Poisson process

Events occur at random instants of time at an average rate of λ events per second.
e.g. arrival of a customer to a service station or breakdown of a component in some system.

Let $N(t)$ be the number of event occurrences in $[0, t], N(t)$ is a nondecreasing, integer valued, continuous-time random process.

Suppose $[0, t]$ is divided into n subintervals of width $\Delta t=\frac{t}{n}$.

Two assumptions:

1. The probability of more than one event occurences in a subinterval is negligible compared to the probability of observing one or zero events. That is, outcome in each subinterval is a Bernoulli trial.
2. Whether or not an event occurs in a subinterval is independent of the outcomes in other intervals. That is, these Bernoulli trials are independent.

These two assumptions together imply that the counting process $N(t)$ can be approximated by the binomial counting process that counts the number of successes in the n Bernoulli trials.

If the probability of an event occurrence in each subinterval is p, then the expected number of event occurrences in $[0, t]$ is $n p$. Since events occur at the rate λ events per second, then

$$
\lambda t=n p .
$$

Let $n \rightarrow \infty, p \rightarrow 0$ while $\lambda t=n p$ remains fixed, the binomial distribution approaches a Poisson distribution with parameter λt.

$$
p[N(t)=k]=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t}, \quad k=0,1, \cdots
$$

The Poisson process $N(t)$ inherits properties of independent and stationary increments from the underlying binomial process. Hence, the pmf for the number of event occurrences in any interval of length t is given by the above formula.

1. Independent increments for non-overlapping intervals

[t_{1}, t_{2}] and $\left[t_{3}, t_{4}\right]$ are non-overlapping time intervals
$N\left[t_{2}\right]-N\left[t_{1}\right]=$ increment over the interval $\left[t_{1}, t_{2}\right]$
$N\left[t_{4}\right]-N\left[t_{3}\right]=$ increment over the interval $\left[t_{3}, t_{4}\right]$.
If $N(t)$ is a Poisson process, then

$$
N\left[t_{2}\right]-N\left[t_{1}\right] \text { and } N\left[t_{4}\right]-N\left[t_{3}\right] \text { are independent. }
$$

2. Stationary increments property

Increments in intervals of the same length have the same distribution regardless of when the interval begins.

$$
\begin{aligned}
P\left[N\left(t_{2}\right)-N\left(t_{1}\right)=k\right] & =P\left[N\left(t_{2}-t_{1}\right)-N(0)=k\right] \\
& =P\left[N\left(t_{2}-t_{1}\right)=k\right] \quad(N(0)=0) \\
& =\frac{e^{-\lambda\left(t_{2}-t_{1}\right)}\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}}{k!}, \quad k=0,1, \cdots
\end{aligned}
$$

For $t_{1}<t_{2}$, the joint pmf is

$$
\begin{aligned}
P\left[N\left(t_{1}\right)=i, N\left(t_{2}\right)=j\right] & =P\left[N\left(t_{1}\right)=i\right] P\left[N\left(t_{2}\right)-N\left(t_{1}\right)=j-i\right] \\
& =P\left[N\left(t_{1}\right)=i\right] P\left[N\left(t_{2}-t_{1}\right)=j-i\right] \\
& =\frac{\left(\lambda t_{1}\right)^{i} e^{-\lambda t_{1}}}{i!} \frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{j-i} e^{-\lambda\left(t_{2}-t_{1}\right)}}{(j-i)!}
\end{aligned}
$$

Use of the independent increments property leads to

$$
\begin{aligned}
C_{N}\left(t_{1}, t_{2}\right) & =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left(N\left(t_{2}\right)-\lambda t_{2}\right)\right], \quad \text { assuming } t_{1} \leq t_{2} \\
& =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left\{N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)+N\left(t_{1}\right)-\lambda t_{1}\right\}\right] \\
& =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left\{N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right\}\right]+E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)^{2}\right] \\
& =E\left[N\left(t_{1}\right)-\lambda t_{1}\right] E\left[N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right]+\operatorname{VAR}\left[N\left(t_{1}\right)\right] \\
& =\operatorname{VAR}\left[N\left(t_{1}\right)\right]=\lambda t_{1}=\lambda \min \left(t_{1}, t_{2}\right) .
\end{aligned}
$$

Example Inquiries arrive at the rate 15 inquiries per minute as a Poisson process. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

