
2. Functions and limits: Analyticity and Harmonic Functions

Let S be a set of complex numbers in the complex plane. For every

point z = x+ iy ∈ S, we specific the rule to assign a corresponding

complex number w = u+ iv. This defines a function of the complex

variable z, and the function is denoted by

w = f(z).

The set S is called the domain of definition of the function f and

the collection of all values of w is called the range of f .

1. f(z) = Arg z is defined everywhere except at z = 0, and Arg z

can assume all possible real values in the interval (−π, π].

2. The domain of definition of f(z) =
z + 3

z2 + 1
is C\{i,−i}. What is

the range of this function?
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Real and imaginary parts of a complex function

Let z = x+ iy. A complex function of the complex variable z may

be visualized as a pair of real functions of the two real variables x

and y. Let u(x, y) and v(x, y) be the real and imaginary parts of

f(z), respectively.

f(z) = u(x, y) + iv(x, y), z = x+ iy.

Consider the function

f(z) = z2 = (x+ iy)2 = x2 − y2 + 2ixy;

its real and imaginary parts are the real functions

u(x, y) = x2 − y2 and v(x, y) = 2xy.
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Example

Determine whether

w(z) =
iz + 4

2z + 3i

is one-to-one.

Solution

For any two complex numbers z1 and z2, we have

w(z1) = w(z2)

⇐⇒ iz1 + 4

2z1 + 3i
=

iz2 + 4

2z2 + 3i
⇐⇒ 2iz1z2 + 8z2 − 3z1 + 12i = 2iz1z2 + 8z1 − 3z2 + 12i

⇐⇒ z1 = z2.

Therefore, the function is one-to-one.
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Complex velocity of a fluid source

Find a complex function v(z) which gives the velocity of the flow at

any point z due to a fluid source at the origin.

The direction of the velocity is radially outward from the fluid source

and the magnitude of velocity is inversely proportional to the dis-

tance from the source. We observe

Arg v = Arg z and |v| = k

|z|
,

where k is some real positive constant. If we write z = reiθ, the

velocity function is given by

v(z) = |v|eiArg v =
k

|z|
eiθ =

k

z
, z 6= 0.

The constant k is the strength of the source, which is related to

the amount of fluid flowing out from the source per unit time.
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Let U(r) be the speed at any point on the circle |z| = r. From

physics, the speed at any point in the flow field depends on the

radial distance from the fluid source. We then have U(r) = k/r.

Write m as the amount of fluid flowing out from the source per unit

time so that

m = 2πrU(r) = 2πk

giving

k =
m

2π
.
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Example

Consider the function f(z) = z2 and write it as

f(z) = u(x, y) + iv(x, y) where z = x+ iy.

1. Find the curves in the x-y plane such that u(x, y) = α and

v(x, y) = β.

2. Find the curves in the u-v plane such that the preimage curves

in the x-y plane are x = a and y = b.

3. What is the image curve in the u-v plane of the closed curve:

r = 2(1 + cos θ) in the x-y plane?
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Solution

For z = x+ iy,

f(z) = (x+ iy)2 = x2 − y2 + 2ixy

so that

u(x, y) = x2 − y2 and v(x, y) = 2xy.

For all points on the hyperbola: x2 − y2 = α in the x-y plane, the

image points in the w plane are on the coordinate curve u = α.

Similarly, the points on the hyperbola: 2xy = β are mapped onto

the coordinate curve v = β.
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Recall the result:

(u+ iv)1/2 = ±







√
√
√
√u+

√

u2 + v2

2
+ i

v

|v|

√
√
√
√

√

u2 + v2 − u

2






.

The image curve in the w-plane corresponding to x = a is given by

u+
√

u2 + v2

2
= a2 ⇐⇒ 4a2(a2 − u) = v2.

Similarly, the image curve in the w-plane corresponding to y = b is

given by
√

u2 + v2 − u

2
= b2 ⇐⇒ 4b2(b2 + u) = v2.

Both image curves are parabolas in the w-plane.
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Mapping properties of the complex function w = z2

(i) For z = iy, y > 0, we have w = z2 = −y2 so that the line:

x = 0, y > 0 is mapped onto the line: u < 0, v = 0.

(ii) For z = x, we have w = z2 = x2 so that the line: 0 ≤ x ≤ a, y = 0

is mapped onto the line: 0 ≤ u ≤ a2, v = 0.

(iii) For z = a+ iy, y > 0, we have u = a2 − y2 and v = 2aiy so that

the line: x = a, a > 0, y > 0 is mapped onto the upper portion

of parabola: 4a2(a2 − u) = v2, v > 0.

Hence, the semi-infinite strip: {(x, y) : 0 ≤ x ≤ a, y ≥ 0} in the z

plane is mapped onto the semi-infinite parabolic wedge: {(u, v) :

4a2(a2 − u) ≥ v2, v ≥ 0} in the w-plane.
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The complex function w = z2 maps a semi-infinite strip onto a

semi-infinite parabolic wedge.
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Let Re iφ be the polar representation of w. Since w = z2, and

z = reiθ in polar form, we have Re iφ = r2e2iθ. Comparing, we

deduce that

φ = 2θ and R = r2.

Consider a point on the curve whose polar form is r = 2(1+cos θ) =

4cos2
θ

2
, we see that

r2 = 16cos4
θ

2
.

