2. Functions and limits: Analyticity and Harmonic Functions

Let S be a set of complex numbers in the complex plane. For every
point z =z + 1y € S, we specific the rule to assign a corresponding
complex number w = u-+v. This defines a function of the complex
variable z, and the function is denoted by

w = f(2).

The set S is called the domain of definition of the function f and
the collection of all values of w is called the range of f.

1. f(z) = Arg z is defined everywhere except at z = 0, and Arg z
can assume all possible real values in the interval (—m, 7).

z+3
2241

2. The domain of definition of f(z) =

the range of this function?

is C\{¢, —¢}. What is



Real and imaginary parts of a complex function

Let z = x4+ 1wy. A complex function of the complex variable z may
be visualized as a pair of real functions of the two real variables «x
and y. Let u(x,y) and v(x,y) be the real and imaginary parts of
f(z), respectively.

f(z) =u(z,y) +iv(z,y), z==z+1y.

Consider the function
f(z) = 22 = (z + z'y)2 = 22 — y2 + 2ixy;
its real and imaginary parts are the real functions

w(z,y) =22 —y° and v(z,y) = 2zv.



Example

Determine whether

' 4
w(z) = &
2z 4+ 31

IS one-to-one.
Solution

For any two complex numbers z; and z,, we have

w(z1) = w(z2)
121 +4  izp+ 4
D214+ 3i 220+ 3i
< 2iz120+ 820 — 3z1 + 12t = 2iz120 + 821 — 320 + 124

— 21 = 29.

Therefore, the function is one-to-one.



Complex velocity of a fluid source

Find a complex function v(z) which gives the velocity of the flow at
any point z due to a fluid source at the origin.

T he direction of the velocity is radially outward from the fluid source
and the magnitude of velocity is inversely proportional to the dis-
tance from the source. We observe

k

Arg v = Arg z and ]v|:H,
<

where k is some real positive constant. If we write z = ret?, the
velocity function is given by
v(z) = |v|e7;Arg v K e =2 2+£0.
2| Z
The constant k is the strength of the source, which is related to
the amount of fluid flowing out from the source per unit time.



Let U(r) be the speed at any point on the circle |z| = r. From
physics, the speed at any point in the flow field depends on the
radial distance from the fluid source. We then have U(r) = k/r.
Write m as the amount of fluid flowing out from the source per unit

time so that
m = 27rU(r) = 27k

giving



Example

Consider the function f(z) = 22 and write it as

f(z) =ulx,y) +iv(z,y) where z=x + 1y.
1. Find the curves in the z-y plane such that u(x,y) = « and
v(z,y) = 0.

2. Find the curves in the u-v plane such that the preimage curves
in the x-y plane are x = a and y = b.

3. What is the image curve in the u-v plane of the closed curve:
r = 2(1 4 cosf) in the z-y plane?



Solution

For z = = + 1y,
f(2) = (z + @)® = 2® — y* + 2izy
so that
w(z,y) =22 —y° and v(z,y) = 2zv.

For all points on the hyperbola: z2 — y2 = « in the z-y plane, the
image points in the w plane are on the coordinate curve u = «.

Similarly, the points on the hyperbola: 2zxy = @ are mapped onto
the coordinate curve v = (.



Recall the result:

2 2 2 2 _
(u_|_z-,0)1/2::|: \IU+\/Z + v +ZU|\I\/U ‘|‘2U U |
(Y

The image curve in the w-plane corresponding to x = a is given by

2 2
u-l-\/f;b T =a? <= 4a2(a2—u)=v2.

Similarly, the image curve in the w-plane corresponding to y = b is
given by

2 4 .2 _
\/u _I;U Y=12 = 4202+ u) =02

Both image curves are parabolas in the w-plane.



Mapping properties of the complex function w = 22

(i) For z = iy,y > 0, we have w = 22 = —y? so that the line:
x =0,y > 0 is mapped onto the line: uv < 0,v =0.

(ii) For z =z, we have w = 22 = z2 so that the line: 0 <z <a,y =0
is mapped onto the line: 0 <u < a?,v =0.

(iii) For z =a+iy,y > 0, we have u = a? — y2 and v = 2a4y so that
the line: = a,a > 0,y > 0 is mapped onto the upper portion
of parabola: 4a?(a? — u) = v2,v > 0.

Hence, the semi-infinite strip: {(z,y) : 0 < z < a,y > 0} in the z
plane is mapped onto the semi-infinite parabolic wedge: {(u,v) :
4a2(a® — u) > v2,v > 0} in the w-plane.



z plane N w plane

The complex function w = 22 maps a semi-infinite strip onto a

semi-infinite parabolic wedge.