Solution The arrival rate in seconds is $\lambda=\frac{15}{60}=\frac{1}{4}$. The probability of interest is

$$
\begin{aligned}
& P[N(10)=3, N(60)-N(45)=2] \\
= & P[N(10)=3] P[N(60)-N(45)=2] \quad \text { (independent increments) } \\
= & P[N(10)=3] P[N(60-45)=2] \quad \text { (stationary increments) } \\
= & \frac{\left(\frac{10}{4}\right)^{3} e^{-10 / 4}}{3!} \cdot \frac{\left(\frac{15}{4}\right)^{2} e^{-15 / 4}}{2!} .
\end{aligned}
$$

Consider the time T between event occurrences in a Poisson process. The probability that the inter-event time T exceeds t seconds is equivalent to no event occurring in t seconds (that is, no event in n Bernoulli trials)

$$
\begin{aligned}
P[T>t] & =P[\text { no event in } t \text { seconds }] \\
& =(1-p)^{n}=\left(1-\frac{\lambda t}{n}\right)^{n} \rightarrow e^{-\lambda t}, \text { as } n \rightarrow \infty
\end{aligned}
$$

The random variable T is an exponential random variable with parameter λ. Since the times between event occurrences in the underlying binomial process are independent geometric random variables, the sequence of interevent times in a Poisson process is composed of independent random variables. The interevent times in a Poisson process form an iid sequence of exponential random variables with mean $1 / \lambda$.

Example

Show that the inter-event times in a Poisson process with rate λ are independent and identically distributed exponential random variables with parameter λ.

Solution

Let Z_{1}, Z_{2}, \cdots be the random variables representing the length of inter-event times. First, note that $\left\{Z_{1}>t\right\}$ happens if and only if no event occurs in $[0, t]$ and thus

$$
P\left[Z_{1}>t\right]=P[X(t)=0]=e^{-\lambda t}
$$

Since $P[X(t)=k]=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$, so $F_{Z_{1}}(t)=1-e^{-\lambda t}$. Hence, Z_{1} is an exponential random variable with parameter λ. Note that

$$
\begin{aligned}
\left\{Z_{2}>t \mid Z_{1}=\tau\right\} & =\{\text { No event occur in }[\tau, \tau+t]\} \\
& =\{X(\tau+t)-X(\tau)=0\}
\end{aligned}
$$

Let $f_{1}(t)$ be the pdf of Z_{1}. By the rule of total probabilities, we have

$$
\begin{aligned}
P\left[Z_{2}>t\right] & =\int_{0}^{\infty} P\left[Z_{2}>t \mid Z_{1}=\tau\right] f_{1}(\tau) d \tau \\
& =\int_{0}^{\infty} P[X(\tau+t)-X(\tau)=0] f_{1}(\tau) d \tau \\
& =\int_{0}^{\infty} P[X(t)=0] f_{1}(\tau) d \tau \text { by stationary increments } \\
& =e^{-\lambda t} \int_{0}^{\infty} f_{1}(\tau) d \tau=e^{-\lambda t}
\end{aligned}
$$

Therefore, Z_{2} is also an exponential random variable with parameter λ and it is independent of Z_{1}. Repeating the same argument, we conclude that Z_{1}, Z_{2}, \ldots are iid exponential random variables with parameter λ.

Occurrence of nth event

Write t_{j} as the random time corresponding to the occurence of the $j^{\text {th }}$ event, $j=1,2, \cdots$. Let T_{j} denote the iid exponential interarrival times, then $T_{j}=$ $t_{j}-t_{j-1}, \quad t_{0}=0$.
$S_{n}=$ time at which the nth event occurs in a Poisson process

$$
=T_{1}+T_{2}+\cdots+T_{n}
$$

Example With $\lambda=1 / 4$ inquiries per second, find the mean and variance of the time until the arrival of the 10th inquiry.

$$
\begin{gathered}
E\left[S_{10}\right]=10 E[T]=\frac{10}{\lambda}=40 \mathrm{sec} \\
\operatorname{VAR}\left[S_{10}\right]=10 \operatorname{VAR}[T]=\frac{10}{\lambda^{2}}=160 \mathrm{sec}^{2}
\end{gathered}
$$

Example Messages arrive at a computer from two telephone lines according to independent Poisson processes of rates λ_{1} and λ_{2}, respectively.
(a) Find the probability that a message arrives first on line 1.
(b) Find the pdf for the time until a message arrives on either line.
(c) Find the pmf for $N(t)$, the total number of messages that arrive in an interval of length t.