Hence, we obtain

R = r2 = 16cos4
θ

2
= 16cos4

φ

4

so that the polar form of the image curve in the w-plane is

R = 16cos4
φ

4
.
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Limit of a complex function

Let w = f(z) be defined in the point set S and z0 be a limit point

of S. The mathematical statement

lim
z→z0

f(z) = L, z ∈ S,

means that the value w = f(z) can be made arbitrarily close to L if

we choose z to be close enough, but not equal, to z0. The formal

definition of the limit of a function is stated as:

For any ǫ > 0, there exists δ > 0 (usually dependent on ǫ) such that

|f(z) − L| < ǫ if 0 < |z − z0| < δ.

Remark

We require z0 to be a limit point of S so that it would not occur

that in some neighborhood of z0 inside which f(z) is not defined.
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The circle |z − z0| = δ in the z-plane is mapped onto the closed

curve Γ in the w-plane. The annulus 0 < |z − z0| < δ in the z-plane

is mapped onto the region enclosed by the curve Γ in the w-plane.

The curve Γ lies completely inside the annulus 0 < |w − L| < ǫ.
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• The function f(z) needs not be defined at z0 in order for the

function to have a limit at z0.

• The limit L, if it exists, must be unique.

• The value of L is independent of the direction along which z

approaches z0.

Example

Let S be the point set where
sin z

z
is defined. It can be shown that

lim
z→0

sin z

z
= 1

though the function
sin z

z
is not defined at z = 0. Note that z = 0

is a limit point of S. Here, S is actually C\{0}.
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Example

Prove that lim
z→i

z2 = −1.

We show that for given ǫ > 0 there is a positive number δ such that

|z2 − (−1)| < ǫ whenever 0 < |z − i| < δ.

Since

z2 − (−1) = (z − i)(z + i) = (z − i)(z − i+ 2i),

it follows from the the triangle inequality that

|z2 − (−1)| = |z − i| |z − i+ 2i| ≤ |z − i|(|z − i| + 2). (1)

To ensure that the left-hand side of (1) is less than ǫ, we merely have

to insist that z lies in a δ-neighborhood of i, where δ = min(1, ǫ/3).

If so, then

|z − i|(|z − i| + 2) ≤ ǫ

3
(1 + 2) = ǫ.
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Some properties of the limit of a function

If L = α+ iβ, f(z) = u(x, y) + iv(x, y), z = x+ iy and z0 = x0 + iy0,

then

|u(x, y) − α| ≤ |f(z) − L| ≤ |u(x, y) − α| + |v(x, y) − β|,
|v(x, y) − β| ≤ |f(z) − L| ≤ |u(x, y) − α| + |v(x, y) − β|.

It is obvious that lim
z→z0

f(z) = L is equivalent to the following pair of

limits

lim
(x,y)→(x0,y0)

u(x, y) = α

lim
(x,y)→(x0,y0)

v(x, y) = β.

Therefore, the study of the limiting behavior of f(z) is equivalent

to that of a pair of real functions u(x, y) and v(x, y).
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Consequently, theorems concerning the limit and continuity of the

sum, difference, product and quotient of complex functions can be

inferred from those for real functions.

Suppose that

lim
z→z0

f1(z) = L1 and lim
z→z0

f2(z) = L2,

then

lim
z→z0

[f1(z) ± f2(z)] = L1 ± L2,

lim
z→z0

f1(z)f2(z) = L1L2,

lim
z→z0

f1(z)

f2(z)
=
L1

L2
, L2 6= 0.
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Limit at infinity

The definition of limit holds even when z0 or L is the point at infinity.

We can simply replace the corresponding neighborhood of z0 or L

by the neighborhood of ∞. The statement

lim
z→∞ f(z) = L

can be understood as

For any ǫ > 0, there exists δ(ǫ) > 0 such that

|f(z) − L| < ǫ whenever |z| > 1

δ
.

As for convention, z refers to a point in the finite complex plane.

Hence, |z| > 1

δ
is a deleted neighborhood of ∞.
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Theorem

If z0 and w0 are points in the z-plane and w-plane, respectively, then

(i) lim
z→z0

f(z) = ∞ if and only if lim
z→z0

1

f(z)
= 0;

(ii) lim
z→∞f(z) = w0 if and only if lim

z→0
f

(
1

z

)

= w0.

Proof

(i) lim
z→z0

f(z) = ∞ implies that for any ǫ > 0, there is a positive

number δ such that

|f(z)| > 1

ǫ
whenever 0 < |z − z0| < δ.

We may rewrite as
∣
∣
∣
∣
∣

1

f(z)
− 0

∣
∣
∣
∣
∣
< ǫ whenever 0 < |z − z0| < δ.

Hence, lim
z→z0

1

f(z)
= 0.
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(ii) lim
z→∞f(z) = w0 implies that for any ǫ > 0, there exists δ > 0 such

that

|f(z) − w0| < ǫ whenever |z| > 1

δ
.

Replacing z by 1/z, we obtain
∣
∣
∣
∣
∣
f

(
1

z

)

− w0

∣
∣
∣
∣
∣
< ǫ whenever 0 < |z − 0| < δ,

hence lim
z→0

f

(
1

z

)

= w0.

Example

lim
z→−1

iz + 3

z + 1
= ∞ since lim

z→−1

z + 1

iz + 3
= 0

and

lim
z→∞

2z + i

z + 1
= 2 since lim

z→0

2
z + i
1
z + 1

= lim
z→0

2 + iz

1 + z
= 2.
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Continuity of a complex function

Continuity of a complex function is defined in the same manner

as for a real function. The complex function f(z) is said to be

continuous at z0 if

lim
z→z0

f(z) = f(z0).

