
1. Complex numbers

A complex number z is defined as an ordered pair

z = (x, y) ,

where x and y are a pair of real numbers. In usual notation, we

write

z = x + iy ,

where i is a symbol. The operations of addition and multiplication

of complex numbers are defined in a meaningful manner, which force

i2 = −1. The set of all complex numbers is denoted by C. Write

Re z = x , Im z = y .
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Since complex numbers are defined as ordered pairs, two complex

numbers (x1, y1) and (x2, y2) are equal if and only if both their real

parts and imaginary parts are equal. Symbolically,

(x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2 .

A complex number z = (x, y), or as z = x + iy, is defined by a pair

of real numbers x and y; so does for a point (x, y) in the x-y plane.

We associate a one-to-one correspondence between the complex

number z = x + iy and the point (x, y) in the x-y plane. We refer

the plane as the complex plane or z-plane.
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Polar coordinates

x = r cos θ and y = r sin θ

Modulus of z : |z| = r =
√

x2 + y2.

y

x

|z|

arg z

),( yxz =

Vectorical representation of a complex number in the complex plane
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Obviously, Re z ≤ |z| and Im z ≤ |z|; and

z = x + iy = r(cos θ + i sin θ),

where θ is called the argument of z, denoted by arg z.

The principal value of arg z, denoted by Arg z, is the particular value

of arg z chosen within the principal interval (−π, π]. We have

arg z = Arg z + 2kπ k any integer, Arg z ∈ (−π, π] .

Note that arg z is a multi-valued function.
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Complex conjugate

The complex conjugate z of z = x + iy is defined by

z = x − iy .

In the complex plane, the conjugate z = (x,−y) is the reflection of

the point z = (x, y) with respect to the real axis.

Standard results on conjugates and moduli

(i) z1 + z2 = z1 + z2, (ii) z1z2 = z1 z2, (iii)
z1
z2

=
z1
z2

,

(iv) |z1z2| = |z1| |z2| (v)

∣∣∣∣∣
z1
z2

∣∣∣∣∣=
|z1|

|z2|
.
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Example

Find the square roots of a + ib, where a and b are real constants.

Solution

Let u + iv be a square root of a + ib; and so (u + iv)2 = a + ib.

Equating the corresponding real and imaginary parts, we have

u2 − v2 = a and 2uv = b .

By eliminating v, we obtain a fourth degree equation for u:

4u4 − 4au2 − b2 = 0 .

The two real roots for u are found to be

u = ±

√√√√a +
√

a2 + b2

2
.
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From the relation v2 = u2 − a, we obtain

v = ±

√√√√
√

a2 + b2 − a

2
.

Apparently, there are four possible values for u+ iv. However, there

can be only two values of the square root of a+ ib. By virtue of the

relation 2uv = b, one must choose u and v such that their product

has the same sign as b. This leads to

u + iv = ±




√√√√a +
√

a2 + b2

2
+ i

b

|b|

√√√√
√

a2 + b2 − a

2


 ,

provided that b 6= 0. The special case where b = 0 is trivial. As a

numerical example, take a = 3, b = −4, then

±




√

3 + 5

2
− i

√
5 − 3

2



 = ±(2 − i).
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De’ Moivre’s theorem

Any complex number with unit modulus can be expressed as cos θ+

i sin θ. By virtue of the complex exponential function∗, we have

eiθ = cos θ + i sin θ.

The above formula is called the Euler formula. As motivated by the

Euler formula, one may deduce that

(cos θ + i sin θ)n = (eiθ)n = einθ = cosnθ + i sinnθ,

where n can be any positive integer.

∗ The complex exponential function is defined by

ez = ex+iy = ex(cos y + i sin y), z = x + iy.
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To prove the theorem, we consider the following cases:

(i) The theorem is trivial when n = 0.

(ii) When n is a positive integer, the theorem can be proven easily

by mathematical induction.

(iii) When n is a negative integer, let n = −m where m is a positive

integer. We then have

(cos θ + i sin θ)n =
1

(cos θ + i sin θ)m
=

1

cosmθ + i sinmθ

=
cosmθ − i sinmθ

(cosmθ + i sinmθ)(cosmθ − i sinmθ)
= cosmθ − i sinmθ = cosnθ + i sinnθ.

9



How do we generalize the formula to (cos θ + i sin θ)s, where s is a

rational number?

