
5. Taylor and Laurent series

Complex sequences and series

An infinite sequence of complex numbers, denoted by {zn}, can be

considered as a function defined on a set of positive integers into

the unextended complex plane. For example, we take zn =
n+ 1

2n

so that the complex sequence is {zn} =

{
1 + i

2
,
2 + i

22
,
3 + i

23
, · · ·

}

.

Convergence of complex sequences

Given a complex sequence {zn}, if for each positive quantity ǫ, there

exists a positive integer N such that

|zn − z| < ǫ whenever n > N,

then the sequence is said to converge to the limt z. We write

lim
n→∞ zn = z.
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• In general, the choice of N depends on ǫ. The definition implies

that every ǫ-neighborhood of z contains all but a finite number of

members of the sequence. The limit of a convergent sequence

is unique. If the sequence fails to converge, it is said to be

divergent.

• Suppose we write zn = xn + iyn and z = x+ iy, then

|xn − x| ≤ |zn − z| ≤ |xn − x| + |yn − y|,
|yn − y| ≤ |zn − z| ≤ |xn − x| + |yn − y|.

Suppose lim
n→∞ = x and lim

n→∞yn = y exist, then for any ǫ > 0, there

exist Nx and Ny such that

|xn − x| < ǫ

2
whenever n > Nx

|yn − y| < ǫ

2
whenever n > Ny.

Choose n > max(Nx, Ny), then

|zn − z| ≤ |xn − x| + |yn − y| < ǫ

2
+
ǫ

2
= ǫ.
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• Using the above inequalities, it is easy to show that

lim
n→∞ zn = z ⇐⇒ lim

n→∞xn = x and lim
n→∞ yn = y.

Therefore, the study of the convergence of a complex sequence

is equivalent to the consideration of two real sequences.

The above theorem enables us to write

lim
n→∞(xn + iyn) = lim

n→∞xn + i lim
n→∞ yn

whenever we know that both limits on the right exist or the one on

the left exists.
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For example, the sequence

zn =
1

n3
+ i, n = 1,2, · · · ,

converges to i since lim
n→∞

1

n3
and lim

n→∞1 exist, so

lim
n→∞

(
1

n3
+ i

)

= lim
n→∞

1

n3
+ i lim

n→∞1 = 0 + i · 1 = i.

One can show that for each positive number ǫ

|zn − i| < ǫ whenever n >
1
3
√
ǫ
.
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Infinite series of complex numbers

• An infinite series of complex numbers z1, z2, z3, · · · is the infinite

sum of the sequence {zn} given by

z1 + z2 + z3 + · · · = lim
n→∞





n∑

k=1

zk



 .

• To study the properties of an infinite series, we define the se-

quence of partial sums {Sn} by

Sn =
n∑

k=1

zk.

• If the limit of the sequence {Sn} converges to S, then the series

is said to be convergent and S is its sum; otherwise, the series

is divergent.

• The consideration of an infinite series is relegated to that of an

infinite sequence of partial sums.
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Remainder after n terms

Suppose an infinite series converges. We define the remainder after

n terms by

Rn = S − Sn

and obviously

lim
n→∞Rn = 0.

Conversely, suppose lim
n→∞Rn = 0, then for any ǫ > 0, there exists

N(ǫ) such that |Rn| < ǫ for n > N(ǫ). This is equivalent to

|Sn − S| < ǫ for n > N(ǫ),

hence

S = lim
n→∞Sn.
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A necessary condition for the convergence of a complex series is

that

lim
n→∞ zn = 0.

This is obvious since

lim
n→∞ zn = lim

n→∞(Rn−1 −Rn) = lim
n→∞Rn−1 − lim

n→∞Rn = 0.

Comparison Test

If
∞∑

j=1

Mj is a convergent series with real nonnegative terms and for

all j larger than some number J, |zj| ≤ Mj, then the series
∞∑

j=1

|zj|

converges also. This is easily seen since Sn =
n∑

j=1

|zj| is a bounded

increasing sequence, so it must have a limit.
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Absolute convergence

The complex series
∞∑

n=1

zn is absolutely convergent if
∞∑

n=1

|zn| con-

verges. Note that |zn| =
√

x2n + y2n and since

|xn| ≤
√

x2n + y2n and |yn| ≤
√

x2n + y2n,

then from the comparison test, the two series

∞∑

n=1

|xn| and
∞∑

n=1

|yn|

must converge. Thus, absolute convergence in a complex sequence

implies convergence in that sequence.