The statement implicitly implies the existence of both lim
z→z0

f(z) and

f(z0). Alternatively, the statement can be understood as:

For any ǫ > 0, there exists δ(ǫ) > 0 such that

|f(z) − f(z0)| < ǫ whenever |z − z0| < δ.
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Example

Discuss the continuity of the following functions at z = 0.

(a) f(z) = Im z
1+|z|;

(b) f(z) =







0 z = 0
Re z
|z| z 6= 0

.

Solution

(a) Let z = x+ iy, then Im z
1+|z| =

y

1+
√
x2+y2

. Now,

lim
z→0

f(z) = lim
(x,y)→(0,0)

y

1 +
√

x2 + y2
= 0 = f(0).

Therefore, f(z) is continuous at z = 0.
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(b) Let z = x+ iy, then

Re z

|z| =
x

√

x2 + y2
.

Suppose z approaches 0 along the half straight line y = mx (x >

0), then

lim
z → 0,

y = mx, x > 0

Re z

|z|

= lim
x→0+

x
√

x2 +m2x2
= lim

x→0+

x

x
√

1 +m2
=

1
√

1 +m2
.

Since the limit depends on m, lim
z→0

f(z) does not exist. There-

fore, f(z) cannot be continuous at z = 0.
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Properties of continuous functions

A complex function is said to be continuous in a region R if it is

continuous at every point in R.

Since the continuity of a complex function is defined using the con-

cept of limits, it can be shown that lim
z→z0

f(z) = f(z0) is equivalent

to

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0),

lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0).

For example, consider f(z) = ez; its real and imaginary parts are,

respectively, u(x, y) = ex cos y and v(x, y) = ex sin y. Since both

u(x, y) and v(x, y) are continuous at any point (x0, y0) in the finite x-

y plane, we conclude that ez is continuous at any point z0 = x0+iy0
in C.
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Examples of continuous functions in C are polynomials, exponential

functions and trigonometric functions.

Sum, difference, product and quotient of continuous functions re-

main to be continuous.

Uniform continuity

Suppose f(z) is continuous in a region R, then by hypothesis, at

each point z0 inside R and for any ǫ > 0, we can find δ > 0 such

that |f(z) − f(z0)| < ǫ whenever |z − z0| < δ.

Usually δ depends on ǫ and z0 together. However, if we can find a

single value of δ for each ǫ, independent of z0 chosen in R, we say

that f(z) is uniformly continuous in the region R.
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Example

Prove that f(z) = z2 is uniformly continuous in the region |z| ≤ R,

R is finite.

Solution

We must show that given any ǫ > 0, we can find δ > 0 such that

|z2 − z20| < ǫ when |z − z0| < δ, where δ depends only on ǫ and not

on the particular point z0 of the region.

If z and z0 are any points in |z| ≤ R, then

|z2 − z20| = |z+ z0| |z − z0| ≤ {|z| + |z0|}|z − z0| < 2R|z − z0|.

Thus if |z− z0| < δ, it follows that |z2− z20| < 2Rδ. Choosing δ = ǫ
2R,

we see that |z2 − z20| < ǫ when |z − z0| < δ, where δ depends only on

ǫ but not on z0. Hence, f(z) = z2 is uniformly continuous in the

region.
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Example

Prove that f(z) = 1/z is not uniformly continuous in the region

0 < |z| < 1.

Solution

Given δ > 0, let z0 and z0 + ξ be any two points of the region such

that

|z0 + ξ − z0| = |ξ| = δ.

Then

|f(z0 + ξ) − f(z0)| =
∣
∣
∣
∣
∣

1

z0 + ξ
− 1

z0

∣
∣
∣
∣
∣
=

|ξ|
|z0||z0 + ξ|

=
δ

|z0||z0 + ξ|
can be made larger than any positive number by choosing z0 suffi-

ciently close to 0. Hence, the function cannot be uniformly contin-

uous in the region.
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Differentiation of complex functions

Let the complex function f(z) be single-valued in a neighborhood

of a point z0. The derivative of f(z) at z0 is defined by

df

dz
(z0) = lim

z→z0

f(z) − f(z0)

z − z0

= lim
△z→0

f(z0 + △z) − f(z0)

△z
, △z = z − z0,

provided that the above limit exists. The value of the limit must be

independent of the path of z approaching z0.

Many formulas for the computation of derivatives of complex func-

tions are the same as those for the real counterparts.
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The existence of the derivative of a complex function at a point

implies the continuity of the function at the same point. Suppose

f ′(z0) exists, we can write

lim
z→z0

[f(z) − f(z0)] = lim
z→z0

f(z) − f(z0)

z − z0
lim
z→z0

(z − z0) = 0,

so that

lim
z→z0

f(z) = f(z0).

This shows that f(z) is continuous at z0. However, continuity of

f(z) may not imply the differentiability of f(z) at the same point.

It may occur that a complex function can be differentiable at a given

point but not so in any neighborhood of that point.
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Example

Show that the functions z and Re z are nowhere differentiable, while

|z|2 is differentiable only at z = 0.

Solution

The derivative of z is given by

d

dz
z = lim

△z→0

z + △z − z

△z
= lim

△z→0

△z
△z

= lim
△z→0

[e−2i Arg △z].