Let s = p/q, where p and q are irreducible integers. Note that the

modulus of cos θ+ i sin θ is one, so does (cos θ+ i sin θ)s. Hence, the

polar representation of (cos θ + i sin θ)s takes the form cosφ+ i sinφ

for some φ. Now, we write

cosφ + i sinφ = (cos θ + i sin θ)s = (cos θ + i sin θ)p/q.

Taking the power of q of both sides

cos qφ + i sin qφ = cos pθ + i sin pθ,
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which implies

qφ = pθ + 2kπ or φ =
pθ + 2kπ

q
, k = 0,1, · · · , q − 1.

The value of φ corresponding to k that is beyond the above set

of integers would be equal to one of those values defined in the

equation plus some multiple of 2π.

There are q distinct roots of (cos θ + i sin θ)p/q, namely,

cos

(
pθ + 2kπ

q

)
+ i sin

(
pθ + 2kπ

q

)
, k = 0,1, · · · , q − 1.
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nth root of unity

By definition, any nth roots of unity satisfies the equation

zn = 1 .

By de’ Moivre’s theorem, the n distinct roots of unity are

z = ei2kπ/n = cos
2kπ

n
+ i sin

2kπ

n
, k = 0,1, ..., n − 1 .

If we write ωn = ei2π/n, then the n roots are 1, ωn, ω2
n, ..., ωn−1

n .

Alternatively, if we pick any one of the nth roots and call it α, then

the other n−1 roots are given by αωn, αω2
n, ..., αωn−1

n . This is obvious

since each of these roots satisfies

(αωk
n)

n = αn(ωn
n)k = 1, k = 0,1, · · · , n − 1.
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In the complex plane, the n roots of unity correspond to the n

vertices of a regular n-sided polygon inscribed inside the unit circle,

with one vertex at the point z = 1. The vertices are equally spaced

on the circumference of the circle. The successive vertices are

obtained by increasing the argument by an equal amount of 2π/n

of the preceding vertex.

Suppose the complex number in the polar form is represented by

r(cosφ + i sinφ), its nth roots are given by

r1/n
(
cos

φ + 2kπ

n
+ i sin

φ + 2kπ

n

)
, k = 0,1,2, ..., n − 1,

where r1/n is the real positive nth root of the real positive number

r. The roots are equally spaced along the circumference with one

vertex being at r1/n[cos(φ/n) + i sin(φ/n)].
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Triangle inequalities

For any two complex numbers z1 and z2, we can establish

|z1 + z2|
2 = (z1 + z2)(z1 + z2)

= z1z1 + z2z2 + z1z2 + z2z1

= |z1|
2 + |z2|

2 + 2Re(z1z2) .

By observing that Re(z1z2) ≤ |z1z2|, we have

|z1 + z2|
2 ≤ |z1|

2 + |z2|
2 + 2|z1z2|

= |z1|
2 + |z2|

2 + 2|z1||z2| = (|z1| + |z2|)
2 .

Since moduli are non-negative, we take the positive square root on

both sides and obtain

|z1 + z2| ≤ |z1| + |z2| .
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To prove the other half of the triangle inequalities, we write

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + | − z2|

giving

|z1| − |z2| ≤ |z1 + z2| .

By interchanging z1 and z2 in the above inequality, we have

|z2| − |z1| ≤ |z1 + z2| .

Combining all results together
∣∣∣∣∣|z1| − |z2|

∣∣∣∣∣ ≤ |z1 + z2| ≤ |z1| + |z2|.
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Example

Find an upper bound for |z5 − 4| if |z| ≤ 1.

Solution

Applying the triangle inequality, we get

|z5 − 4| ≤ |z5| + 4 = |z|5 + 4 ≤ 1 + 4 = 5,

since |z| ≤ 1. Hence, if |z| ≤ 1, an upper bound for |z5 − 4| is 5.

In general, the triangle inequality is considered as a crude inequality,

which means that it will not yield least upper bound estimate. Can

we find a number smaller than 5 that is also an upper bound, or is

5 the least upper bound?

Yes, we may use the Maximum Modulus Theorem (to be discussed

later). The upper bound of the modulus will correspond to a com-

plex number that lies on the boundary, where |z| = 1.
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Example

For a non-zero z and −π < Arg z ≤ π, show that

|z − 1| ≤

∣∣∣∣∣|z| − 1

∣∣∣∣∣+|z| |Arg z|.