The converse may not hold. If Σzn converges but Σ|zn| does not,

the series Σzn is said to be conditionally convergent. For example,

−Log(1 − eiθ) =
∞∑

n=1

einθ

n
, θ 6= 0,

is conditionally convergent.
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Example

Show that the series
∞∑

j=1

(3 + 2i)/(j + 1)j converges.

Solution

We compare the series

∞∑

j=1

3 + 2i

(j + 1)j
=

(3 + 2i)

9
+

(3 + 2i)

64
+ · · · (A)

with the convergent geometric series

∞∑

j=1

1

2j
=

1

2
+

1

4
+

1

8
+ · · · . (B)

Since |3 + 2i| =
√

13 < 4, one can easily verify that for j ≥ 3
∣
∣
∣
∣
∣

3 + 2i

(j + 1)j

∣
∣
∣
∣
∣
<

4

(j + 1)j
≤ 1

2j
.

The terms of (B) dominate those of (A), hence (A) converges.
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Limit superior

Consider a sequence {xn} of real numbers, and let S denote the set

of all of its limit points. The limit superior of {xn} is the supremum

(least upper bound) of S. For example, xn = 3+(−1)n, n = 1,2, · · · ,
the limit points are 2 and 4 so that

lim
n→∞xn = max(2,4) = 4.

Root test

Suppose the limit superior of {|zn|1/n} equals L, the series Σzn

converges absolutely if L < 1 and diverges if L > 1. The root

test fails when L = 1.
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Ratio test

Suppose lim
n→∞

∣
∣
∣
∣
∣

zn+1

zn

∣
∣
∣
∣
∣
converges to L, then Σzn is absolutely conver-

gent if L < 1 and divergent if L > 1. When L = 1, the ratio test

fails.

Gauss’ test

Suppose

∣
∣
∣
∣
∣

zn+1

zn

∣
∣
∣
∣
∣
admits the following asymptotic expansion

∣
∣
∣
∣
∣

zn+1

zn

∣
∣
∣
∣
∣
= 1 − k

n
+
αn

n2
+ · · · ,

where |αn| is bounded for all n > N for some sufficiently large N ,

then Σzn converges absolutely if k > 1, and diverges or converges

conditionally if k ≤ 1.
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Proof of the Ratio Test

Suppose lim
n→∞

∣
∣
∣
∣
∣

zn+1

zn

∣
∣
∣
∣
∣
converges to L,L < 1, then we can choose an

integer N such that for n ≥ N , we have
∣
∣
∣
∣
∣

zn+1

zn

∣
∣
∣
∣
∣
≤ r, where L < r < 1.

Now, we have

|zN+1| ≤ r|zN |, |zN+2| ≤ r|zN+1| ≤ r2|zN |, and so forth,

|zN+1| + |zN+2| + · · · ≤ |zN |(r+ r2 + · · · ).

Thus,
∞∑

n=1

|zn| converges absolutely by virtue of the comparison test.
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Sequences of complex functions

Let f1(z), · · · , fn(z), · · · , denoted by {fn(z)}, be a sequence of com-

plex functions of z that are defined and single-valued in a region R

in the complex plane.

For some point z0 ∈ R, {fn(z0)} becomes a sequence of complex

numbers. Supposing {fn(z0)} converges, the limit is unique. The

value of the limit depends on z0, and we write

f(z0) = lim
n→∞ fn(z0).

If this holds for every z ∈ R, the sequence {fn(z)} defines a complex

function f(z) in R. We write

f(z) = lim
n→∞ fn(z).

This is usually called pointwise convergence.
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Definition

A sequence of complex functions {fn(z)} defined in a region R is

said to converge to a complex function f(z) defined in the same

region if and only if, for any given small positive quantity ǫ, we can

find a positive integer N(ǫ; z) [in general, N(ǫ; z) depends on ǫ and

z] such that

|f(z) − fn(z)| < ǫ for all n > N(ǫ; z).