Solution

(a) Let X_{1} and X_{2} be the number of messages from line 1 and line 2 in time t, respectively.

Probability that a message arrives first on line 1
$=P\left[X_{1}=1 \mid X_{1}+X_{2}=1\right]=\frac{P\left[X_{1}=1, X_{2}=0\right]}{P\left[X_{1}+X_{2}=1\right]}$.
Since X_{1} and X_{2} are independent Poisson processes, their sum $X_{1}+X_{2}$ is a Poisson process with rate $\lambda_{1}+\lambda_{2}$. Further, since X_{1} and X_{2} are independent,

$$
\begin{aligned}
P\left[X_{1}=1, X_{2}=0\right] & =P\left[X_{1}=1\right] P\left[X_{2}=0\right] \\
\text { so } P\left[X_{1}=1 \mid X_{1}+X_{2}=1\right] & =\frac{P\left[X_{1}=1\right] P\left[X_{2}=0\right]}{P\left[X_{1}+X_{2}=1\right]} \\
& =\frac{e^{-\lambda_{1} t}\left(\lambda_{1} t\right) e^{-\lambda_{2} t}\left(\lambda_{2} t\right)^{0}}{e^{-\left(\lambda_{1}+\lambda_{2}\right) t\left(\lambda_{1}+\lambda_{2}\right) t}}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

(b) Let T_{i} be the time until the first message arrives in line $i, i=1,2 ; T_{1}$ and T_{2} are independent exponential random variables.

The time until the first message arrives at a computer $=T=\min \left(T_{1}, T_{2}\right)$.

$$
\begin{aligned}
& \qquad \begin{aligned}
P[T>t] & =P\left[\min \left(T_{1}, T_{2}\right)>t\right]=P\left[T_{1}>t, T_{2}>t\right] \\
& =P\left[T_{1}>t\right] P\left[T_{2}>t\right] \\
& =e^{-\lambda_{1} t} e^{-\lambda_{2} t}
\end{aligned} \\
& \text { pdf of } T=f_{T}(t)=-\frac{d}{d t} P[T>t]=\left(\lambda_{1}+\lambda_{2}\right) e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
\end{aligned}
$$

(c) $N=$ total number of messages that arrive in an interval of time t

$$
=X_{1}+X_{2}
$$

It is known that the sum of independent Poisson processes remains to be Poisson. Hence,

$$
P[N=n]=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right) t}\left[\left(\lambda_{1}+\lambda_{2}\right) t\right]^{n}}{n!}
$$

Example

Show that given one arrival has occurred in the interval $[0, t]$, then the customer arrival time is uniformly distributed in $[0, t]$. Precisely, let X denote the arrival time of the single customer, then for $0<x<t, P[X \leq x]=x / t$.

Solution

$$
\begin{aligned}
P[X \leq x] & =P[N(x)=1 \mid N(t)=1] \\
& =\frac{P[N(x)=1 \text { and } N(t)=1]}{P[N(t)=1]} \\
& =\frac{P[N(x)=1 \text { and } N(t)-N(x)=0]}{P[N(t)=1]} \\
& =\frac{P[N(x)=1] P[N(t)-N(x)=0]}{P[N(t)=1]} \\
& =\frac{\lambda x e^{-\lambda x} e^{-\lambda(t-x)}}{\lambda t e^{-\lambda t}}=\frac{x}{t} .
\end{aligned}
$$

Random telegraph signal

Consider a random process $X(t)$ that assumes the values ± 1. Suppose that $X(0)= \pm 1$ with probability $\frac{1}{2}$ and $X(t)$ then changes polarity with each occurrence of an event in a Poisson process of rate α.

The figure shows a sample path of a random telegraph signal. The times between transitions X_{j} are iid exponential random variables. It can be shown that the random telegraph signal is equally likely to be ± 1 at any time $t>0$.

