

Fall 2004

MATH 246 — Probability and Random Processes

Test One

Course Instructor: Prof. Y. K. Kwok

Time allowed: 50 minutes	
[]	points]
1. An unfair coin is tossed three times. Define the events	
$A = \{ \text{first toss is head} \}$	
$B = \{$ exactly two heads are tossed in consecutive tosses $\}$	
Are the above events independent? Give details of your justification.	[4]
<i>Hint:</i> The probability of getting a head is <i>not</i> the same as that of getting a tail.	
2. If A and B are events having positive probability. State whether each of the following statement is (i) necessarily true, (ii) necessarily false, or (iii) possibly true. Give your explanation in details.	
(a) If A and B are independent, then they are mutually exclusive.	[2]
(b) $P[A] = P[B] = 0.6$, and A and B are mutually exclusive.	[2]
(c) $P[A] = P[B] = 0.6$, and A and B are independent.	[2]
3. A box contains 5 red and 5 blue balls. One ball is selected at random and is discarded without its colour being seen. If a second ball is drawn at random and observe to be red, what is the probability that the first discarded ball was red?	[8]
4. Consider a square of unit side in the $x - y$ plane with corners at $(0,0), (0,1), (1,0)$ and $(1,1)$. A point (x,y) is chosen at random inside the square. Let Z be the random variable that gives the difference $x - y$ of the two coordinates.	
(a) Find the range of Z, S_Z .	[3]
(b) Let $F_Z(z)$ denote the cdf of Z, find $F_Z(0)$ and $F_Z(100)$.	[4]