The region R is called the region of convergence of the sequence

of complex functions.

In general, we may not be able to find a single N(ǫ) that works for

all point in R. However, when this is possible, {fn(z)} is said to

converge uniformly to f(z) in R.
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Convergence of series of complex functions

An infinite series of complex functions

f1(z) + f2(z) + f3(z) + · · · =
∞∑

k=1

fk(z)

is related to the sequence of partial sum {Sn(z)}

Sn(z) =
n∑

k=1

fk(z).

The infinite series is said to be convergent if

lim
n→∞Sn(z) = S(z),

where S(z) is called the sum; otherwise the series is divergent.
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Many of the properties related to convergence of complex functions

can be extended from their counterparts of complex numbers. For

example, a necessary but not sufficient condition for the infinite

series of complex functions to converge is that

lim
k→∞

fk(z) = 0,

for all z in the region of convergence.

Example

Consider the complex series

∞∑

k=1

sin kz

k2
,

show that it is absolutely convergent when z is real but it becomes

divergent when z is non-real.
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Solution

(i) When z is real, we have
∣
∣
∣
∣
∣

sin kz

k2

∣
∣
∣
∣
∣
≤ 1

k2
, for all positive integer values of k.

Since
∞∑

k=1

1/k2 is known to be convergent, then
∞∑

k=1

sin kz/k2 is

absolutely convergent for all z by virtue of the comparison test.

(ii) When z is non-real, we let z = x+ iy, y 6= 0. From the relation

sin kz

k2
=
e−kyeikx − ekye−ikx

2k2i
,

we deduce that
∣
∣
∣
∣
∣

sin kz

k2

∣
∣
∣
∣
∣
≥ ek|y| − e−k|y|

2k2
→ ∞ as k → ∞.

Since

∣
∣
∣
∣
∣
sin kz/k2

∣
∣
∣
∣
∣
is unbounded as k → ∞, the series is divergent.
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Uniform convergence of an infinite series of complex functions

Let Rn(z) = S(z) −
n∑

k=1

fk(z) = S(z) − Sn(z).

The infinite series Σfk(z) converges uniformly to S(z) in some region

R iff for any ǫ > 0, there exists N which is independent of z such

that for all z ∈ R

|Rn(z)| < ǫ whenever n > N.

Weierstrass M-test

If |fk(z)| ≤ Mk where Mk is independent of z in R and the series

ΣMk converges, then Σfk(z) is uniformly convergent in R.
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Proof of the Weierstrass M-test

The remainder of the series
∑
fk(z) after n terms is

Rn(z) = fn+1(z) + fn+2(z) + · · · .

Now,

|Rn(z)| ≤ |fn+1(z)| + |fn+2(z)| + · · · ≤ Mn+1 +Mn+2 + · · · .

Since
∑
Mk converges, Mn+1 +Mn+2 + · · · can be made less than

ǫ > 0 by choosing n > N for some N = N(ǫ). As N is clearly

independent of z, we have

|Rn(z)| < ǫ for n > N,

so the series is uniformly convergent. We also have absolute con-

vergence of the series.
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Test for uniform convergence using the M-test

1.
∞∑

n=1

zn

n
√
n+ 1

, |z| ≤ 1.

Note that |fn(z)| =
|z|n

n
√
n+ 1

≤ 1

n3/2
if |z| ≤ 1. Take Mn =

1

n3/2

and note that
∑
Mn converges.

2.
∞∑

n=1

1

n2 + z2
,1 < |z| < 2.

Omit the first two terms since it does not affect the uniform

convergence property. For n ≥ 3 and 1 < |z| < 2, we have

|n2 + z2| ≥ |n2| − |z2| ≥ n2 − 4 ≥ n2

2
so that

∣
∣
∣
∣
∣

1

n2 + z2

∣
∣
∣
∣
∣
≤ 2

n2
.

Take Mn =
2

n2
and note that

∞∑

n=3

2

n2
converges.
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Example

Prove that the series

z(1 − z) + z2(1 − z) + z3(1 − z) + · · ·

converges for |z| < 1 and find its sum.