10



Let Re’ be the polar representation of w. Since w = z2, and
z» = ret? in polar form, we have Re!® = r2¢2i%%  Comparing, we
deduce that

¢=20 and R=r"
Consider a point on the curve whose polar form isr = 2(14cosf) =

0
4c052§, we see that

0
= 16 Cos™ —.
2

Hence, we obtain

4975

0
R =12 = 16cos4§_ 16 cos

so that the polar form of the image curve in the w-plane is

R =16 cos4¢

11



Limit of a complex function

Let w = f(z) be defined in the point set S and zg be a limit point
of S. The mathematical statement

lim f(z) =L, z¢€S8,

Z2—20

means that the value w = f(z) can be made arbitrarily close to L if
we choose z to be close enough, but not equal, to zg. The formal
definition of the limit of a function is stated as:

For any € > 0O, there exists § > 0 (usually dependent on ¢) such that
1f(z) — Ll <e if 0<|z— 29| <6.
Remark

We require zg to be a limit point of S so that it would not occur
that in some neighborhood of zg inside which f(z) is not defined.

12



curve I'

The circle |z — zg| = ¢ in the z-plane is mapped onto the closed
curve I in the w-plane. The annulus 0 < |z — zg| < § in the z-plane
IS mapped onto the region enclosed by the curve ' in the w-plane.
The curve I lies completely inside the annulus 0 < |w — L| < e.

13



e The function f(z) needs not be defined at zg in order for the
function to have a limit at zg.

e [he limit L, if it exists, must be unique.

e [ he value of L is independent of the direction along which z
approaches zg.

Example
_ sin z . ,
Let S be the point set where iIs defined. It can be shown that
z
Sin
lim ——~ =1
z—0 z

sin
though the function © is not defined at z = 0. Note that z =20

<
is a limit point of S. Here, S is actually C\{0}.

14



Example

Prove that Iim 22 =—1.

Z—1i
We show that for given ¢ > 0 there is a positive number § such that
22— (=1)| <e whenever 0< |z—1i| <.

Since
22— (-1) = (z—)(z+1i) = (z = i)(z — i + 2i),
it follows from the the triangle inequality that
22 = (=D)| = |z —d| [z —i + 23| < |z —i|(|]z — i| + 2). (1)

To ensure that the left-hand side of (1) is less than €, we merely have
to insist that z lies in a é-neighborhood of i, where § = min(1,¢/3).
If so, then

e—il(lz—il+2) < S0 +2) =

15



Some properties of the limit of a function

If L =a++1i8, f(z) =u(z,y) + v(x,y),z = x + iy and zg = zqg + iyo,
then

juz,y) — ol < [f(2) — L| < fu(z,y) — af + |v(z,y) — 8],
jv(z,y) — Bl < [f(2) — L] < u(z,y) — of + |v(z,y) — 4.

It is obvious that lim f(z) = L is equivalent to the following pair of

Z—20
limits

lim JY) =
o) gy Y = @

lim YY) = (.
o) ey ") =P

Therefore, the study of the limiting behavior of f(z) is equivalent
to that of a pair of real functions u(x,y) and v(z,vy).

16



Consequently, theorems concerning the limit and continuity of the
sum, difference, product and quotient of complex functions can be
inferred from those for real functions.

Suppose that

lim fl(z) = L7 and lim fz(z) = Lo,

zZ—20 zZ—20

then

Z—Z

”mofl (2)f2(z) = L1Lo,

im 1) L

220 fo(2) Lo’

”mo[fl(Z) + fo(2)] = L1 £ Lo,

17



Limit at infinity

T he definition of limit holds even when zg or L is the point at infinity.
We can simply replace the corresponding neighborhood of zg or L
by the neighborhood of co. The statement

lim f(z) =L

Z— 00

can be understood as

For any e > 0, there exists §(¢) > 0 such that
1
|f(z) — L| < e whenever |z| > 5

As for convention, z refers to a point in the finite complex plane.

1
Hence, |z| > 5 is a deleted neighborhood of ~c.

18



Theorem
If zo and wg are points in the z-plane and w-plane, respectively, then

(i) Zli_>r90 f(z) = oo if and only if ZIi_)rg() f(lz) = 0;
(i) lim f(z) = wg if and only if lim f (l) = wp.
Z—00 z—0 z

Proof

(i) lim f(z) = oo implies that for any ¢ > 0, there is a positive

zZ—2(Q

number § such that

1
1f(z)| >— whenever 0<|z—z| <6.
€
We may rewrite as
‘ 1
f(2)

1
Hence, |im = 0.

2=20 f(2)

— 0| <e whenever 0<|z—2z| <.

19



(i) lim f(z) = wo implies that for any ¢ > 0, there exists § > 0 such

Z— 0

that

1
£(2) —wo| < e whenever |z| > =,

Replacing z by 1/z, we obtain

()

1
hence Iim f (—) = wg.

z—0 zZ

< e whenever 0<|z—0]|<§,

Example
) 3 1
lim iz T = oo Since lim ,Z_I_ =0
z——1 z+4+1 z——11z2+ 3
and
. 2 . )
2 =11 2
lim Z = 2 since lim f + = |lim T2 = 2.
z—00 41 z—>OE_|_]_ 2z—0 14 2

20



Continuity of a complex function

Continuity of a complex function is defined in the same manner
as for a real function. The complex function f(z) is said to be
continuous at zg if

lim f(z) = f(z0)-

Z—2Q

The statement implicitly implies the existence of both ZIi_)rr;()f(z) and
f(zp). Alternatively, the statement can be understood as:
For any € > 0, there exists d(e) > 0 such that

|f(2) — f(z0)| < e whenever |z — zg| < 6.

