MATH 246, Fall 1999

Final Examination

1. Let the pair of random variables U and W be defined by

$$
\left\{\begin{array}{c}
U=X(X-1) \\
W^{2}=U+1
\end{array}\right.
$$

where X is a random variable which is uniformly distributed over $(0,2)$. The plots of the functions

$$
\left\{\begin{array}{cc}
u=x(x-1), & 0<x<2 \\
w^{2}=u+1, & -1 \leq u<\infty
\end{array}\right.
$$

are shown in the figures below:

(a) Find the probability density function of $U, f_{U}(u)$.

Hint Recall that $f_{U}(u) \Delta u \approx P[u<U \leq u+\Delta u], \Delta u>0$, where Δu is very small.
Find the events associated with the random variable X which are equivalent to the event $\{u<U \leq u+\Delta u\}$. Note the difference between the cases (i) $-\frac{1}{4} \leq u<0$, (ii) $0 \leq u<2$, (iii) $u \notin\left[-\frac{1}{4}, 2\right)$, (correspond to having two roots, one root or no root, respectively, for the equation: $u=x(x-1), 0<x<2)$.
(b) Find the conditional probability density function of $W, f_{W}(w \mid u),-\frac{1}{4} \leq u<2$, which is defined by $f_{W}(w \mid u)=\frac{d}{d w} F_{W}(w \mid u)$. The conditional distribution function $F_{W}(w \mid u)$ is given by

$$
\begin{aligned}
F_{W}(w \mid u) & =\lim _{\Delta u \rightarrow 0} P[W \leq w \mid u<U \leq u+\Delta u] \\
& =\lim _{\Delta u \rightarrow 0} \frac{P[W \leq w, u<U \leq u+\Delta u]}{P[u<U \leq u+\Delta u]}, \quad-\frac{1}{4} \leq u<2 .
\end{aligned}
$$

Hint For $-\frac{1}{4} \leq u<2$, these are always two roots of w for the equation: $w^{2}=u+1$. Let the two roots be denoted by

$$
w_{+}=\sqrt{u+1} \quad \text { and } \quad w_{-}=-\sqrt{u+1}
$$

Distinguish the cases: (i) $w<w_{-}$, (ii) $w_{-}<w<w_{+}$, and (iii) $w>w_{+}$.
2. (a) Let X and Y be a pair of continuous random variables. Suppose the conditional expectation of $E[Y \mid x]$ can be viewed as defining a function of x, and so $E[Y \mid X]$ is a function of the random variable X. Show that the expectation of $E[Y \mid X]$ is equal to the expectation of Y, that is,

$$
E[E[Y \mid X]]=E[Y]
$$

Hint

$$
E[E[Y \mid X]]=\int_{-\infty}^{\infty} E[Y \mid x] f_{X}(x) d x
$$

where $f_{X}(x)$ is the marginal density function of X.
(b) A customer entering a service station is served by serviceman i with probability $p_{i}, i=$ $1,2, \cdots, n$. The time taken by serviceman i to service a customer is an exponentially distributed random variable with parameter α_{i}. Let I be the discrete random variable which assumes the value i if the customer is serviced by the $i^{\text {th }}$ serviceman, and let $P_{I}(i)$ denote the probability mass function of I. Let T denote the time taken to service a customer.
(i) Explain the meaning of the following formula

$$
P[T \leq t]=\sum_{i=1}^{n} P_{I}(i) P[T \leq t \mid I=i]
$$

and use it to find the probability density function of T.
(ii) Use the conditional expectation to compute $E[T]$.
3. Let X and Y be a pair of independent exponentially distributed random variables with parameters α and β, respectively, $\alpha \neq \beta$. Define another pair of random variables U and V by

$$
\binom{U}{V}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{X}{Y}
$$

(a) Find the joint probability density function of U and V, and determine whether U and V are independent.
(b) Let $Z=X / Y$, find the probability density function of Z.

Hint Compute $\operatorname{COV}(U, V)$ and show that it is non-zero. How to relate independence with non-zero covariance?
4. (a) Show that the correlation coefficient $\rho_{X Y}$ between a pair of random variables X and Y must satisfy