Solution

Sn(z) = z(1 − z) + · · · + zn(1 − z)

= z − z2 + z2 − z3 + · · · + zn − zn+1 = z − zn+1.

For |z| < 1, consider |Sn(z) − z| = | − zn+1| = |z|n+1 < ǫ. In order

that this is true, we choose n such that

(n+ 1) ln |z| < ln ǫ so that n+ 1 >
ln ǫ

ln |z| or n >
ln ǫ

ln |z| − 1, z 6= 0.

When z = 0, Sn(0) = 0 so |Sn(0) − 0| < ǫ for all n.

Hence, lim
n→∞Sn(z) = z for all z such that |z| < 1.
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Questions

1. Does the series converge uniformly to z for |z| ≤ 1

2
?

Yes. If |z| ≤ 1

2
, the largest value of

ln ǫ

ln |z|
−1 occurs when |z| = 1

2
and is given by

ln ǫ

ln 1
2

− 1.

Take N(ǫ) to be the largest integer smaller than
ln ǫ

ln 1
2

−1. It then

follows that |Sn(z) − z| < ǫ for n > N where N depends only on

ǫ and not on the particular z in |z| ≤ 1

2
. Hence, we have uniform

convergence of the series for |z| ≤ 1

2
.
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2. Does the series converge uniformly for |z| ≤ 1?

The same argument given in Qn (1) serves to show uniform

convergence for |z| ≤ 0.9 or |z| ≤ 0.99 by using

N = fl

(
ln ǫ

ln 0.9
− 1

)

and N = fl

(
ln ǫ

ln 0.99
− 1

)

, respectively.

However, if we apply the argument to |z| ≤ 1, this would require

N = fl

(
ln ǫ

ln 1
− 1

)

, which is infinite. The series does not converge

uniformly for |z| ≤ 1.
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Example

Show that the geometric series
∞∑

n=0

zn converges uniformly to
1

1 − z

on any closed subdisk |z| ≤ r < 1 of the open unit disk |z| < 1.

Solution

To establish the uniform convergence of the series for |z| ≤ r < 1,

we apply the Weierstrass M-test. We have |fn(z)| = |zn| ≤ rn = Mn

for all |z| ≤ r.

Since
∞∑

n=1

Mn =
∞∑

n=0

rn is convergent if 0 ≤ r < 1, we conclude that

the series
∞∑

n=1

zn converges uniformly for |z| ≤ r.
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For uniformly convergent infinite series of complex functions, prop-

erties such as continuity and analyticity of the continuous functions

fk(z) are carried over to the sum S(z). More precisely, suppose

fk(z), k = 1,2, · · · , are all continuous (analytic) in the region of

convergence, then
∑

fk(z) is also continuous (analytic) in the same

region.

Further, an uniform convergent infinite series allows for termwise

differentiation and integration, that is,

∫

C

∞∑

k=1

fk(z) dz =
∞∑

k=1

∫

C
fk(z) dz

d

dz

∞∑

k=1

fk(z) =
∞∑

k=1

f ′k(z).
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Power series

The choice of fn(z) = an(z−z0)n leads to the power series expanded

at z = z0. A power series defines a function f(z) for those points z

at which it converges.

Given a power series
∞∑

n=1

an(z−z0)n, there exists a non-negative real

number R, R can be zero or infinity, such that the power series

converges absolutely for |z − z0| < R, and diverges for |z − z0| > R.

R is called the radius of convergence

|z − z0| < R is called the circle of convergence.

Convergence of the power series must be determined for each point

on the circle of convergence.
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Ratio test as applied to the infinite power series

The radius of convergence R is given by lim
n→∞

∣
∣
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∣
∣

, given that the

limit exists.

Consider the ratio
|an+1||z − z0|n+1

|an| |z − z0|n
and suppose lim

n→∞

∣
∣
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∣
∣

exists,

then the power series converges absolutely when |z − z0| satisfies

lim
n→∞

∣
∣
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
∣
∣

|z − z0| < 1 ⇔ |z − z0| < lim
n→∞

∣
∣
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∣
∣

.
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(i) R = ∞ when lim
n→∞

∣
∣
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
∣
∣

= 0. The series converges in the whole

plane.