The value of the limit depends on the path approaching z. There-

fore, z is nowhere differentiable.
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Similarly,

d

dz
Re z =

d

dz

1

2
(z + z)

=
1

2
lim

△z→0

(z + z + △z + △z) − (z + z)

△z
=

1

2
lim

△z→0

△z + △z
△z

=
1

2
+

1

2
lim

△z→0

△z
△z

.

Again, Re z is shown to be nowhere differentiable.

Lastly, the derivative of |z|2 is given by

d

dz
|z|2 = lim

△z→0

|z + △z|2 − |z|2
△z

= lim
△z→0

[

z + z
△z
△z

+ △z
]

.

The above limit exists only when z = 0, that is, |z|2 is differentiable

only at z = 0.
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Complex velocity and acceleration

We treat z(t) as the position vector of a particle with time parameter

t. Then the velocity of the particle is

dz(t)

dt
= lim

∆t→0

z(t+ ∆t) − z(t)

∆t
.
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Decomposition into various components

Write z(t) in its polar form

z(t) = r(t)eiθ(t)

u = ż = ṙeiθ + rθ̇(ieiθ)

ur = ṙ = radial component of complex velocity

uθ = rθ̇ = tangential component of complex velocity
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Note that eiθ and ieiθ represent the unit vector along the radial and

tangential direction, respectively.

a =
du

dt
= (r̈ − rθ̇2)eiθ

︸ ︷︷ ︸

radial component

of acc = ar

+ (2ṙθ̇+ rθ̈)ieiθ
︸ ︷︷ ︸

tangential component

of acc = aθ

ar = r̈ − rθ̇2, aθ = 2ṙθ̇+ rθ̈

Each term has its individual terminology

r̈ = radial acceleration

−rθ̇2 = centripetal acceleration

rθ̈ = tangential acceleration

2ṙθ̇ = Coriolis acceleration
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Example

Consider the motion along the ellipse

z(t) = a cosωt+ ib sinωt

d2z(t)

dt2
= −aω2 cosωt− ibω2 sinωt = −ω2z(t) = −ω2|z(t)|eiθ.

The acceleration at any point is always directed toward the origin.

The radial component of acceleration = −ω2|z|.

Note that x(t) and y(t) are in simple harmonic motions, since

d2x

dt2
= −ω2x and

d2y

dt2
= −ω2y.
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The periodic trajectory is an ellipse whose equation is

x2

a2
+
y2

b2
= 1.

In particular, when a = b, the trajectory becomes a circle of radius

a (= b). In this case, r = a so that r̈ = 0. Hence, the radial

component of acceleration consists of only one term, namely, the

centripetal term whose value is −aω2. Here, z(t) = aeiωt so that

θ(t) = ωt. This gives θ̇ = ω, which is the angular speed.
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Cauchy-Riemann relations

What are the necessary and sufficient conditions for the existence

of the derivative of a complex function?

• The necessary conditions are given by the Cauchy-Riemann equa-

tions.

• The sufficient conditions require, in addition to the Cauchy-

Riemann relations, the continuity of all first order partial deriva-

tives of u and v.

Let f(z) be single-valued in a neighborhood of the point z0 = x0 +

iy0, and it is differentiable at z0, that is, the limit

f ′(z0) = lim
△z→0

f(z0 + △z) − f(z0)

△z
exists. This limit is independent of the direction along which △z
approaches 0.
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(i) First, we take △z → 0 in the direction parallel to the x-axis, that

is, △z = △x. We then have

f(z0 + △z) − f(z0) = u(x0 + △x, y0) + iv(x0 + △x, y0)
− u(x0, y0) − iv(x0, y0),

so that

f ′(z0) = lim
△x→0

u(x0 + △x, y0) − u(x0, y0)

△x

+ i lim
△x→0

v(x0 + △x, y0) − v(x0, y0)

△x
=

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).
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(ii) Next, we let △z → 0 in the direction parallel to the y-axis, that

is △z = i△y. Now, we have

f(z0 + △z) − f(z0) = u(x0, y0 + △y) + iv(x0, y0 + △y)
− u(x0, y0) − iv(x0, y0),

so that

f ′(z0) = lim
△y→0

u(x0, y0 + △y) − u(x0, y0)

i△y

+ i lim
△y→0

v(x0, y0 + △y) − v(x0, y0)

i△y
=

1

i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0).
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Combining the above two equations, we obtain

f ′ =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
.

Equating the respective real and imaginary parts gives

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

The results are called the Cauchy-Riemann relations. They are the

necessary conditions for the existence of the derivative of a complex

function.
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Theorem

Given f(z) = u(x, y) + iv(x, y), z = x+ iy, and assume that

1. Cauchy-Riemann relations hold at a point z0 = x0 + iy0,

2. ux, uy, vx, vy are all continuous at (x0, y0).

Then, f ′(z0) exists and it is given by

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0) − iuy(x0, y0).
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Proof

Since u(x, y) and v(x, y) have continuous first order partials at (x0, y0)

and satisfy the Cauchy-Riemann relations at the same point, we

have

u(x, y) − u(x0, y0) = ux(x0, y0)(x− x0) − vx(x0, y0)(y − y0) + ǫ1(|∆z|)
(i)

v(x, y) − v(x0, y0) = vx(x0, y0)(x− x0) + ux(x0, y0)(y − y0) + ǫ2(|∆z|),
(ii)

where ∆z = (x+ iy) − (x0 + iy0), ǫ1 and ǫ2 represent higher order

terms that satisfy

lim
|∆z|→0

ǫ1(|∆z|)
|∆z|

= lim
|∆z|→0

ǫ2(|∆z|)
|∆z|

= 0, |∆z| =
√

(x− x0)
2 + (y − y0)

2.