Solution

|z − 1| ≤

∣∣∣∣∣z − |z| + (|z| − 1)

∣∣∣∣∣≤

∣∣∣∣∣z − |z|

∣∣∣∣∣+

∣∣∣∣∣ |z| − 1

∣∣∣∣∣

= |z| | cos θ + i sin θ − 1| +

∣∣∣∣∣|z| − 1

∣∣∣∣∣, θ = Arg z

= |z|
√

(cos θ − 1)2 + sin2 θ +

∣∣∣∣∣|z| − 1

∣∣∣∣∣

= |z|

∣∣∣∣∣2 sin
θ

2

∣∣∣∣∣+

∣∣∣∣∣|z| − 1

∣∣∣∣∣≤ |z||Arg z| +

∣∣∣∣∣|z| − 1

∣∣∣∣∣,

since (cos θ−1)2+sin2 θ =

(
1 − 2 sin2 θ

2
− 1

)2

+ 4sin2 θ

2
cos2

θ

2
= 4 sin2 θ

2

and

∣∣∣∣∣sin
θ

2

∣∣∣∣∣ ≤

∣∣∣∣∣
θ

2

∣∣∣∣∣.
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Take |z| > 1 as an illustration

Geometric interpretation: Consider the triangle whose vertices are

1, z and |z|, by the Triangle Inequality, we have

|z − 1| ≤

∣∣∣∣∣|z| − 1

∣∣∣∣∣+

∣∣∣∣∣z − |z|

∣∣∣∣∣.

The chord joining |z| and z is always shorter than the circular arc

joining the same two points. Note that the arc length is given by

|z| |Arg z|.
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Geometric applications

How to find the equation of the perpendicular bisector of the line

segment joining the two points z1 and z2? Since any point z on

the bisector will be equidistant from z1 and z2, the equation of the

bisector can be represented by

|z − z1| = |z − z2| .

For a given equation f(x, y) = 0 of a geometric curve, if we set

x = (z + z)/2 and y = (z − z)/2i, the equation can be expressed in

terms of the pair of conjugate complex variables z and z as

f(x, y) = f

(
z + z

2
,
z − z

2i

)
= F(z, z) = 0 .

For example, the unit circle centered at the origin as represented by

the equation x2 + y2 = 1 can be expressed as zz = 1.
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Further examples

(i) The set {z : |z − a| < r}, a ∈ C, r ∈ R, represents the set of points

inside the circle centered at a with radius r but excluding the

boundary.

(ii) The set {z : r1 ≤ |z − a| ≤ r2}, a ∈ C, r1 ∈ R, r2 ∈ R, represents

the annular region centered at a and bounded by circles of radii

r1 and r2. Here, the boundary circles are included.

(iii) The set of points z such that |z − α| + |z − β| ≤ 2d, α and β ∈ C

and d ∈ R, is the set of all points on or inside the ellipse with

foci α and β and with length of semi-major axis equals d. What

is the length of the semi-minor axis?
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Example

Find the region in the complex plane that is represented by

0 < Arg
z − 1

z + 1
<

π

4
.

Solution

Let z = x + iy, and consider Arg
z − 1

z + 1
= Arg

x2 + y2 − 1 + 2iy

(x + 1)2 + y2
,

whose value lies between 0 and π/4 if and only if the following

3 conditions are satisfied

(i) x2 + y2 − 1 > 0, (ii) y > 0 and (iii)
2y

x2 + y2 − 1
< 1.

These 3 conditions correspond to

Re
z − 1

z + 1
> 0, Im

z − 1

z + 1
> 0 and Arg

z − 1

z + 1
<

π

4
.
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The last inequality can be expressed as x2 + (y − 1)2 > 2. For

y > 0, the region outside the circle: x2 + (y − 1)2 = 2 is contained

completely inside the region outside the circle: x2 + y2 = 1. Hence,

the region represented by the above 3 inequalities is

R = {x + iy : x2 + (y − 1)2 > 2 and y > 0}.

This is the region which is outside the circle x2 + (y − 1)2 = 2 and

lying in the upper half-plane.
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Example

If z1, z2 and z3 represent the vertices of an equilateral triangle, show

that

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1.

Solution

From the figure, we observe that

z2 − z1 = eiπ/3(z3 − z1)

z1 − z3 = eiπ/3(z2 − z3).

Taking the division

z2 − z1
z1 − z3

=
z3 − z1
z2 − z3

so that

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1.
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Example

Suppose z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1, show that

z2 = ωz1 and z3 = ω2z1,

where ω is a root of the quadratic equation: z2 + z + 1 = 0. Note

that ω is a cube root of unity. Also, the other root is given by ω2.