(ii) R = 0 when lim
n→∞

∣
∣
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∣
∣

= 0. The series does not converges for

any z other than z0.

Root test as applied to the infinite power series

The radius of convergence can also be found by

R =
1

limn→∞ n
√

|an|
, which is a consequence of the root test.

Note that

lim
n→∞

n
√

|an||z − z0| < 1 ⇔ |z − z0| <
1

lim
n→∞

n
√

|an|
.
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Example

Find the circle of convergence for each of the following power series:

(a)
∞∑

k=1

1

k
(z − i)k,

(b)
∞∑

k=1

kln k(z − 2)k,

(c)
∞∑

k=1

(
z

k

)k
,

(d)
∞∑

k=1

(

1 +
1

k

)k2

zk.
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Solution

(a) By the ratio test, we have

R = lim
k→∞

1/k

1/(k+ 1)
= 1;

so the circle of convergence is |z − i| = 1.

(b) Using the root test, we have

1

R
= lim

k→∞
k
√

|ak| = lim
k→∞

k
√

kln k.

To evaluate the limit, we consider the logarithm,

ln lim
k→∞

k
√

kln k = lim
k→∞

ln
k
√

kln k = lim
k→∞

(ln k)2

k
= 0;

so
1

R
= lim

k→∞
k
√

kln k = e0 = 1.

The circle of convergence is |z − 2| = 1.

30



(c) By the ratio test, we have

R = lim
k→∞

(
1
k

)k

(
1

k+1

)k+1
= lim

k→∞
(k+ 1)

(

1 +
1

k

)k
= ∞;

so the circle of convergence is the whole complex plane.

(d) By the root test, we have

1

R
= lim

k→∞
k

√
√
√
√
(

1 +
1

k

)k2

= lim
k→∞

(

1 +
1

k

)k
= e,

so the circle of convergence is |z| = 1/e.
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Theorem

If z1 is a point inside the circle of convergence |z − z0| = R of a

power series
∞∑

n=0

an(z − z0)
n

then the power series must be uniformly convergent in the closed

disk |z − z0| ≤ R1, where R1 = |z1 − z0|.

Some useful results

Let S(z) denote the sum of the infinite power series inside the circle

of convergence. Then

(i) S(z) represents a continuous function at each point interior to

its circle of convergence.

(ii) S′(z) =
∞∑

n=1

nan(z − z0)
n−1 at each point z inside the circle of

convergence.
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Power series of f(z)

Suppose a power series represents the function f(z) inside the circle

of convergence, that is,

f(z) =
∞∑

n=0

an(z − z0)
n.

It is known that a power series can be differentiated termwise so

that

f ′(z) =
∞∑

n=1

nan(z − z0)
n−1

f ′′(z) =
∞∑

n=2

n(n− 1)an(z − z0)
n−2, · · · .

Putting z = z0 successively, we obtain

an =
f(n)(z0)

n!
, n = 0,1,2,

f(z) =
∞∑

n=0

f(n)(z0)

n!
(z − z0)

n.
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A power series represents an analytic function inside its circle of

convergence. Can we expand an analytic function in Taylor series

and how is the domain of analyticity related to the circle of conver-

gence?

Taylor series theorem

Let f(z) be analytic in a domain D with boundary ∂D and z0 ∈ D.

Determine R such that

R = min{|z − z0|, z ∈ ∂D}.

Then there exists a power series
∞∑

k=0

ak(z − z0)
k which converges to

f(z) for |z − z0| < R. The coefficients ak are given by

ak =
1

2πi

∮

C

f(ζ)

(ζ − z0)k+1
dζ =

f(k)(z0)

k!
, k = 0,1,2, · · · ,

C is any closed contour around z0 and lying completely inside D.
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Proof

Take a point z such that |z − z0| = r < R.

A circle is drawn around z0 with radius R1, where r < R1 < R. Since

z lies inside C1, by virtue of the Cauchy Integral Theorem, we have

f(z) =
1

2πi

∮

C1

f(ζ)

ζ − z
dζ.

The circle C1 lies completely inside D.
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The trick is to express the integrand
f(ζ)

ζ − z
in powers of

z − z0
ζ − z0

. Recall

1

1 − u
= 1 + u+ u2 + · · · + un +

un+1

1 − u
.