(iii)
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Adding (i) and i times (ii) together, we obtain

f(z)−f(z0) = [ux(x0, y0)+ ivx(x0, y0)](z−z0)+ ǫ1(|∆z|)+ iǫ2(|∆z|),

and subsequently,

f(z) − f(z0)

z − z0
− [ux(x0, y0) + ivx(x0, y0)] =

ǫ1(|∆z|) + iǫ2(|∆z|)
z − z0

.

Note that
∣
∣
∣
∣
∣

ǫ1(|∆z|) + iǫ2(|∆z|)
z − z0

∣
∣
∣
∣
∣
≤ ǫ1(|∆z|)

|∆z|
+
ǫ2(|∆z|)
|∆z|

;

and as ∆z → 0, also |∆z| → 0.
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It then follows from the results in (iii) that

lim
∆z→0

ǫ1(|∆z|) + iǫ2(|∆z|)
z − z0

= 0.

Hence, we obtain

f ′(z0)

= lim
z→z0

f(z) − f(z0)

z − z0
= ux(x0, y0) + ivx(x0, y0) = vy(x0, y0) − iuy(x0, y0).
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Example

Discuss the differentiability of the function

f(z) = f(x+ iy) =
√

|xy|

at z = 0.

Solution

Write f(x+ iy) = u(x, y) + iv(x, y) so that

u(x, y) =
√

|xy| and v(x, y) = 0.

Since u(x,0) and u(0, y) are identically equal to zero, and so

ux(0,0) = uy(0,0) = 0.

Also, obviously

vx(0,0) = vy(0,0) = 0,

the Cauchy-Riemann relations are satisfied at the point (0,0).
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However, suppose z approaches the origin along the ray: x = αt, y =

βt, assuming that α and β cannot be zero simultaneously.

For z = αt+ iβt, we then have

f(z) − f(0)

z − 0
=
f(z)

z
=

√

|αβ|
α+ iβ

.

The limit of the above quantity as z → 0 depends on the choices of

α and β, and so the value is non-unique.

Therefore, f(z) is not differentiable at z = 0 though the Cauchy-

Riemann relations are satisfied at z = 0. Note that the first order

partial derivatives of u(x, y) is NOT continuous at (0,0).
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Example

Show that the function f(z) = zRe (z) is nowhere differentiable

except at the origin; hence find f ′(0). Is f(z) continuous at z = 0?

Explain why or why not?

Solution

When z0 = 0, we have

f ′(0) = lim
z→0

∆f

∆z
= lim

z→0

zRe z

z
= 0.
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When z0 6= 0, we write z0 = x0 + iy0. Let z = x+ iy, we then have

lim
z→z0

∆f

∆z
= lim

z→z0

zRe z − z0Re z0
z − z0

= lim
z→z0

[

(z − z0)Re z

z − z0
+
z0(Re z − Re z0)

z − z0

]

= lim
z→z0

(

x+ z0
x− x0
z − z0

)

.

Suppose we approach z0 along the direction parallel to the y-axis

lim
z → z0
x = x0

∆f

∆z
= x0. (i)

On the other hand, if we approach z0 along the direction parallel to

the x-axis, we obtain
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lim
z → z0

z = x+ iy0

∆f

∆z
= lim

x→x0

(x+ iy0)x− (x0 + iy0)x0
x− x0

(ii)

= lim
x→x0

x2 − x20 + iy0(x− x0)

x− x0
= lim

x→x0
x+ x0 + iy0 = 2x0 + iy0.

Since the two limits in Eqs. (i) and (ii) are not equal, the limit

lim
z→z0

∆f

∆z
does not exist. Therefore, the function is not differentiable

at any z0 6= 0.

Recall that differentiability of a complex function at a point implies

continuity of the function at the same point. Since f ′(0) exists, so

f(z) is continuous at z = 0.
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Analyticity

A function f(z) is said to be analytic at some point z0 if it is

differentiable at every point of a certain neighborhood of z0. In

other words, f(z) is analytic if and only if there exists a neighborhood

N(z0; ǫ), ǫ > 0, such that f ′(z) exists for all z ∈ N(z0; ǫ).

Since z0 ∈ N(z0; ǫ), analyticity at z0 implies differentiability at z0.

The converse statement is not true, that is, differentiability of f(z)

at z0 does not guarantee the analyticity of f(z) at z0.

For example, the function f(z) = |z|2 is nowhere differentiable ex-

cept at the origin, hence f(z) = |z|2 is not analytic at z = 0.
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Entire functions

If a function is analytic in the entire complex plane, then the function

is called an entire function.

To show that f(z) is analytic in an open region or domain D, we

may either show

(i) f ′(z) exists for all z in D, or

(ii) the real and imaginary parts of f(z) have continuous first or-

der partials and their derivatives satisfy the Cauchy-Riemann

relations at every point inside D.

Remark

Since every point in an open region is an interior point, so if f ′(z)
exists for all z in D, then f is analytic everywhere inside D.
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Example

Find the domains in which the function

f(z) = |x2 − y2| + 2i|xy|, z = x+ iy,

is analytic.