21



Example

Discuss the continuity of the following functions at z = O.

(2) f(=) =195

0 z =
(b)f(z):{Rez 2#0 "

|

Solution
- . Im 2z __ Y
(a) Let z = x + iy, then T+ = 15va2 2 Now,
: : Yy
lim f(z) = lim = 0 = f(0).
z—0 (29)=(0,0) 1 4 /22 4 42

Therefore, f(z) is continuous at z = 0.

22



(b) Let z = = + iy, then

Re z T

H \/xz 12
Suppose z approaches 0 along the half straight line y = mx (z >
0), then

: Re z
lim
z — 0, 2]
y=mx,x >0
: T . T 1
= lim = |Iim —

r—0+ \/x2_|_m2x2 z—0F 1 /1 4+ m?2 /1 4+ m?2
Since the limit depends on m, Iin’g) f(z) does not exist. There-
z—

fore, f(z) cannot be continuous at z = 0.

23



Properties of continuous functions

A complex function is said to be continuous in a region R if it is
continuous at every point in R.

Since the continuity of a complex function is defined using the con-
cept of limits, it can be shown that lim f(z) = f(zg) is equivalent

z2—2(
to
lim u(z,y) = u(zo,yo),
(z,y)—(x0,y0)
lim v(z,y) = v(xg,y0)-

(z,y)—(x0,y0)

For example, consider f(z) = e?; its real and imaginary parts are,
respectively, u(x,y) = e*cosy and v(x,y) = eFsiny. Since both
u(x,y) and v(x,y) are continuous at any point (zg,yg) in the finite z-
y plane, we conclude that e® is continuous at any point zg = xg+1yg

in C.

24



Examples of continuous functions in C are polynomials, exponential
functions and trigonometric functions.

Sum, difference, product and quotient of continuous functions re-
main to be continuous.

Uniform continuity

Suppose f(z) is continuous in a region R, then by hypothesis, at
each point zg inside R and for any ¢ > 0, we can find 6 > 0 such
that |f(z) — f(z0)| < € whenever |z — zg| < 6.

Usually 0 depends on € and zg together. However, if we can find a
single value of ¢ for each ¢, independent of zg chosen in R, we say
that f(z) is uniformly continuous in the region R.

25



Example

Prove that f(z) = 22 is uniformly continuous in the region |z| < R,
R is finite.

Solution

We must show that given any € > 0, we can find 6 > O such that
22 — 23| < e when |z — zg| < &, where § depends only on e and not
on the particular point zg of the region.

If z and zg are any points in |z| < R, then

2% — 28] = |2+ 20| |z — 20| < {|2[ + |20l}|z — 20| < 2R|z — z0|.

Thus if [z — 20| < 8, it follows that |22 — 23| < 2R§. Choosing § = 5%,
we see that |22 — 23| < € when |z — zg| < §, where § depends only on
e but not on zg. Hence, f(z) = z2 is uniformly continuous in the
region.

26



Example

Prove that f(z) = 1/z is not uniformly continuous in the region
0<|z| < 1.

Solution

Given 0 > 0, let zg and zg 4+ & be any two points of the region such
that

|z0 + & — z0] = |§] = 6.
Then

1 1 €] )

T+ 8) =10l = | e ™ o T Tollro + € Jeollzo + &
can be made larger than any positive number by choosing zg suffi-
ciently close to 0. Hence, the function cannot be uniformly contin-
uous in the region.

27



Differentiation of complex functions

Let the complex function f(z) be single-valued in a neighborhood
of a point zg. The derivative of f(z) at zg is defined by

dz 220 zZ — 20
—  lim f(Zo+AZ)—f(Zo)’ N
Az—0 Nz

provided that the above limit exists. The value of the limit must be
independent of the path of z approaching zg.

Many formulas for the computation of derivatives of complex func-
tions are the same as those for the real counterparts.

28



The existence of the derivative of a complex function at a point
implies the continuity of the function at the same point. Suppose
f'(zg) exists, we can write

im [£(=) - f(z0)] = Jim ) = f(z0) | (2 — 20) = O,

z—2 zZ—2(Q Z — 20 Z—2(Q

so that
im f(2) = f(z0)-

Lz

This shows that f(z) is continuous at zg. However, continuity of
f(z) may not imply the differentiability of f(z) at the same point.

It may occur that a complex function can be differentiable at a given
point but not so in any neighborhood of that point.

29



Example

Show that the functions z and Re z are nowhere differentiable, while
2|2 is differentiable only at z = 0.

Solution

T he derivative of z is given by

d Z 4+ Az —% Az -
Do im 2T22 72 im 2% = lim [e—2i ATD 27
dz Az—0 Nz Nz—0 Nz Az—0

The value of the limit depends on the path approaching z. There-
fore, z is nowhere differentiable.

30



Similarly,

d d 1
—Re = — — z
dz ? dz2(z+z)
1 im (z+z+ 224 2%2) —(z24+72)
o 2 Nz—0 Nz
1 Nz + AZ 1 1 NZ
= — |im = —+= Iim —
2 Nz—0 Nz 2 2 Nz—0 Az

Again, Re z is shown to be nowhere differentiable.