1

ζ − z
=

1

ζ − z0

1

1 − z−z0
ζ−z0

=
1

ζ − z0






1 +

z − z0
ζ − z0

+ · · · + (z − z0)
n

(ζ − z0)n
+

(
z−z0
ζ−z0

)n+1

1 − z−z0
ζ−z0






.

We then multiply by
f(ζ)

2πi
and integrate along C1.
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By observing the property

1

2πi

∮

C1

f(ζ)

(ζ − z0)k+1
dζ =

f(k)(z0)

k!
,

we obtain

f(z) =
n∑

k=0

f(k)(z)

k!
(z − z0)

k +Rn,

where the remainder is given by

Rn =
1

2πi

∮

C1

f(ζ)

ζ − z

(

z − z0
ζ − z0

)n+1

dζ.

To complete the proof, it suffices to show that

lim
n→∞Rn = 0.

(i) |f(ζ)| ≤ M for ζ ∈ C1 since f(z) is continuous inside D.

(ii) |ζ − z| = |(ζ − z0) − (z − z0)| ≥ |ζ − z0| − |z − z0| = R1 − r
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so that
∣
∣
∣
∣
∣
∣

f(ζ)

ζ − z

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

z − z0
ζ − z0

∣
∣
∣
∣
∣
∣

n+1

≤ M

R1 − r

(

r

R1

)n+1

.

Finally

|Rn| ≤
∣
∣
∣
∣
∣
∣

1

2πi

∣
∣
∣
∣
∣
∣

M

R1 − r

(

r

R1

)n+1

2πR1︸ ︷︷ ︸

arc length

=
MR1

R1 − r

(

r

R1

)n+1

→ 0 as n→ ∞.

The Taylor coefficients are given by

ak =
1

2πi

∮

C1

f(ζ)

(ζ − z0)k+1
dζ, k = 0,1,2, · · ·

=
1

2πi

∮

C

f(ζ)

(ζ − z0)k+1
dζ,

where C1 is replaced by C and C is any simple closed contour en-

closing z0 and lying completely inside D [by virtue of Corollary 3 of

the Cauchy-Goursat Theorem].
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Example

Consider the function
1

1 − z
, the Taylor series at z = 0 is given by

1

1 − z
=

∞∑

n=0

zn, |z| < 1.

• The function has a singularity at z = 1. The maximum distance

from z = 0 to the nearest singularity is one, so the radius of

convergence is one.

• Alternatively, the radius of convergence can be found by the

ratio test, where

R = lim
k→∞

∣
∣
∣
∣
∣
∣

ak
ak+1

∣
∣
∣
∣
∣
∣

= 1.
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If we integrate along the contour C inside the circle of convergence

|z| < 1 from the origin to an arbitrary point z, we obtain

∫

C

1

1 − ζ
dζ =

∞∑

n=0

∫

C
ζn dζ

−Log(1 − z) =
∞∑

n=0

zn+1

n+ 1
=

∞∑

n=1

zn

n
.

The radius of convergence is again one (checked by the ratio test).

z

x

x

0

C
x

y

40



Example

Consider the Taylor series of the real function:
1

1 + x2

1

1 + x2
= 1 − x2 + x4 − x6 + · · ·

What is the interval of convergence?

• The Taylor series converges only for |x| < 1. This is because the

complex extension
1

1 + z2
has singularities on the circle |z| = 1 so

that the radius of convergence of the infinite series
∞∑

n=0

(−1)nz2n

is one. The above infinite power series diverges for points out-

side the circle of convergence, including points on the real axis,

where |x| > 1.

• When |x| = 1, the series becomes

1 − 1 + 1 · · ·
with alternating terms. It is known to be divergent.
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Example

Find the Taylor expansion of f(z) =
1

1 + z2
at z = 1. The function

is analytic inside |z − 1| <
√

2.

1

1 + z2
=

1

2i

(
1

z − i
− 1

z+ i

)

=
1

2i




1

1 − i

1

1 + z−1
1−i

− 1

1 + i

1

1 + z−1
1+i





=
∞∑

n=0

(−1)n
1

2i

[

1

(1 − i)n+1
− 1

(1 + i)n+1

]

(z − 1)n.

