g(X) = E[Y |X].



What is E[E[Y |X]]?

Note that E[E[Y |X]] =















∫ ∞

−∞
E[Y |x]fX(x) dx, X is continuous

∑

xk

E[Y |xk]PX(xk), X is discrete
.

Suppose X and Y are jointly continuous random variables

E[E[Y |X]] =
∫ ∞

−∞
E[Y |x]fX(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
yfY (y|x) dy fX(x) dx

=
∫ ∞

−∞
y

∫ ∞

−∞
fXY (x, y) dxdy

=
∫ ∞

−∞
yfY (y) dy = E[Y ].

Generalization E[h(Y )] = E[E(h(Y )|X]] [in the above proof, change y to h(y)];

and in particular, E[Y k] = E[E[Y k|X]].



Example

A customer entering a service station is served by serviceman i with probability

pi, i = 1,2, · · · , n. The time taken by serviceman i to service a customer is

an exponentially distributed random variable with parameter αi. Let I be the

discrete random variable which assumes the value i if the customer is serviced

by the ith serviceman, and let PI(i) denote the probability mass function of I.
Let T denote the time taken to service a customer.

(a) Explain the meaning of the following formula

P [T ≤ t] =
n

∑

i=1

PI(i)P [T ≤ t|I = i].

Use it to find the probability density function of T .

(b) Use the conditional expectation formula

E[E[T |I]] = E[T ]

to compute E[T ].



Solution

(a) From the conditional probability formula, we have

P [T ≤ t, I = i] = PI(i)P [T ≤ t|I = i].

The marginal distribution function P [T ≤ t] is obtained by summing the

joint probability values P [T ≤ t, I = i] for all possible values of i. Hence,

P [T ≤ t] =
n

∑

i=1

PI(i)P [T ≤ t|I = i].

Here, PI(i) = pi and P [T ≤ t|I = i] = 1 − e−αit, t ≥ 0. The probability

density function of T is given by

fT (t) =
d

dt
P [T ≤ t] =















n
∑

i=1

piαie
−αit t ≥ 0

0 otherwise

.



(b) E[T ] = E[E[T |I]] =
n

∑

i=1

PI(i)E[T |I = i]

=
n

∑

i=1

pi

∫ ∞

0
αite

−αit dt

=
n

∑

i=1

pi

αi
.

The mean service time is the weighted average of mean service times at

different counters, where
1

αi
is the mean service time for the ith serviceman.



Example Find the mean and variance of number of customer arrivals N during

the service time T of a specific customer. Let fT (t) denote the pdf of T .

Assume the customer arrivals follow the Poisson process.

Solution E[N |T = t] = λt, E[N2|T = t] = λt + λ2t2 where λ is the average

number of customers per unit time.

E[N ] =
∫ ∞

0
E[N |T = t]fT (t) dt =

∫ ∞

0
λtfT (t) dt = λE[T ]

E[N2] =
∫ ∞

0
E[N2|T = t]fT (t) dt =

∫ ∞

0
(λt + λ2t2)fT (t) dt = λE[T ] + λ2E[T2]

VAR[N ] = E[N2] − E[N ]2 = λE[T ] + λ2E[T2] − λ2E[T ]2

= λ2VAR[T ] + λE[T ].



Example

(a) Show that

VAR[X] = E[VAR[X|Y ]] + VAR[E[X|Y ]].

(b) Suppose that by any time t the number of people that have arrived at a

train station is a Poisson variable with mean λt. If a train arrives at the

station at a time that is uniformly distributed over (0, T ), what are the

mean and variance of the number of passengers that enter the train?

Hint: Let Y denote the arrival time of the train. Knowing that E[N(Y )|Y =

t] = λt, compute E[N(Y )] and VAR[N(Y )].



Solution

Starting with

Var(X|Y ) = E[X2|Y ] − (E[X|Y ])2

so

E[Var(X|Y )] = E[E[X2|Y ]] − E[E[X|Y ])2]

= E[X2] − E[(E|Y ])2].

Since E[E[X|Y ]] = E[X], we have

Var(E[X|Y ]) = E[(E[X|Y ])2] − (E[X])2.

Hence, by adding the above two equations, we obtain the result.



Let N(t) denote the number of arrivals by t, and let Y denote the time at which

the train arrives. The random variable of interest is then N(Y ). Conditioning

on Y = t, we have

E[N(Y )|Y = t] = E[N(t)|Y = t]

= E[N(t)] by the independence of Y and N(t)

= λt since N(t) is Poisson with mean λt.

Hence

E[N(Y )|Y ] = λY

so taking expectations gives

E[N(Y )] = λE[Y ] =
λT

2
.



To obtain Var(N(Y )), we use the conditional variance formula:

Var(N(Y )|Y = t) = Var(N(t)|Y = t)

= Var(N(t)) by independence

= λt

so

Var(N(Y )|Y ) = λY

E[N(Y )|Y ] = λY.

Hence, from the conditional variance formula,

Var(N(Y )) = E[λY ] + Var(λY )

= λ
T

2
+ λ2T2

12

Note that we have used Var(Y ) = T2/12.