Lastly, the derivative of |z|? is given by

d Nz|? —|z|? NZ
e = gim BRI B i 4222 1 as
dz ANz—0 Nz Nz—0 Nz

The above limit exists only when z = 0, that is, |z|? is differentiable
only at z = 0.

31



Complex velocity and acceleration

We treat z(¢) as the position vector of a particle with time parameter
t. Then the velocity of the particle is

dz(t) im 2(t + At) — z(t)
dt  At—0 At '
Y
z(1)

32



Decomposition into various components

Write z(t) in its polar form
2(t) = (1))

uw =% = ret? + rf(ie'?)
ur = 7 = radial component of complex velocity

Uy = r§ = tangential component of complex velocity
Y

ie

33



Note that ¢ and ie? represent the unit vector along the radial and
tangential direction, respectively.

o= = (# —r62)e? + (270 + rd)iet?
radial component tangential component
of acc = a, of acc = ay

a7~=7"—7“92,a9=27*9—|—7“é

Each term has its individual terminology

r = radial acceleration
—rf? = centripetal acceleration

rd = tangential acceleration
279 = Coriolis acceleration

34



Example

Consider the motion along the ellipse

z2(t) = acoswt + ibsinwt

d?z(t : .
dtg ) — —aw? coswt — ibw?sin wt = —wzz(t) — —w2|z(t)|ew'

T he acceleration at any point is always directed toward the origin.
The radial component of acceleration = —w?|z|.

Note that x(¢) and y(t) are in simple harmonic motions, since

dQCB 2 d2y 2
—— = —w“x and — = —w~“y.
dt2 dt? J

35



(0, b)

(a,0)

The periodic trajectory is an ellipse whose equation is

2 g2
a? T b2
In particular, when a = b, the trajectory becomes a circle of radius
a(= b). In this case, » = a so that ¥ = 0. Hence, the radial
component of acceleration consists of only one term, namely, the
centripetal term whose value is —aw?. Here, z(t) = ae’! so that

6(t) = wt. This gives § = w, which is the angular speed.

= 1.
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Cauchy-Riemann relations

What are the necessary and sufficient conditions for the existence
of the derivative of a complex function?

e T he necessary conditions are given by the Cauchy-Riemann equa-
tions.

e T he sufficient conditions require, in addition to the Cauchy-
Riemann relations, the continuity of all first order partial deriva-
tives of v and wv.

Let f(z) be single-valued in a neighborhood of the point zg = 2o +
1y, and it is differentiable at zg, that is, the limit

/ . flzo+ Az) — f(20)
f(z0) = Al,!an—’lo ANz

exists. This limit is independent of the direction along which Az
approaches O.

37



(i) First, we take Az — 0 in the direction parallel to the z-axis, that
s, Az = Ax. We then have

f(z0 + Az) — f(z0) = u(xg+ Ax,yg) + iv(xg + Az, yp)
— u(xg,y0) — (o, Y0),

so that
. Az, yg) — u(zo, yo)
/ = |lim u(zo + Az, ’
f (ZO) Nx—0 YANG
4 lim v(xzo + Az, y0) — v(x0, Y0)
NAx—0 YANG
ou ov

= a(fﬁo,yo) + 4 a(%‘o,yo)-
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(ii) Next, we let Az — 0 in the direction parallel to the y-axis, that
is Az =1+Ay. Now, we have

f(z0 + &z) — f(z0) = u(zo,y0 + Ay) + iv(zo,yo + Ay)
— u(xg,yo0) — (o, Y0),

so that
f/(Z ) — ||m U(CUO,yO + Ay) T U/(CBO,yO)
0 Ay—0 1Ay
L lim v(xo,yo + Ay) — v(xo, yo)
Ay—0 (YANT
1 Ou

= -3 —(%‘o,yo) + —(fﬁo,yo)

39



Combining the above two equations, we obtain

v _Ov Ou
r Oy oy

o 0
fl=2"+1
ox 0
Equating the respective real and imaginary parts gives
ou Ov Ov ou

= and — =
oxr Oy ox Oy

T he results are called the Cauchy-Riemann relations. They are the
necessary conditions for the existence of the derivative of a complex
function.
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Theorem

Given f(z) = u(x,y) + w(x,y), 2 = x + iy, and assume that
1. Cauchy-Riemann relations hold at a point zo = xg + Yo,
2. ug,uy,vg, vy are all continuous at (xq,yo).

Then, f'(zg) exists and it is given by

f'(z0) = uz(z0, yo) + ivz(z0, yo) = vy(z0,y0) — iuy(z0, o).

41



Proof

Since u(x,y) and v(x,y) have continuous first order partials at (xq, yo)
and satisfy the Cauchy-Riemann relations at the same point, we

have

u(x,y) — u(zg, yo) = uz(o,yo)(z — xo) — v2(x0,Y0) (¥ — yo) + €1(|Az|)
(1)
v(z,y) — v(z0,Y0) = va(w0,y0)(z — o) + uz(z0,¥0) (¥ — yo) + e2(|]Az]),
(74)
where Az = (x + iy) — (zg + iypg), €1 and e represent higher order
terms that satisfy

: €1(|Az]) : ex(|Az]) 5 5
lim = |im =0, |Az|l=(x— _ .