Domain of analyticity (shown in shaded areas) of f(z) = |x2 − y2|+
2i|xy|.
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The functional values of f(z) depend on the signs of x2 − y2 and

xy:

(i) x2−y2 changes sign when (x, y) crosses the lines x = y or x = −y;
(ii) xy changes sign when (x, y) crosses the x-axis or y-axis.

• When x2 − y2 > 0 and xy > 0, f(z) = z2. When x2 − y2 < 0 and

xy < 0, f(z) = −z2. Both functions are known to be analytic.

• When x2− y2 > 0 and xy < 0, f(z) = x2− y2−2ixy. Inside these

domains, the Cauchy-Riemann relations are not satisfied, and so

f(z) fails to be analytic. Inside the domains defined by x2−y2 < 0

and xy > 0, the function becomes f(z) = −(x2−y2)+2ixy, which

is non-analytic.

The function is analytic within the following domains:

0 < Arg z <
π

4
,

π

2
< Arg z <

3π

4

−π < Arg z < −3π

4
and − π

2
< Arg z < −π

4
.
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Example

Show that there is no entire function f such that f ′(z) = xy2 for all

z ∈ C.

Solution

Suppose that f is entire with f ′(z) = xy2 = ux + ivx at all points.

This gives ux = xy2 and vx = 0. Then u(x, y) =
1

2
x2y2 + F(y) and

v(x, y) = G(y), where F and G are arbitrary functions of y. On the

other hand, given that f is entire, the Cauchy-Riemann equations

are satisfied at all points, so that vy = xy2 and uy = 0. This leads

to a contradiction.
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Example

Suppose f(z) and g(z) are analytic inside the domain D. Show

that f(z) is constant inside D if |f(z)| is constant inside D. Is g(z)

constant inside D if Re (g(z)) is constant inside D? Explain why or

why not.

Solution

Write f(z) = u(x, y) + iv(x, y), z = x+ iy. Consider

|f(z)|2 = u2 + v2 = constant

so that

uux + vvx = 0 and uuy + vvy = 0
(

ux vx
uy vy

)(

u
v

)

=

(

0
0

)

.

Note that |f(z)| = 0 ⇔ f(z) = 0. Now, consider the case where

f(z) = u(x, y) + iv(x, y) 6= 0.

55



Since

(

u
v

)

6=
(

0
0

)

, so we must have

det

(

ux vx
uy vy

)

= uxvy − uyvx = 0.

From the Cauchy-Riemann relations, ux = vy, vx = −uy; we obtain

u2
x + u2

y = 0 so ux = uy = 0. that is, u = constant.

Similarly, vx = vy = 0, so v = constant. Hence, f(z) is constant in

D.

Write g(z) = α(x, y) + iβ(x, y), z = x + iy. When α = constant,

αx = αy = 0. From the Cauchy-Riemann relations, βx = βy = 0 so

that β = constant. Hence, g(z) in constant in D.
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Example

Suppose f(z) and f(z) are analytic in a domain D. Show that f(z)

is constant in D.

Solution

Write f = u+ iv and f = u− iv.

Since f is analytic, we have ux = vy and uy = −vx. Also, since f is

analytic, we have ux = −vy and uy = vx. Combining the results, we

obtain

vx = vy = 0 and ux = uy = 0.

Hence, f is a constant.

57



Harmonic functions

A real-valued function φ(x, y) of two real variables x and y is said to

be harmonic in a given domain D in the x-y plane if φ has continuous

partial derivatives up to the second order in D and satisfies the

Laplace equation

φxx(x, y) + φyy(x, y) = 0.

Analytic functions are closely related to harmonic functions. Sup-

pose f(z) = u(x, y) + iv(x, y) is an analytic function in D, we will

show that both the component functions u(x, y) and v(x, y) are har-

monic in D.
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We state without proof the following result:

If a complex function is analytic at a point, then its real and imag-

inary parts have continuous partial derivatives of all orders at that

point.

Suppose f(z) is analytic in D, then

ux = vy and vx = −uy.

Differentiating both sides of the equations with respect to x, we

obtain

uxx = vyx and vxx = −uyx in D.

Similarly,

uxy = vyy and vxy = −uyy.
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Since the above partial derivatives are all continuous, it is guaran-

teed that

uxy = uyx and vxy = vyx.

Combining the results,

vyy = uxy = uyx = −vxx and so vxx + vyy = 0,

and

−uyy = vxy = vyx = uxx and so uxx + uyy = 0.

Therefore, both u(y, y) and v(x, y) are harmonic functions.
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Take any two harmonic functions, they normally do not form a

complex analytic function.

For example, φ = ex cos y, ψ = 2xy

f = φ+ iψ = ex cos y+ 2ixy is NOT analytic.

Suppose ψ is changed to ex sin y, or φ is changed to x2 − y2, then

f1 = ex cos y+ iex sin y = ez

or

f2 = x2 − y2 + 2ixy = z2.

Trick: As necessary conditions, we require φx = ψy and φy =

−ψx.
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Harmonic conjugate

Given two harmonic functions φ(x, y) and ψ(x, y) and if they satisfy

the Cauchy-Riemann relations throughout a domain D, with

φx = ψy and φy = −ψx.

We call ψ a harmonic conjugate of φ in D.

Note that harmonic conjugacy is not a symmetric relation because

of the minus sign in the second Cauchy-Riemann relation. While ψ

is a harmonic conjugate of φ,−φ is a harmonic conjugate of ψ.