Hence, explain why z1, z2 and z3 are the vertices of an equilateral

triangle inscribed inside the unit circle: |z| = 1.

Solution

Since |z1| = |z2| = |z3| = 1, so z2 = eiαz1 and z3 = eiβz1, where α

and β are chosen within (−π, π]. Substituting into z1 + z2 + z3 = 0,

we obtain

eiα + eiβ + 1 = 0.
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Equating the respective real and imaginary parts

cosα + cosβ + 1 = 0 and sinα + sin β = 0,

we obtain α = −β and cosα = −1/2.

Without loss of generality, we take α to be positive and obtain

α = 2π/3 and β = −2π/3. Both e2πi/3 and e−2πi/3 are the roots of

ω2 + ω + 1 = 0. Indeed, one is the square of the other, and vice

versa.

Suppose we write ω = e2πi/3, then ω2 = e−2πi/3. Hence, z2 = ωz1
and z3 = ω2z1. The 3 points z1, z2 and z3 all lie on the unit circle

|z| = 1 since |z1| = |z2| = |z3| = 1.
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Consider the triangle formed by these 3 points: z1, z3 and z3. If z1 is

one vertex, then z2 is obtained by rotating the position vector of z1
by 2π/3 in anti-clockwise sense. Likewise, z3 is obtained by rotating

the position vector of z2 by the same amount. Hence, z1, z2 and

z3 are the vertices of an equilateral triangle inscribed on the unit

circle: |z| = 1.
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Symmetry with respect to a circle

Given a point α in the complex plane, we would like to construct the

symmetry point of α with respect to the circle CR : |z| = R. The

symmetry point of α is defined to be β = R2/α. Conversely, since we

may write α = R2/β, we can as well consider α to be the symmetry

point of β. The two points α and β are said to be symmetric with

respect to the circle CR.

Construction of a pair of symmetric points with respect to the circle

CR.
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Geometric properties of symmetric points

(i) Assume that |α| < R and so the inversion point β will be outside

the circle CR. Observe that

Argβ = Arg
R2

α
= Arg

1

α
= -Arg α = Argα,

one concludes that α and β both lie on the same ray emanating

from the origin.

The inversion point β can be constructed as follows: draw the

circle CR and a ray L from the origin through α. We then draw

a perpendicular to L through α which intersects the circle CR

at P . The point of intersection of the tangent line to the circle

CR at P and the ray L then gives β. By the property of similar

triangles, we have

|β|

R
=

R

|α|
.
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(ii) When |α| = R, the inversion point is just itself. This is because

when |α| = R, we have |β| =
R2

|α|
= R. Together with Arg β =

Arg α, we obtain β = α.

(iii) When |α| > R, the inversion point β will be inside the circle CR.

In fact, α may be considered as the inversion point of β.

To reverse the method of construction, we find a tangent to the

circle which passes through α and call the point of tangency P .

A ray L is the drawn from the origin through α and a perpen-

dicular is dropped from P to L. The point of intersection of the

perpendicular with the ray L then gives β.
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Limit points

Neighborhood of z0, denoted by N(z0; ǫ), is defined as

N(z0; ǫ) = {z : |z − z0| < ǫ}.

Sometimes, N(z0; ǫ) may be called an open disc centered at z0 with

radius ǫ. A deleted neighborhood of z0 is N(z0; ǫ)\{z0}. Write it as

N̂(z0; ǫ).

A point z0 is a limit point or an accumulation point of a point set

S if every neighborhood of z0 contains a point of S other than z0.

That is, N̂(z0; ǫ) ∩ S 6= φ, for any ǫ.

• Since this is true for any neighborhood of z0, S must contain

infinitely many points. In other words, if S consists of discrete

number of points, then there is no limit point of S.

• A limit point z0 may or may not belong to the set S.
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Example

Show that z = 1 is a limit point of the following point set:

A =

{
z : z = (−1)n n

n + 1
, n is an integer

}
.

Solution

Given any ǫ > 0, we want to show that there exists one point in A

other than z = 1. In fact, there exist an infinite number of points

such that ∣∣∣∣(−1)n n

n + 1
− 1

∣∣∣∣ < ǫ .