[Az|—0  |Az] |Az|—0  |Az| | Az \/( o)< + (¥ — vo0)
(411)
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Adding (i) and 7 times (i) together, we obtain
f(2) = f(z0) = [uz(z0, yo) +ivz(x0, y0)](z — 20) +e1(|Az|) +iea(|Az]),

and subsequently,

G =G0) (3 o (o, o] = L(B2D Fiea( Az,
Z — 20 Z — 20
Note that

e1(|Az|) + iea(|Az|) <€1(!AZD_|_62(|AZ|).
z — 20 - |AZ] Az ]

and as Az — 0, also |Az| — 0.
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It then follows from the results in (ii7) that

im e1(|Az]) +iea(|Az]) _
Az—0 Z— 20

0.

Hence, we obtain

f'(z0)

im f(z) = f(z0)

ZT720 Z— 20

uz (0, yo) + wz(x0,yo0) = vy(x0, yo) — tuy(xo, yo)-
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Example

Discuss the differentiability of the function

f(z) = f(z +iy) = /|zy|
at z = 0.

Solution

Write f(x + iy) = u(x,y) + iv(x,y) so that
u(z,y) =+/|ley] and wv(zx,y) = 0.
Since u(x,0) and u(0,y) are identically equal to zero, and so
uz(0,0) = u,(0,0) = 0.
Also, obviously
v:(0,0) = vy(0,0) = O,
the Cauchy-Riemann relations are satisfied at the point (0,0).
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However, suppose z approaches the origin along the ray: x = at,y =
Bt, assuming that o« and 5 cannot be zero simultaneously.

For z = at 4+ 18t, we then have

1(z) = £0) _ J(z) _ ol
z—0 z o+ i3

The limit of the above quantity as z — 0 depends on the choices of
a and B, and so the value is non-unique.

Therefore, f(z) is not differentiable at z = 0 though the Cauchy-
Riemann relations are satisfied at z = 0. Note that the first order
partial derivatives of u(z,y) is NOT continuous at (0, 0).
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Example

Show that the function f(z) = zRe (z) is nowhere differentiable
except at the origin; hence find f/(0). Is f(z) continuous at z = 07
Explain why or why not?

Solution

When zg = 0, we have

A Re
700) = 1im 2 = im 2R 2 ¢
z—0 Az z—0 z
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When zg #= 0, we write zg = g + tyg. Let z = = 4 1y, we then have

_ JAN _ zRe z — zpRe z
lim —f = |im 0 0
2—20 Az 220 zZ — 20
_ z —zn)Re z zn(Re z — Re z
— lim ( 0) n o( 0)
27720 Z— 20 Z— 20
. T — X
= |lim (x4 20 ol
£—720 Z — 20

Suppose we approach zg along the direction parallel to the y-axis
A
lim —f —

z— zg Az
T = T

Q- ()

On the other hand, if we approach zg along the direction parallel to
the z-axis, we obtain
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_ A _ T+ o) — (x 1Yo )X .
z — 20 Az  T7T0 L — IQ
z = x + 1Yo
— im CEQ—ZC%+’iy0(CE—ZE0)
= xll_[go x + xo + 1Yo = 2xg + 1Yo.

Since the two limits in Egs. (¢) and (42) are not equal, the limit

JAN
zlingo —Af does not exist. Therefore, the function is not differentiable
— z

at any zg = 0.

Recall that differentiability of a complex function at a point implies
continuity of the function at the same point. Since f/(0) exists, so
f(z) is continuous at z = 0.
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Analyticity

A function f(z) is said to be analytic at some point zg if it is
differentiable at every point of a certain neighborhood of zgy. In
other words, f(z) is analytic if and only if there exists a neighborhood
N(zg;€), € > 0, such that f/(2) exists for all z € N(zg;¢€).

Since zg € N(zp;€), analyticity at zg implies differentiability at zg.
The converse statement is not true, that is, differentiability of f(z)

at zg does not guarantee the analyticity of f(z) at zg.

For example, the function f(z) = |z|2 is nowhere differentiable ex-
cept at the origin, hence f(z) = |z|? is not analytic at z = 0.

50



Entire functions

If a function is analytic in the entire complex plane, then the function
is called an entire function.

To show that f(z) is analytic in an open region or domain D, we
may either show

(i) f'(2) exists for all z in D, or

(ii) the real and imaginary parts of f(z) have continuous first or-
der partials and their derivatives satisfy the Cauchy-Riemann
relations at every point inside D.

Remark

Since every point in an open region is an interior point, so if f/(z)
exists for all z in D, then f is analytic everywhere inside D.
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Example

Find the domains in which the function

f(2) = |2° = y?| + 2ilzy|, z =z + iy,

IS analytic.