$$
-1 \leq \rho_{X Y} \leq 1
$$

(b) Let X be a Gaussian random variable with mean m and variance σ^{2}. Define $Y=a X+b$, where a and b are constants.
(i) Show that Y is also Gaussian, and find the probability density function of Y.
(ii) Show that $\rho_{X Y}=\frac{a}{|a|}$.
5. Suppose a fair die is tossed 120 times. Use the central limit theorem to find approximately the probability that the face ' 4 ' will turn 18 times or less. Express your answer in terms of the standard normal cumulative function, $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$.
Hint Let N be the number of times that the face ' 4 ' turns up. Taking the distribution to be continuous as an approximation, the problem is to find $P[-0.5 \leq N \leq 18.5]$.
6. (a) Let $X(t)=A \cos \omega t+B \sin \omega t$, where A and B are independent identically distributed Gaussian random variables with zero mean and variance σ^{2}. Find the mean and autocovariance of $X(t)$.
(b) State the stationary increments and independent increments properties of a Poisson process.
(c) Let $N(t), t \geq 0$, be a Poisson process with parameter $\lambda>0$.
(i) If $t_{2}>t_{1}$, compute the joint probability mass function

$$
P\left[N\left(t_{1}\right)=i, N\left(t_{2}\right)=j\right]
$$

(ii) Show that the autocovariance of $N(t)$ is given by

$$
\begin{aligned}
& C_{N}\left(t_{1}, t_{2}\right)=\lambda \min \left(t_{1}, t_{2}\right) \\
& \quad 3
\end{aligned}
$$

List of useful formulae

Binomial Random Variable
$S_{X}=\{0,1, \ldots, n\} \quad p_{k}=C_{k}^{n} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n$
$E[X]=n p \quad \operatorname{VAR}[X]=n p(1-p)$
Poisson Random Variable
$S_{X}=\{0,1,2, \ldots\} \quad p_{k}=\frac{\alpha^{k}}{k!} e^{-\alpha} \quad k=0,1, \ldots$ and $\alpha>0$
$E[X]=\alpha \quad \operatorname{VAR}[X]=\alpha$

Uniform Random Variable

$S_{X}=[a, b]$ $f_{X}(x)=\frac{1}{b-a} \quad a \leq x \leq b$
$E[X]=\frac{a+b}{2} \quad \operatorname{VAR}[X]=\frac{(b-a)^{2}}{12}$

Exponential Random Variable
$S_{X}=[0, \infty)$ $f_{X}(x)=\lambda e^{-\lambda x} \quad x \geq 0$ and $\lambda>0$
$E[X]=\frac{1}{\lambda} \quad \operatorname{VAR}[X]=\frac{1}{\lambda^{2}}$

Gaussian (Normal) Random Variable
$S_{X}=(-\infty, \infty) \quad f_{X}(x)=\frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma} \quad-\infty<x<\infty$ and $\sigma>0$
$E[X]=m \quad \operatorname{VAR}[X]=\sigma^{2}$
Relations between pdf's when $Y=g(X)$
(i) $Y=a X+b$

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

(ii) a non-linear function $Y=g(X)$

$$
f_{Y}(y)=\left.\sum_{k} \frac{f_{X}(x)}{\left|\frac{d y}{d x}\right|}\right|_{x=x_{k}}
$$

Marginal pdf's

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}\left(x, y^{\prime}\right) d y^{\prime} \quad \text { and } \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, y\right) d x^{\prime}
$$

Independence of X and Y
X and Y are independent if and only if $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$, for all x, y
Conditional pdf of Y given $X=x$

$$
f_{Y}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

Conditional expectation of Y given $X=x$
Continuous $\quad E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y}(y \mid x) d y$
discrete $\quad F[Y \mid x]=\sum_{y_{j}} y_{j} P_{Y}\left(y_{j} \mid x\right)$
Functions of several random variables
(i) $Z=X+Y, \quad F_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x^{\prime}} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}$

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, z-x^{\prime}\right) d x^{\prime}
$$

If X and Y are independent, then $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}\left(x^{\prime}\right) f_{Y}\left(z-x^{\prime}\right) d x^{\prime}$
(ii) $Z=X / Y, \quad f_{Z}(z \mid y)=|y| f_{X}(y z \mid y)$

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Z}\left(z \mid y^{\prime}\right) f_{Y}\left(y^{\prime}\right) d y^{\prime}
$$

(iii) $\mathbf{Z}=A \mathbf{X}$

$$
f_{\mathbf{Z}}(\mathbf{z})=\frac{f_{\mathbf{X}}\left(A^{-1} \mathbf{z}\right)}{|\operatorname{det} A|}
$$

Correlation and covariance of two random variables
$\operatorname{COV}(X, Y)=E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$, where m_{X} and m_{Y} are $E[X]$ and $E[Y]$, resp.
$\rho_{X Y}=\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}$
autocovariance $C_{X}\left(t_{1}, t_{2}\right)$ of a random process $X(t)$

$$
C_{X}\left(t_{1}, t_{2}\right)=E\left[\left\{X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right\}\left\{X\left(t_{2}\right)-m_{X}\left(t_{2}\right)\right\}\right]
$$