For example, ex sin y is a harmonic conjugate of ex cos y while −ex cos y

is a harmonic conjugate of ex sin y.
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Theorem

A complex function f(z) = u(x, y) + iv(x, y), z = x+ iy, is analytic

in a domain D if and only if v is a harmonic conjugate to u in D.

Proof

⇒ Given that f = u+ iv is analytic, then u and v are harmonic and

Cauchy-Riemann relations are satisfied. Hence, v is a harmonic

conjugate of u.

⇐ Given that v is a harmonic conjugate of u in D, we have the

satisfaction of the Cauchy-Riemann relations and the continuity

of the first order partials of u and v in D. Hence, f = u+ iv is

differentiable for all points in D. Since D is an open set, every

point in D is an interior point, so f is analytic in D..
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Exact differentials

The differential M(x, y) dx+N(x, y) dy is an exact differential if and

only if M and N observe

∂M

∂y
=
∂N

∂x
.

Under such scenario, then

M(x, y) dx+N(x, y) dy = dF

for some F , that is,

∂F

∂x
= M and

∂F

∂y
= N.

The line integral of the differential along any path joining (x0, y0)

and (x1, y1) is given by

∫ (x1,y1)

(x0,y0)
M dx+N dy = F(x1, y1) − F(x0, y0).
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The integral value is path independent provided that there is no

singular points enclosed inside the closed curve represented by the

two paths of integration.

y

x

>

>

( , )x y1 1

( , )x y0 0
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Given that φ(x, y) is harmonic in a simply connected domain D,

it can be shown that it is always possible to obtain its harmonic

conjugate ψ(x, y) by integration. Starting with the differential form:

dψ = ψx dx+ ψy dy,

and using the Cauchy-Riemann relations, we have

dψ = −φy dx+ φx dy.

To obtain ψ, we integrate along some path Γ joining a fixed point

(x0, y0) to (x, y), that is,

ψ(x, y) =

∫

Γ
− φy dx+ φx dy.

The above integral is an exact differential provided that

−(−φy)y + (φx)x = 0,

that is, φ is harmonic.
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To ease the computation, we choose the path which consists of

horizontal and vertical line segments as shown in the Figure.

ψ(x, y) =

∫ x

x0
− φy(x, y0) dx+

∫ y

y0
φx(x, y) dy.

>

<

y

x

(x0, y0 ) (x, y0 )

(x, y )

The choice of a different starting point (x0, y0) of the integration

path simply leads to a different additive constant in ψ(x, y). Recall

that ψ(x, y) is unique up to an additive constant.
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Example

Find a harmonic conjugate of the harmonic function

u(x, y) = e−x cos y+ xy.

Solution

1. Take (x0, y0) = (0,0), uy(x,0) = x and ux(x, y) = −ex cos y+ y.

v(x, y) =

∫ x

0
−x dx+

∫ y

0
(−e−x cos y+ y) dy

= −x
2

2
− e−x sin y+

y2

2
.
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2. From the first Cauchy-Riemann relation, we have

∂v

∂y
=
∂u

∂x
= −e−x cos y+ y.

Integrating with respect to y, we obtain

v(x, y) = −e−x sin y+
y2

2
+ η(x),

where η(x) is an arbitrary function arising from integration.

Using the second Cauchy-Riemann relation, we have

∂v

∂x
= e−x sin y+ η′(x) = −∂u

∂y
= e−x sin y − x.
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Comparing like terms, we obtain

η′(x) = −x,

and subsequently,

η(x) = −x
2

2
+ C, where C is an arbitrary constant.

Hence, a harmonic conjugate is found to be (taking C to be zero

for convenience)

v(x, y) = −e−x sin y+
y2 − x2

2
.

The corresponding analytic function, f = u+ iv, is seen to be

f(z) = e−z − iz2

2
, z = x+ iy,

which is an entire function.
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3. It is readily seen that

e−x cos y = Re e−z and xy =
1

2
Im z2.

A harmonic conjugate of Re e−z is Im e−z, while that of
1

2
Im z2

is −1

2
Re z2. Therefore, a harmonic conjugate of u(x, y) can be

taken to be

v(x, y) = Im e−z − 1

2
Re z2 = −e−x sin y+

y2 − x2

2
.
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Example

Show that f ′(z) =
∂u

∂x
(z,0) − i

∂u

∂y
(z,0). Use the result to find a

harmonic conjugate of

u(x, y) = e−x(x sin y − y cos y).

Solution

Observe that f ′(z) =
∂u

∂x
(x, y) − i

∂u

∂y
(x, y). Putting y = 0, we obtain

f ′(x) =
∂u

∂x
(x,0) − i

∂u

∂y
(x,0).

Replacing x by z, we obtain f ′(z) =
∂u

∂x
(z,0) − i

∂u

∂y
(z,0).
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Now, for u(x, y) = e−x(x sin y − y cos y), we have

∂u

∂x
= e−x sin y − xe−x sin y+ ye−x cos y

∂u

∂y
= xe−x cos y+ ye−x sin y − e−x cos y.

We then have

f ′(z) =
∂u

∂x
(z,0) − i

∂u

∂y
(z,0) = −i(ze−z − e−z).

Integrating with respect to z, we obtain f(z) = ize−z.

The imaginary part of f(z) = v(x, y) = e−x(y sin y+ x cos y).
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Theorem

If ψ is a harmonic conjugate of φ, then the two families of curves

φ(x, y) = α and ψ(x, y) = β

are mutually orthogonal to each other.