3n Argz=

>
(=
I
u
13

(O8]

Argz=-4—Tc Argz=-

&~|a

Domain of analyticity (shown in shaded areas) of f(z) = |z2 —y?| +
2i|zyl.
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The functional values of f(z) depend on the signs of z2 — y2 and
Ty

(i) x2—y?2 changes sign when (z,y) crosses the lines z = y or x = —y;
(ii) =y changes sign when (z,y) crosses the x-axis or y-axis.

e When z2 — 42 > 0 and zy > 0, f(2) = z2. When 22 —y2 < 0 and
ry < 0, f(2) = —z2. Both functions are known to be analytic.

e When z2—y2 > 0 and zy < 0, f(2) = 22 — y2 — 2izy. Inside these
domains, the Cauchy-Riemann relations are not satisfied, and so
f(2) fails to be analytic. Inside the domains defined by z2—y2 < 0
and zy > 0, the function becomes f(z) = —(22—y2)+2izy, which
IS non-analytic.

The function is analytic within the following domains:

T T 37
0 < Ar < —, — < Ar < —
977 > IESTY

37 I T
—1 < r < —— and —— <K r < ——.
Agz > Agz

53



Example

Show that there is no entire function f such that f/(z) = zy? for all
z € C.

Solution

Suppose that f is entire with f/(z) = zy? = ugz + ivy at all points.

1
This gives uzy = zy2 and vy = 0. Then u(z,y) = Emzyz + F'(y) and

v(z,y) = G(y), where F and G are arbitrary functions of y. On the
other hand, given that f is entire, the Cauchy-Riemann equations
are satisfied at all points, so that vy = zy? and uy = 0. This leads
to a contradiction.
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Example

Suppose f(z) and g(z) are analytic inside the domain D. Show
that f(z) is constant inside D if |f(z)| is constant inside D. Is g(z)
constant inside D if Re (g(z)) is constant inside D? Explain why or
why not.

Solution

Write f(z) = u(z,y) + iv(x,y), 2 = = + 1y. Consider
]f(z)]2 = u? + v2 = constant
so that
uuy +vvey =0 and  uuy +vvy =0
Ur Vg u) _ (O
Uy Uy v /) \0 )"

Note that |f(z)] = 0 & f(z) = 0. Now, consider the case where
f(z) = u(z,y) + iv(x,y) # 0.
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Since (Z) = ( 8 ) SO we must have

u (Y
det T r — u:p/Uy - Uy'Ugj = 0.
Uy Uy

From the Cauchy-Riemann relations, uz = vy, vz = —uy; We obtain
ug + u§ = 0 so uy = uy = 0. that is, v = constant.

Similarly, vz = vy = 0, SO v = constant. Hence, f(z) is constant in
D.

Write ¢g(z) = a(x,y) + i8(x,y),z = = + 1y. When a = constant,

oy = ay = 0. From the Cauchy-Riemann relations, 8; = B8y = 0 so
that 8 = constant. Hence, g(z) in constant in D.
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Example

Suppose f(z) and f(z) are analytic in a domain D. Show that f(z)
is constant in D.

Solution

Write f = v + v and f = u — iv.

Since f is analytic, we have ug; = vy and uy = —vg. Also, since f is
analytic, we have uy = —vy and uy = v. Combining the results, we
obtain

Ve = Vy = Uy = Uy = 0.
y =0 and y =20

Hence, f is a constant.
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Harmonic functions

A real-valued function ¢(x,y) of two real variables z and y is said to
be harmonic in a given domain D in the xz-y plane if ¢ has continuous
partial derivatives up to the second order in D and satisfies the
Laplace equation

bz (T,y) + dyy(x,y) = 0.
Analytic functions are closely related to harmonic functions. Sup-
pose f(z) = u(x,y) + w(x,y) is an analytic function in D, we will
show that both the component functions u(x,y) and v(x,y) are har-
monic in D.
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We state without proof the following result:

If a complex function is analytic at a point, then its real and imag-

inary parts have continuous partial derivatives of all orders at that
point.

Suppose f(z) is analytic in D, then
Ugpr — Uy and Vyr — —Uy

Differentiating both sides of the equations with respect to x, we
obtain

Similarly,
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Since the above partial derivatives are all continuous, it is guaran-
teed that

Combining the results,
Uyy — /U/ajy — Uygj — —VUxzx and so Vrx —l_ 'Uyy — O,
and

Therefore, both u(y,y) and v(x,y) are harmonic functions.
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Take any two harmonic functions, they normally do not form a
complex analytic function.

For example, ¢ = e* cosy, = 2xy

f=0¢+ 1) =e"cosy+ 2ixy is NOT analytic.
Suppose 1 is changed to e*siny, or ¢ is changed to x2 — y2, then
f1 = e’ cosy + e’ siny = €*

or

2 2

fo==x —y2—|—2i:13y=z :

Trick: As necessary conditions, we require ¢ = 1Py and ¢y =
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Harmonic conjugate

Given two harmonic functions ¢(x,y) and ¥ (x,y) and if they satisfy
the Cauchy-Riemann relations throughout a domain D, with

G =1y and @y = —Yq.

We call v a harmonic conjugate of ¢ in D.