If we choose n to be even and positive and n + 1 >
1

ǫ
, then

∣∣∣∣∣
n

n + 1
− 1

∣∣∣∣∣ < ǫ. Therefore, for any ǫ, N(1; ǫ) contains at least one

point in A other than z = 1.
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Some topological definitions

• A point z0 is called an interior point of a set S if there exists a

neighborhood of z0 with all of these points belong to S.

• If every neighborhood of z0 contains points of S and also points

not belonging to S then z0 is called a boundary point.

• The set of all boundary points of a set S is called the boundary

of S. If a point is neither an interior nor a boundary point, then

it is called an exterior point of S.

Remark

If z0 is not a boundary point, then there exists a neighborhood of

z0 such that it is completely inside S or completely outside S. In

the former case, it is an interior point. In the latter case, it is an

exterior point.
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Example

Show that the boundary of

Br(z0) = {z : |z − z0| < r}

is the circle: |z − z0| = r.

Solution

Pick a point z1 on the circle |z−z0| = r. Every disk that is centered

at z1 will contain (infinitely many) points in Br(z0) and (infinitely

many) points not in Br(z0). Hence, every point on the circle |z −

z0| = r is a boundary point of Br(z0).
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No other points are boundary points

• Since points inside the circle are interior points, they cannot be

boundary points.

• Given a point outside the circle, we can enclose it in a disk that

does not intersect the disk Br(z0). Hence, such a point is not

boundary point.

In this example, none of the boundary points of Br(z0) belong to

Br(z0).
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Open and closed sets

• A set which consists only of interior points is called an open set.

• Every point of an open set has a neighborhood contained com-

pletely in the set.

• A set is closed if it contains all its boundary points.

• The closure S of a set S is the closed set consisting of all points

in S together with the boundary of S.

We may think of any two-dimensional set without a boundary as an

open set. For example, the set S = {z : |z| < 1} is an open set. The

closure S is the set {z : |z| ≤ 1}.
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Example

The set R = {z : Re z > 0} is an open set. To see this, for any

point w0 ∈ R; then σ0 = Re w0 > 0. Let ε = σ0/2 and suppose that

|z − w0| < ε. Then −ε < Re (z − w0) < ε and so

Re z = Re (z − w0) + Re w0 > −ε + σ0 = σ0/2 > 0.

Consequently, z also lies in R. Hence, each point w0 of R is an

interior point and so R is open.
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Theorem

A set D is open if and only if it contains no point of its boundary.

Proof

• Suppose that D is an open set, and let P be a boundary point

of D. If P is in D, then there is an open disc centered at P that

lies within D (since D is open). Hence, P is not in the boundary

of D.

• Suppose D is a set that contains none of its boundary points,

for any z0 ∈ D, z0 cannot be a boundary point of D. Hence,

there is some disc centered at z0 that is either a subset of D or

a subset of the complement of D. The latter is impossible since

z0 itself is in D. Hence, each point of D is an interior point so

that D is open.
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Corollary

A set C is closed if and only if its complement D = {z : z 6∈ C} is

open. To see the claim, we observe that the boundary of a set coin-

cides exactly with the boundary of the complement of that set (as a

direct consequence of the definition of boundary point). Recall that

a closed set contains all its boundary points. Its complement shares

the same boundary, but these boundary points are not contained in

the complement, so the complement is open.

Remark

There are sets that are neither open nor closed since they contain

part, but not all, of their boundary. For example,

S = {z : 1 < |z| ≤ 2}

is neither open nor closed.
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Theorem

A set S is closed if and only if S contains all its limit points.

Proof

Write N̂(z; ǫ) as the deleted ǫ-neighborhood of z, and S′ as the

complement of S. Note that for z 6∈ S, N(z; ǫ) ∩ S = N̂(z; ǫ) ∩ S.

S is closed ⇔ S′ is open
⇔ given z 6∈ S, there exists ǫ > 0 such that N(z; ǫ) ⊂ S′

⇔ given z 6∈ S, there exists ǫ > 0 such that N̂(z; ǫ) ∩ S = φ
⇔ no point of S′ is a limit point of S
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Compact set

• A bounded set S is one that can be contained in a large enough

circle centered at the origin, that is, |z| < M for some large

enough constant M for all points z in S where M is some suffi-

ciently large constant.

• An unbounded set is one which is not bounded.

• A set which is both closed and bounded is called a compact set.
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Motivation for defining connectedness

From basic calculus, if f ′(x) = 0 for all x in (a, b), then f is a

constant.