Proof

Consider a particular member from the first family

φ(x, y) = α1,

the slope of the tangent to the curve at (x, y) is given by
dy

dx
where

∂φ

∂x
+
∂φ

∂y

dy

dx
= 0,

giving

dy

dx
= −∂φ

∂x

/

∂φ

∂y
.
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Similarly, the slope of the tangent to a member from the second

family at (x, y) is given by

dy

dx
= −∂ψ

∂x

/

∂ψ

∂y
.

The product of the slopes of the two tangents to the two curves at

the same point is found to be
(

−∂φ
∂x

/

∂φ

∂y

)(

−∂ψ
∂x

/

∂ψ

∂y

)

= −1,

by virtue of the Cauchy-Riemann relations:
∂φ

∂x
=
∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
.

Hence, the two families of curves are mutually orthogonal to each

other.
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Steady state temperature distribution

In a two-dimensional steady state temperature field, the tempera-

ture function T(x, y) is harmonic:

∂2T

∂x2
+
∂2T

∂y2
= 0.

From the empirical law of heat conduction

Q = heat flux across a surface = −K∂T
∂n
, K > 0,

where K is called the thermal conductivity of the material and
∂T

∂n
denotes the normal derivative of T with respect to the surface.

Steady state temperature distribution prevails if there is no heat

source or sink inside the body and there is no net heat flux across

the bounding surface.
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An infinitesimal control volume of widths ∆x and ∆y is contained

inside a two-dimensional body. The heat fluxes across the four sides

of the rectangular control volume are shown.
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• Within a unit time interval, the amount of heat flowing across

the left vertical side into the rectangular control volume is

−K∂T
∂x

(

x− ∆x

2
, y

)

∆y.

Likewise, the amount of heat flowing across the right vertical

side out of the control volume is

−K∂T
∂x

(

x+
∆x

2
, y

)

∆y.
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• The net accumulation of heat per unit time per unit volume

inside the control volume is

K





∂T
∂x

(

x+ ∆x
2 , y

)

− ∂T
∂x

(

x− ∆x
2 , y

)

∆x

+

∂T
∂y

(

x, y+ ∆y
2

)

− ∂T
∂y

(

x, y − ∆y
2

)

∆y




 .

• Taking the limits ∆x→ 0 and ∆y → 0, we then obtain

∂2T

∂x2
+
∂2T

∂y2
= 0.

Hence, the steady state temperature function is a harmonic

function.
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Example

Supposing the isothermal curves of a steady state temperature field

are given by the family of parabolas

y2 = α2 + 2αx, α is real positive,

in the complex plane, find the general solution of the temperature

function T(x, y). Also, find the family of flux lines of the temperature

field.

Solution

First, we solve for the parameter α in the equation of the isothermal

curves. This gives

α = −x+

√

x2 + y2,

where the positive sign is chosen since α > 0.
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A naive guess may suggest that the temperature function T(x, y) is

given by

T(x, y) = −x+

√

x2 + y2.

However, since T(x, y) has to be harmonic, the above function can-

not be a feasible solution. We set

T(x, y) = f(t)

where t =
√

x2 + y2 − x, and f is some function to be determined

such that T(x, y) is harmonic. To solve for f(t), we first compute

∂2T

∂x2
= f ′′(t)

(
∂t

∂x

)2

+ f ′(t)
∂2t

∂x2

= f ′′(t)






x
√

x2 + y2
− 1






2

+ f ′(t)
y2

(x2 + y2)3/2
,

∂2T

∂y2
= f ′′(t)

y2

x2 + y2
+ f ′(t)

x2

(x2 + y2)3/2
.

81



Since T(x, y) satisfies the Laplace equation

2




1 − x

√

x2 + y2




 f ′′(t) +

1
√

x2 + y2
f ′(t) = 0 or

f ′′(t)
f ′(t)

= − 1

2t
.

Integrating once gives

ln f ′(t) = −1

2
ln t+ C or f ′(t) =

C′
√
t
.

Integrating twice gives

f(t) = C1

√
t+ C2,

where C1 and C2 are arbitrary constants. The temperature function

is

T(x, y) = f(t) = C1

√
√

x2 + y2 − x+ C2.

When expressed in polar coordinates

T(r, θ) = C1

√

r(1 − cos θ) + C2 = C1

√
2r sin

θ

2
+ C2.
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Since T(r, θ) can be expressed as
√

2C1Im z1/2 + C2, the harmonic

conjugate of T(r, θ) is easily seen to be

F(r, θ) = −
√

2C1Re z1/2 + C3 = −C1

√
2r cos

θ

2
+ C3,

where C3 is another arbitrary constant. Note that

√
2r cos

θ

2
=
√

r+ r cos θ =

√
√

x2 + y2 + x

so that

F(x, y) = −C1

√
√

x2 + y2 + x+ C3.

The family of curves defined by

x+

√

x2 + y2 = β or y2 = β2 − 2βx, β > 0,

are orthogonal to the isothermal curves y2 = α2 + 2αx, α > 0.
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Physically, the direction of heat flux is normal to the isothermal

lines. Therefore, the family of curves orthogonal to the isothermal

lines are called the flux lines. These flux lines indicate the flow

directions of heat in the steady state temperature field.

The flux function F(r, θ) is a harmonic conjugate of the temperature

function. The families of curves: T(r, θ) = α and F(r, θ) = β, α and

β being constant, are mutually orthogonal to each other.
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