Note that harmonic conjugacy is not a symmetric relation because
of the minus sign in the second Cauchy-Riemann relation. While
IS @ harmonic conjugate of ¢, —¢ is a harmonic conjugate of .

For example, ef siny is a harmonic conjugate of e* cosy while —e® cosy
IS @ harmonic conjugate of e*siny.
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T heorem

A complex function f(z) = u(x,y) + w(x,y),2 = = + iy, is analytic
in a domain D if and only if v is @ harmonic conjugate to u in D.

Proof

= Given that f = u 4 v is analytic, then v and v are harmonic and
Cauchy-Riemann relations are satisfied. Hence, v is a harmonic
conjugate of w.

< Given that v is a harmonic conjugate of w in D, we have the
satisfaction of the Cauchy-Riemann relations and the continuity
of the first order partials of w and v in D. Hence, f =u 4w is
differentiable for all points in D. Since D is an open set, every
point in D is an interior point, so f is analytic in D..
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Exact differentials

The differential M (x,y) dxr+ N(xz,y) dy is an exact differential if and
only if M and N observe

oM  ON
oy Oz
Under such scenario, then

M(z,y) dz + N(z,y) dy = dF

for some F', that is,

8—F:M and 8—F:N.
ox oy

The line integral of the differential along any path joining (zg,yg)
and (:cl,yl) IS given by

(z1,y1)
/ b Mdx + Ndy = F(x1,y1) — F(20,v0)-
(z0,Y0)
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The integral value is path independent provided that there is no
singular points enclosed inside the closed curve represented by the
two paths of integration.

Y
T (xla yl)

(X05 Vo)

=
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Given that ¢(x,y) is harmonic in a simply connected domain D,
it can be shown that it is always possible to obtain its harmonic
conjugate ¥ (x,y) by integration. Starting with the differential form:

dy = Py dx ‘|‘¢y dy,

and using the Cauchy-Riemann relations, we have

dyp = —@y dox + ¢z dy.

To obtain ¢, we integrate along some path I joining a fixed point
(z0,%0) to (=z,y), that is,

W(z,y) = /r — ¢y da + ¢p dy.

The above integral is an exact differential provided that

_(_be)y + (Cbx)a: = 0,

that is, ¢ is harmonic.
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To ease the computation, we choose the path which consists of
horizontal and vertical line segments as shown in the Figure.

X Y
by = [ = oy(@,y0) dz+ [ dula,y) dy.
0 Yo
y (x, y)
(X0 Yo) (x, ¥o)

The choice of a different starting point (zg,yg) of the integration
path simply leads to a different additive constant in ¥(z,y). Recall
that ¢ (x,y) is unique up to an additive constant.
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Example
Find a harmonic conjugate of the harmonic function

uw(x,y) = e Ycosy + xy.

Solution

1. Take (zg,y0) = (0,0), uy(z,0) =z and ux(z,y) = —e® cosy + y.

o(z,y) = /Ox_xder/oy(_e—wcosHy)dy

72 2

_ . Yy
= — — e CCSln _
> YT

(x, )

(0, 0) (x, 0)
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2. From the first Cauchy-Riemann relation, we have
ov ou

= = —e *cos .

oy~ ou Yty
Integrating with respect to y, we obtain
2

v(z,y) = —e "siny + -+ n(a),
where n(x) is an arbitrary function arising from integration.

Using the second Cauchy-Riemann relation, we have
ov ou

— =e Tsiny+1(z) =——=e Tsiny — x.
5 y+n(x) oy Y
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Comparing like terms, we obtain

77/(37) — — &,
and subsequently,

72

n(x) = Y + C, where C is an arbitrary constant.
Hence, a harmonic conjugate is found to be (taking C to be zero

for convenience)
2 _ 2

v(z,y) = —e Tsiny + yT

The corresponding analytic function, f = u 4 v, is seen to be

;2
f@=e? =" z=atiy,

which is an entire function.
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3. It is readily seen that

1
e Ycosy=Re e * and xy= EIm 22,

1
A harmonic conjugate of Re e~ % isIm e~ #, while that of 5Im 22

2

1
is —ERe z“. Therefore, a harmonic conjugate of u(x,y) can be

taken to be

2 _ 2

1
v(z,y) =Im e % — 5Re 22— e siny + yT
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Example

0 0
Show that f/(z) = 8—u(z,0) — ia—u(z,O). Use the result to find a
L Yy

harmonic conjugate of

u(x,y) = e “(xsiny — ycosy).

Solution

0 0
Observe that f/(z) = 8—u(m,y) — ia—u(:ﬁ,y). Putting y = 0, we obtain
L Yy

! —@x —i@az
f'(@) = 5 @,0) ~ig(x,0).

0 0
Replacing x by z, we obtain f/(z) = a—u(z,O) — ia—u(z,O).
L Yy
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Now, for u(xz,y) = e *(xsiny —ycosy), we have

ou . D _

— = e *siny —ze *siny + ye” P cosy
ox

@ = xe *cosy+ ye Tsiny —e *cos
ay — Yy ye Yy —e€ Y.

We then have

f(2) = %(z, 0) — zg—Z(z, 0) = —i(ze * — e 7°).