Note that $P[X(t)= \pm 1]=P[X(t)= \pm 1 \mid X(0)=1] P[X(0)=1]$

$$
+P[X(t)= \pm 1 \mid X(0)=-1] P[X(0)=-1]
$$

(i) $X(t)$ will have the same polarity as $X(0)$ only when an even number of events occurs in ($0, t$].

$$
\begin{aligned}
P[X(t)= \pm 1 \mid X(0)= \pm 1] & =P[N(t)=\text { even integer }] \\
& =\sum_{j=0}^{\infty} \frac{(\alpha t)^{2 j}}{(2 j)!} e^{-\alpha t} \\
& =e^{-\alpha t} \frac{e^{\alpha t}+e^{-\alpha t}}{2}=\frac{1}{2}\left(1+e^{-2 \alpha t}\right)
\end{aligned}
$$

(ii) $X(t)$ and $X(0)$ will differ in sign if the number of events in t is odd

$$
\begin{aligned}
P[X(t)= \pm 1 \mid X(0)=\mp 1] & =\sum_{j=0}^{\infty} \frac{(\alpha t)^{2 j+1}}{(2 j+1)!} e^{-\alpha t} \\
& =e^{-\alpha t} \frac{e^{\alpha t}-e^{-\alpha t}}{2}=\frac{1-e^{-2 \alpha t}}{2}
\end{aligned}
$$

Now, $P[X(t)=1]=\frac{1}{2}\left[\frac{1+e^{-2 \alpha t}}{2}+\frac{1-e^{-2 \alpha t}}{2}\right]=\frac{1}{2}$
and $P[X(t)=-1]=1-P[X(t)=1]=\frac{1}{2}$.
Next, $m_{X}(t)=1 P[X(t)=1]+(-1) P[X(t)=-1]=0$

$$
\begin{aligned}
& \operatorname{VAR}[X(t)]=E\left[X(t)^{2}\right]-m_{X}(t)^{2} \\
& \\
& =1^{2} P[X(t)=1]+(-1)^{2} P[X(t)=-1]=1 \\
& \begin{aligned}
C_{X}\left(t_{1}, t_{2}\right)= & E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] \\
= & 1 P\left[X\left(t_{1}\right)=X\left(t_{2}\right)\right]+(-1) P\left[X\left(t_{1}\right) \neq X\left(t_{2}\right)\right] \\
= & \frac{1}{2}\left[1+e^{-2 \alpha\left|t_{2}-t_{1}\right|}\right]-\frac{1}{2}\left[1-e^{-2 \alpha\left|t_{2}-t_{1}\right|}\right]=e^{-2 \alpha\left|t_{2}-t_{1}\right|}
\end{aligned}
\end{aligned}
$$

The autocovariance tends to zero when $\left|t_{2}-t_{1}\right| \rightarrow \infty$.

Example

Find $P[N(t-d)=j \mid N(t)=k]$ with $d>0$, where $N(t)$ is a Poisson process with rate λ.

Solution

$$
\begin{aligned}
& P[N(t-d)=j \mid N(t)=k] \\
= & \frac{P[N(t-d)=j, N(t)=k]}{P[N(t)=k]} \\
= & \frac{P[N(t-d)=j, N(t)-N(t-d)=k-j]}{P[N(t)=k]} \\
= & \frac{P[N(t-d)=j] P[N(t)-N(t-d)=k-j]}{P[N(t)=k]} \text { (independent increments) } \\
= & \frac{P[N(t-d)=j] P[N(d)=k-j]}{P[N(t)=k]} \text { (stationary increments) } \\
= & \frac{\frac{[\lambda(t-d)]^{j} j^{-\lambda(t-d)}}{j!} \frac{(\lambda d)^{k-j^{-}} e^{-\lambda d}}{k-j)!}}{\frac{(\lambda t)^{k} e^{-}-\lambda t}{k!}} \\
= & { }_{k} C_{j} \frac{[\lambda(t-d)]^{j}(\lambda d)^{k-j}}{(\lambda t)^{k}}={ }_{k} C_{j}\left(\frac{t-d}{t}\right)^{j}\left(\frac{d}{t}\right)^{k-j} .
\end{aligned}
$$

This is same as the probability of choosing j successes out of k trials, with probability of success $=\frac{t-d}{t}$. Conditional on k occurrences over $[0, t]$, we find the probability of j occurrences over $[0, t-d]$.

Example Customers arrive at a soft drink dispensing machine according to a Poisson process with rate λ. Suppose that each time a customer deposits money, the machine dispenses a soft drink with probability p. Find the pmf for the number of soft drinks dispensed in time t. Assume that the machine holds an infinite number of soft drinks.

