MATH 246, Fall 1999

Solution to Final Examination

1.

(a)

(i)

(i)

(iii)

1
For 7 < u < 0, there are two roots of = given u for the equation: u = z(xz —1). Let

z1 and xo(w; < x32) be these two roots. It is seen that

xl—l_\/QlJrW and $2—1+\/21+W; x1 +xo = 1.
The event {u < U < u + Au}, Au > 0, is equivalent to the union of
{z1 —Azy < X <21} and {29 < X < a9+ Azo}, Az >0,Azy >0,
where
|Au| ~ 221 — 1| |[Azy| and |Au| ~ 229 — 1| |Azs|.

Since 1 + 22 = 1 and so |2z2 — 1| = 221 — 1|, giving Az, = Azy. Now,

1 1
Jo(u)Au = fx(z1)Az1 + fx(22)Azy = §A$1 + §A$2 = Azy,

1
using the result that fx(z1) = fx(z2) = 5 as derived from the uniformly distributed

property of X over (0,2). Lastly,

Ju(u) L ! + ! ! LEP
u) = — — —_— u .
v 2 | [du du VIt da 4

dz I dz .

For 0 < u < 2, there is only one root (call it &) for the equation: u = z(z — 1), where

1+ V14 4u
2

&= . The event {u < U < w+ Au} is equivalent to {# < X <&+ Az},
du 1 1
h, — = = . N
Al 17 U L TR
1 1 1
— - L 0<u<?2.
folw) = 313w SN T
dz|,_.

1 1
U cannot assume values outside [_Z’ 2). Therefore, fi(u) =0 for u < —goru > 2.

In summary, the probability density function of U is given by

L L 0
fotw -4 T A
vlu) = 1
siThe 0 Su<?
0, otherwise
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(b)

2.

(b)

Let wy = /u+1 and w_ = —/u + 1; and observe that when u moves to u + Au, w
becomes w4 + Aw, and w_ becomes w_ —Aw_. By the symmetry property of the curve:
w? = u+1, it is observed that Aw; = Aw_. Since P[W < oo,u < U < u+ Au| = Plu <
U <u+ Aul

07 w < w_
P[Wﬁw,u<U§u+Au]{%P[u<U§u+Au], wo <w < wy
Plu<U<u+Au|, w>wy

where the factor 1/2 comes from the symmetry property of fy v (w,u) with respect to w
and Awy — Aw_. Hence,

1 1
FW(w|u):§[H(w—w_)+H(w—w+)], —Z§u<2
and

() = S{o(w —w_) 8w —w), —+<u<2

(@) piey|x]) - /_ T EYelfx (2) de

~[ ] it dy sxta) as
= / y / fxy(z,y) dz dy (interchanging the order of integration)

- /Oo y fy(y) dy = E[Y).

(i) From the conditional probability formula, we have
PIT < t,1—1i— Pi(i)P|T < t|I —i.

The marginal distribution function P[T" < t] is obtained by summing the joint prob-
ability values P|T" < t,I = i] for all possible values of i. Hence,

PIT <t] = zn:PI(z')P[T <1 =1l.

i=1

Here, P;(i) = p; and P[T < t|I =i = 1 —e ' ¢ > 0. The probability density
function of 1" is given by

d . . —Ofit
fr(t) = =PIT <1] = > piaiem™, >0
i=1
0 otherwise



(ii) E[T] = E[E[T|I)] = > Pi(i)E[T|I = il

oo n
pi/ a;te” ™t dt — Zpi/ai_
0

i=1

o (9)- (1) (1) e ()34 ) ()

thatistU;rV Y* 3 ;also det A= 2.

Since X and Y are independent, their joint probability density function fxy (z,y) is given
by

I
.M:

Il
R

1

frv(a,y) = § o e 2y >0
0 otherwise

Now

_ { a2ﬂ —a ;‘zi)e—ﬂ(”Eu) utv>0andv—u>0
0 otherwise

The density function is non-zero only in the quadrant: v +v > 0 and v — u > 0.