The above result is not true if the domain of definition of the

function is not connected. For example

f(x) =

{
1 if 0 < x < 1
−1 if 2 < x < 3

,

whose domain of definition is (0,1) ∪ (2,3). We have f ′(x) = 0 for

all x in (0,1) ∪ (2,3), but f is not constant.

This example illustrates the importance of connectedness in calcu-

lus.
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Domain and region

• An open set S is said to be connected if any two points of S

can be joined by a continuous curve lying entirely inside S. For

example, a neighborhood N(z0; ǫ) is connected.

• An open connected set is called an open region or domain.

• To the point set S, we add all of its limit points, then the new

set S is the closure of S.

• The closure of an open region is called a closed region.

• To an open region we may add none, some or all its limit points,

and call the new set a region.
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Simply and multiply connected domains

Loosely speaking, a simply connected domain contains no holes, but

a multiply connected domain has one or more holes.
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• When any closed curve is constructed in a simply connected

domain, every point inside the curve lies in the domain.

• It is always possible to construct some closed curve inside a

multiply connected domain in such a way that one or more points

inside the curve do not belong to the domain.
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Complex infinity

• Unlike the real number system, which has +∞ and −∞, there is

only one infinity in the complex number system. This is because

the complex number field C is not an ordered field∗. Recall that

in the real number system, +∞ (−∞) is an upper (lower) bound

of every subset of the extended real number system (set of all

real numbers augmented with +∞ and −∞).

∗C is not an ordered field can be argued as follows. Suppose C is an
ordered field, then for any non-zero x ∈ C, we must have either x or
−x being positive, and x2 = (−x)2 being positive. Consider i and
−i, we have i2 = (−i)2 = −1, which is negative. A contradiction
is encountered.
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Extended complex plane

It is convenient to augment the complex plane with the point at

infinity, denoted by ∞. The set {C ∪ ∞} is called the extended

complex plane. The algebra involving ∞ are defined as follows:

z + ∞ = ∞ , for all z ∈ C

z · ∞ = ∞ , for all z ∈ C/{0}

z/∞ = 0 , for all z ∈ C

z/0 = ∞ , for all z ∈ C/{0}.

In particular, we have −1·∞ = ∞ and expressions like 0·∞,∞/∞,∞±

∞ and 0/0 are not defined. Topologically, any set of the form

{z : |z| > R} where R ≥ 0 is called a neighborhood of ∞.

• A set D contains the point at infinity if there is a large number

M such that D contains all the points z with |z| > M .
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Examples

• The open half-plane Re z > 0 does not contain the point at

infinity since it does not contain any neighborhood of ∞.

• The open set D = {z : |z + 1| + |z − 1| > 1} does.

One “reaches” the point at infinity by letting |z| increase without

bound, with no restriction at all on arg z. One way to visualize all

this is to let w = 1/z and think about |w| being very small: an

open set containing the point at infinity will become an open set

containing w = 0.

The statement “z approaches infinity” is identical with “w converges

to zero”.
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Riemann sphere is sitting on the complex plane.
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Riemann sphere and stereographic projection

• In order to visualize the point at infinity, we consider the Rie-

mann sphere that has radius 1/2 and is tangent to the complex

plane at the origin (see Figure). We call the point of contact the

south pole (denoted by S) and the point diametrically opposite

S the north pole (denoted by N).

• Let z be an arbitrary complex number in the complex plane,

represented by the point P . We draw the straight line PN which

intersects the Riemann sphere at a unique point P ′ distinct from

N .

• There exists a one-to-one correspondence between points on the

Riemann sphere, except N , and all the finite points in the com-

plex plane. We assign the north pole N as the point at infinity.

This correspondence is known as the stereographic projection.
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The coordinates are related by

x =
ξ

1 − ζ
and y =

η

1 − ζ
. (A)

The equation of the Riemann sphere is given by

ξ2 + η2 +

(
ζ −

1

2

)2

=

(
1

2

)2

or ξ2 + η2 + ζ2 = ζ. (B)

We substitute ξ = x(1 − ζ) and η = y(1 − ζ) into eq. (B) to obtain

ζ =
x2 + y2

x2 + y2 + 1
=

|z|2

|z|2 + 1
.

Once ζ is available, we use eq. (A) to obtain

ξ =
x

x2 + y2 + 1
=

1

2

z + z

|z|2 + 1
,

η =
y

x2 + y2 + 1
=

1

2i

z − z

|z|2 + 1
.
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