Solution

Let $N(t)$ be the number of soft drinks dispensed up to time t, and $X(t)$ be the number of customer arrivals up to time t.

$$
\begin{aligned}
P[N(t)=k] & =\sum_{n=k}^{\infty} P[N(t)=k \mid X(t)=n] P[X(t)=n] \\
& =\sum_{n=k}^{\infty} n C_{k} p^{k}(1-p)^{n-k}\left[\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}\right] \\
& =\sum_{m=0}^{\infty} m+k C_{k} p^{k}(1-p)^{m} \frac{e^{-\lambda t}(\lambda t)^{m+k}}{(m+k)!}, \text { set } n=m+k \\
& =e^{-\lambda t}\left\{\sum_{m=0}^{\infty} \frac{[\lambda t(1-p)]^{m}}{m!}\right\} \frac{(\lambda p t)^{k}}{k!} \\
& =e^{-\lambda t} e^{\lambda t(1-p)} \frac{(\lambda p t)^{k}}{k!}=\frac{e^{-\lambda p t}(\lambda p t)^{k}}{k!}, \quad k=0,1,2, \ldots
\end{aligned}
$$

Conditional Expectation

The conditional expectation of Y given $X=x$ is given by

$$
E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y}(y \mid x) d y
$$

When X and Y are both discrete random variables

$$
E[Y \mid x]=\sum_{y_{j}} y_{j} P_{Y}\left(y_{j} \mid x\right)
$$

On the other hand, $E[Y \mid x]$ can be viewed as a function of x :

$$
g(x)=E[Y \mid x] .
$$

Correspondingly, this gives rise to the random variable: $g(X)=E[Y \mid X]$.

What is $E[E[Y \mid X]]$?
Note that $E[E[Y \mid X]]=\left\{\begin{array}{ll}\int_{-\infty}^{\infty} E[Y \mid x] f_{X}(x) d x, & X \text { is continuous } \\ \sum_{x_{k}} E\left[Y \mid x_{k}\right] P_{X}\left(x_{k}\right), & X \text { is discrete }\end{array}\right.$.
Suppose X and Y are jointly continuous random variables

$$
\begin{aligned}
E[E[Y \mid X]] & =\int_{-\infty}^{\infty} E[Y \mid x] f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y}(y \mid x) d y f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} y f_{Y}(y) d y=E[Y] .
\end{aligned}
$$

Generalization $E[h(Y)]=E[E(h(Y) \mid X]]$ [in the above proof, change y to $h(y)]$; and in particular, $E\left[Y^{k}\right]=E\left[E\left[Y^{k} \mid X\right]\right]$.

Example

A customer entering a service station is served by serviceman i with probability $p_{i}, i=1,2, \cdots, n$. The time taken by serviceman i to service a customer is an exponentially distributed random variable with parameter α_{i}. Let I be the discrete random variable which assumes the value i if the customer is serviced by the i th serviceman, and let $P_{I}(i)$ denote the probability mass function of I. Let T denote the time taken to service a customer.
(a) Explain the meaning of the following formula

$$
P[T \leq t]=\sum_{i=1}^{n} P_{I}(i) P[T \leq t \mid I=i]
$$

Use it to find the probability density function of T.
(b) Use the conditional expectation formula

$$
E[E[T \mid I]]=E[T]
$$

to compute $E[T]$.

Solution

(a) From the conditional probability formula, we have

$$
P[T \leq t, I=i]=P_{I}(i) P[T \leq t \mid I=i]
$$

The marginal distribution function $P[T \leq t]$ is obtained by summing the joint probability values $P[T \leq t, I=i]$ for all possible values of i. Hence,

$$
P[T \leq t]=\sum_{i=1}^{n} P_{I}(i) P[T \leq t \mid I=i]
$$

Here, $P_{I}(i)=p_{i}$ and $P[T \leq t \mid I=i]=1-e^{-\alpha_{i} t}, t \geq 0$. The probability density function of T is given by

$$
f_{T}(t)=\frac{d}{d t} P[T \leq t]= \begin{cases}\sum_{i=1}^{n} p_{i} \alpha_{i} e^{-\alpha_{i} t} & t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
\begin{aligned}
E[T] & =E[E[T \mid I]]=\sum_{i=1}^{n} P_{I}(i) E[T \mid I=i] \\
& =\sum_{i=1}^{n} p_{i} \int_{0}^{\infty} \alpha_{i} t e^{-\alpha_{i} t} d t \\
& =\sum_{i=1}^{n} \frac{p_{i}}{\alpha_{i}}
\end{aligned}
$$

The mean service time is the weighted average of mean service times at different counters, where $\frac{1}{\alpha_{i}}$ is the mean service time for the i th serviceman.

