MATH 246 - Probability and Random Processes
Solution to Test One

1. Let p be the probability of getting a head, where $p \neq 0.5$. The events are

$$
\begin{aligned}
A & =\{H H H, H H T, H T H, H T T\} \\
B & =\{H H T, T H H\} \\
A \cap B & =\{H H T\} \\
P[A] & =p, P[B]=2 p^{2}(1-p), \quad P[A \cap B]=p^{2}(1-p)
\end{aligned}
$$

Note that $P[A \cap B] \neq P[A] P[B]$ since $p \neq 0.5$, hence A and B are not independent.
2. (a) Necessarily false since if A and B are mutually exclusive then

$$
0=P[A \cap B] \neq P[A] P[B] .
$$

(b) Necessarily false since if A and B are mutually exclusive then

$$
P[A \cup B]=P[A]+P[B]=1.2>1
$$

and this is impossible.
(c) It can be possibly true since

$$
P[A] P[B]=0.36
$$

and it is possible that $P[A \cap B]$ assumes the value 0.36 .
3. Let B and R be the events that the discarded ball is blue and red, respectively, and let \widehat{R} be the event that the second ball is red. Now, $\{B, R\}$ is a partition of the sample space. By Bayes' Theorem, we have

$$
P[R \mid \widehat{R}]=\frac{R[\widehat{R} \mid R] P[R]}{P[\widehat{R} \mid R] P[R]+P[\widehat{R} \mid B] P[B]}
$$

Now, $P[R]=P[B]=\frac{1}{2}$ and $P[\widehat{R} \mid R]=\frac{4}{9}$ and $P[\widehat{R} \mid B]=\frac{5}{9}$ so that

$$
P[R \mid \widehat{R}]=\frac{\frac{1}{2} \times \frac{4}{9}}{\frac{1}{2} \times \frac{4}{9}+\frac{1}{2} \times \frac{5}{9}}=\frac{4}{9} .
$$

4. (a) Since $0 \leq x \leq 1$ and $0 \leq y \leq 1$ so that $-1 \leq x-y \leq 1$. Hence

$$
S_{Z}=\{z:-1 \leq z \leq 1\}
$$

(b) $F_{Z}(0)=P[Z \leq 0]=P[x \leq y]$

$$
\begin{aligned}
& =\frac{\text { area of shaded region }}{\text { area of square }} \\
& =\frac{1}{2} . \\
F_{Z}(100) & =P[Z \leq 100]=1 . \text { This is because }\{Z \leq 100\}
\end{aligned}
$$ is a sure event as $-1 \leq Z \leq 1$.