Integrating with respect to z, we obtain f(z) = ize™%.

The imaginary part of f(z) = v(x,y) = e *(ySiny + zCcosy).
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T heorem

If v is a harmonic conjugate of ¢, then the two families of curves

¢(z,y) =a and ¢(z,y) =0

are mutually orthogonal to each other.

Proof

Consider a particular member from the first family

giving

¢(z,y) = ai,
d
the slope of the tangent to the curve at (x,y) is given by d—y where
X

0 oo d

06 L 99dy _

Oxr Oydx

dy d¢ [0¢
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Similarly, the slope of the tangent to a member from the second
family at (x,vy) is given by

dy o) o
de  Ox oy

The product of the slopes of the two tangents to the two curves at
the same point is found to be

_ 09 [Od\ ([ 0% JOU _ |

ox/ Oy or/ Oy) ’
by virtue of the Cauchy-Riemann relations: % _ % % = _8_@0.
ox oy oy ox

Hence, the two families of curves are mutually orthogonal to each
other.

|

Q
=
a
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Steady state temperature distribution

In a two-dimensional steady state temperature field, the tempera-
ture function T'(x,vy) is harmonic:
92T 92T

Ox2 + Oy? =0

From the empirical law of heat conduction

oT
@ = heat flux across a surface = —Ka—, K >0,
n

0
where K is called the thermal conductivity of the material and 5
n
denotes the normal derivative of T' with respect to the surface.

Steady state temperature distribution prevails if there is no heat
source or sink inside the body and there is no net heat flux across
the bounding surface.
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An infinitesimal control volume of widths Az and Ay is contained
inside a two-dimensional body. The heat fluxes across the four sides
of the rectangular control volume are shown.
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e Within a unit time interval, the amount of heat flowing across
the left vertical side into the rectangular control volume is

oT Az

—K—(:z: _ar )A .

Ox 2 J J

Likewise, the amount of heat flowing across the right vertical
side out of the control volume is

oT Ax
—K— — YANTE
ox (:c—l— 2 ,y) J
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e [he net accumulation of heat per unit time per unit volume
inside the control volume is

Bt 90 - =5
Azx
(ot 8) - G (-3

Ay

K

_|_

e Taking the limits Ax — 0 and Ay — 0, we then obtain

02T  O2T
-+ = 0.
Ox? Oy2
Hence, the steady state temperature function is a harmonic

function.
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Example

Supposing the isothermal curves of a steady state temperature field
are given by the family of parabolas

y° = a® + 2ax, « is real positive,

in the complex plane, find the general solution of the temperature
function T'(z,y). Also, find the family of flux lines of the temperature
field.

Solution

First, we solve for the parameter « in the equation of the isothermal
curves. This gives

a=—:1:—|—\/:132—|-y2,

where the positive sign is chosen since a > 0.
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A naive guess may suggest that the temperature function T'(x,vy) is
given by

T(z,y) = —a 4+ \/2° + 42

However, since T'(x,y) has to be harmonic, the above function can-
not be a feasible solution. We set

T(z,y) = f(1)

where ¢t = \/:1:2 +y2 — z, and f is some function to be determined
such that T'(x,y) is harmonic. To solve for f(t), we first compute

02T " ot 82t
972 = f7(t) (8 ) + /(¢ )
17 L 2 2
- \/:c2+y2_1 +f()(3?2+y2)3/2’
82T 7 y2 / 2
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Since T'(x,y) satisfies the Laplace equation

x f(t) 1
211-— () + '‘@)=0 or = .
\/xz 142 N0 \/xz _|_y2f( ) f1(t) 2t
Integrating once gives
iy = L iy = &
In f'(t) = 2Int—|—C or f(t)_\/g.

Integrating twice gives

f(t) = C1vVt+ Co,

where C1 and C5 are arbitrary constants. The temperature function
IS

T(e,y) = F(8) = C1yya2 + 2 — 2+ Co

When expressed in polar coordinates

0
T(r,0) = C11/r(1 — cosf) + Cp = C1v/2rsin 5 +Ca
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Since T(r,0) can be expressed as v2C1Im z1/2 4 C5, the harmonic
conjugate of T'(r,0) is easily seen to be

0
F(r,0) = —v2C{Re L1/2 4 Cz3 = —-C1V2r cos§ + C3,

where C3 is another arbitrary constant. Note that

0
27“COS§ = \/r+rcosf = \/\/:I:2+y2+:c
so that

F(z,y) = —01\/\/5132-I-y2-l—:£-l—03-

The family of curves defined by

v+ +12 =5 or y2=p2-28z, B>0,

are orthogonal to the isothermal curves y2 = a? 4+ 2az,a > 0.
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Physically, the direction of heat flux is normal to the isothermal
lines. T herefore, the family of curves orthogonal to the isothermal
lines are called the flux lines. These flux lines indicate the flow
directions of heat in the steady state temperature field.

The flux function F'(r,6) is a harmonic conjugate of the temperature
function. The families of curves: T'(r,0) = o and F(r,0) = 3,«a and
B being constant, are mutually orthogonal to each other.
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