Now, COV(U,V) = COV(X — Y, X +Y) = VAR(X)— VAR (Y) # 0 since a # (3. Tt
is known that when a pair of random variables are independent, they must have zero
covariance. Here, the non-zero value of COV(U, V) would imply dependence of U and V.

fa(z) = / ¥y (62, o) dyf

— o
oo

/ y’ae_ay’z,ﬁ‘e_ﬂy’ dy
0

=« le=(eztB)y" gyt — —a,ﬁ‘ ., z>0;
i), TR

fz(z) =0 for 2<0.

(a) Consider

0<FE

<X—E[X] N Y—E[Y]>2

0x gy

s [_(X BIX])? } Lop [(X—E[X])(Y—E[Y])} E [(Y—E[Y])T |

2
O'X ox0oy oy

:1:|:2pxy+1:2(1:|:pxy)



and so

—1<pxy <1

fxa) = o e (—%)

1 1 y— (am +b)]*
Fr(y) = |a] Voro P <_ [W} )

Hence, Y is Gaussian with mean am + b and variance |a|?c2.

COV(X,Y) = COV(X,aX +b) = a COV(X, X) = a VAR(X)

3

PXY =

Cov(x,y)  ao 71:{1 if a > 0
VVAR(X) VAR(Y)  /l|a|?0? -1 ifa<0’

|al
. The given problem is a binomial experiment of tossing the die with n = 120 and p = 3 The

1 5
mean and standard deviation are np = 20 and /np(1 —p) = /120 <6> <6> = 4.08. The

corresponding standard normal variable is given by

N —20
Z = .
4.08
When N = —0.5, 7 — 05220 —5.02; when N — 18.5, 7 — 85720 457,

4.08 4.08

By the central limit theorem,

P[-0.5 < N <18.5] ~ P[-5.02 < Z < —0.37]

—037 272
- —— 20t — ®(—0.37) — B(—5.02).
/_5.02 V2

(a) mean = E[X(t)] = F[|Acoswt + Bsinwt| = coswt E[A] + sinwt E[B] =0

autocovariance — E[{X(t1) — mx (t1)}H{ X (t2) — mx(t2)}]

= E[X(t1) X (t2)]

= FE[(Acoswt; + Bsinwty )(Acoswty + Bsinwts)]

— E[A?] cos wty cos wty + E[AB](cos wty sinwty + sin wt; cos wty)
+ E[B?]sinwt; sin wty

— (E[AY] — E[A4]?) cos wt; cos wty + (E[B?] — E[B]?) sin wt; sin wty

— o2 cosw(t — ta).
(since A and B are independent, E[AB] = E|A|E|B]
and E[A] = E[B] = 0)
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(b) (i) Independent increments for non-overlapping intervals.

Let [t1, 2] and [ts, 4] be two non-overlapping time intervals. The independent incre-
ments refer that Nta] — N[t1] and N[ty] — N|t3] are independent.

(ii) Stationary increments property

Increments in intervals of the same length have the same distribution regardless of
when the interval begins.

(¢) (i) For t1 < ta,

PIN(t1) = i, N(t2) = J|
= P[N(t;) =i|P|[N(t2) — N(t;) = j — 1] (independent increments)
= P[N(t;) =i|P[N(ty —t;) = j —i| (stationary increments)
(A1)l [ty — 4T leAMtz—t)
il G =)

(11) For t1 < 1o,

Cn(t1,t2) = E[(N(t1) — M1)(N(t2) — Ata)]
= E[N(t1) = M1|E[N(t2) = N(t1) — M(t2 —t1)] + VAR [N(t1)]
= VAR [N(t1)] = My = Amin(tq, t2);

similarly, for to < 1,
Cn(t1,t2) = Mg = Amin(ty, t2).
Hence,

Cn(t1,t2) = Amin(ty, t2).