Example Find the mean and variance of number of customer arrivals N during the service time T of a specific customer. Let $f_{T}(t)$ denote the pdf of T. Assume the customer arrivals follow the Poisson process.

Solution $E[N \mid T=t]=\lambda t, E\left[N^{2} \mid T=t\right]=\lambda t+\lambda^{2} t^{2}$ where λ is the average number of customers per unit time.

$$
\begin{aligned}
E[N]= & \int_{0}^{\infty} E[N \mid T=t] f_{T}(t) d t=\int_{0}^{\infty} \lambda t f_{T}(t) d t=\lambda E[T] \\
E\left[N^{2}\right]= & \int_{0}^{\infty} E\left[N^{2} \mid T=t\right] f_{T}(t) d t=\int_{0}^{\infty}\left(\lambda t+\lambda^{2} t^{2}\right) f_{T}(t) d t=\lambda E[T]+\lambda^{2} E\left[T^{2}\right] \\
& \operatorname{VAR}[N]=E\left[N^{2}\right]-E[N]^{2}=\lambda E[T]+\lambda^{2} E\left[T^{2}\right]-\lambda^{2} E[T]^{2} \\
& =\lambda^{2} \operatorname{VAR}[T]+\lambda E[T] .
\end{aligned}
$$

Example

(a) Show that

$$
\operatorname{VAR}[X]=E[\operatorname{VAR}[X \mid Y]]+\operatorname{VAR}[E[X \mid Y]]
$$

(b) Suppose that by any time t the number of people that have arrived at a train station is a Poisson variable with mean λt. If a train arrives at the station at a time that is uniformly distributed over $(0, T)$, what are the mean and variance of the number of passengers that enter the train?

Hint: Let Y denote the arrival time of the train. Knowing that $E[N(Y) \mid Y=$ $t]=\lambda t$, compute $E[N(Y)]$ and $\operatorname{VAR}[N(Y)]$.

Solution

Starting with

$$
\operatorname{Var}(X \mid Y)=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}
$$

so

$$
\begin{aligned}
E[\operatorname{Var}(X \mid Y)] & \left.=E\left[E\left[X^{2} \mid Y\right]\right]-E[E[X \mid Y])^{2}\right] \\
& \left.=E\left[X^{2}\right]-E[(E \mid Y])^{2}\right]
\end{aligned}
$$

Since $E[E[X \mid Y]]=E[X]$, we have

$$
\operatorname{Var}(E[X \mid Y])=E\left[(E[X \mid Y])^{2}\right]-(E[X])^{2}
$$

Hence, by adding the above two equations, we obtain the result.

Let $N(t)$ denote the number of arrivals by t, and let Y denote the time at which the train arrives. The random variable of interest is then $N(Y)$. Conditioning on $Y=t$, we have

$$
\begin{aligned}
E[N(Y) \mid Y=t] & =E[N(t) \mid Y=t] \\
& =E[N(t)] \text { by the independence of } Y \text { and } N(t) \\
& =\lambda t \text { since } N(t) \text { is Poisson with mean } \lambda t .
\end{aligned}
$$

Hence

$$
E[N(Y) \mid Y]=\lambda Y
$$

so taking expectations gives

$$
E[N(Y)]=\lambda E[Y]=\frac{\lambda T}{2}
$$

To obtain $\operatorname{Var}(N(Y)$, we use the conditional variance formula:

$$
\begin{aligned}
\operatorname{Var}(N(Y) \mid Y=t) & =\operatorname{Var}(N(t) \mid Y=t) \\
& =\operatorname{Var}(N(t)) \text { by independence } \\
& =\lambda t
\end{aligned}
$$

so

$$
\begin{aligned}
\operatorname{Var}(N(Y) \mid Y) & =\lambda Y \\
E[N(Y) \mid Y] & =\lambda Y .
\end{aligned}
$$

Hence, from the conditional variance formula,

$$
\begin{aligned}
\operatorname{Var}(N(Y)) & =E[\lambda Y]+\operatorname{Var}(\lambda Y) \\
& =\lambda \frac{T}{2}+\lambda^{2} \frac{T^{2}}{12}
\end{aligned}
$$

Note that we have used $\operatorname{Var}(Y)=T^{2} / 12$.