By observing 1 − i =
√

2e−iπ/4 and 1 + i =
√

2eiπ/4, we obtain

1

1 + z2
=

∞∑

n=0

(−1)n
ei(n+1)π/4 − e−i(n+1)π/4

(2i)2(n+1)/2
(z − 1)n

=
∞∑

n=0

(−1)n
sin(n+ 1)π4
2(n+1)/2

(z − 1)n.

42



Example

Find the Maclaurin expansion of f(z) = (z + 1)1/2, where the prin-

cipal branch of the function is used. Where is the expansion valid?

Solution

The required branch is identical to e
1
2Log(z+1), whose derivative is

given by

e
1
2Log(z+1) 1

2(z + 1)
=

(z + 1)1/2

2(z + 1)
.

Deductively, we have

f ′(z) =
1

2
(z + 1)

1
2−1, f ′′(z) =

1

2

(
1

2
− 1

)

(z + 1)
1
2−2, · · · ,

f(n)(z) =
1

2

(
1

2
− 1

)

· · ·
[
1

2
− (n− 1)

]

(z + 1)
1
2−n, n ≥ 1,

where (z + 1)
1
2−n =

(z + 1)
1
2

(z + 1)n
=
e
1
2Log(z+1)

(z + 1)n
.
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The principal branch of Log(z+1) is taken to have branch cut along

the negative real axis with branch points at z = −1 and z = ∞.

When z = 0, e
1
2Log 1 = 1 so that the Maclaurin coefficients are

c0 = 1, cn =
1

n!

[(
1

2

)(
1

2
− 1

)(
1

2
− 2

)

· · ·
(
1

2
− n− 1

)]

, n ≥ 1.

The singularity of (z+1)1/2 nearest to the origin is the branch point

z = −1. Hence, the circle of convergence is |z| < 1.

Remark

An analytic branch of a multi-valued function can be expanded in a

Taylor series about any point within the domain of analyticity of the

branch, provided that one takes care to use this branch consistently

in obtaining the coefficients of the series.
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Laurent series

Consider an infinite power series with negative power terms

∞∑

n=1

bn(z − z0)
−n,

how to find the region of convergence? Set w =
1

z − z0
, the series

becomes
∞∑

n=1

bnw
n, a Taylor series in w. Suppose R′ = lim

n→∞

∣
∣
∣
∣
∣
∣

bn

bn+1

∣
∣
∣
∣
∣
∣

exists, then
∞∑

n=1

bnw
n converges for |w| < R′ ⇔ |z − z0| >

1

R′.
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Special cases: (i) R′ = 0 and (ii)
1

R′ = 0.

1. When R′ = lim
n→∞

∣
∣
∣
∣
∣
∣

bn

bn+1

∣
∣
∣
∣
∣
∣

= 0, the infinite series
n∑

n−1

bn(z − z0)
−n

does not converge for any z, not even at z = z0.

2. When
1

R′ = lim
n→∞

∣
∣
∣
∣
∣
∣

bn+1

bn

∣
∣
∣
∣
∣
∣

= 0, we consider the ratio of successive

terms in
∞∑

n=1

bnw
n and observe that

lim
n→∞

∣
∣
∣
∣
∣
∣

bn+1

bn

∣
∣
∣
∣
∣
∣

|w| < 1

is satisfied for all w (except w = ∞ since the infinite series

Σbn(z − z0)
−n is not defined at z = z0). By virtue of the ra-

tio test, the region of convergence is the whole complex plane

except at z = z0, that is, |z − z0| > 0.
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For the more general case (Laurent series at z0)

∞∑

n=0

an(z − z0)
n +

∞∑

n=1

bn(z − z0)
−n

︸ ︷︷ ︸

principal part

,

suppose R = lim
n→∞

∣
∣
∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
∣
∣

and R′ = lim
n→∞

∣
∣
∣
∣
∣
∣

bn

bn+1

∣
∣
∣
∣
∣
∣

exists, and RR′ > 1,

then inside the annular domain
{

z :
1

R′ < |z − z0| < R

}

the Laurent series is convergent.

• When RR′ ≤ 1, the intersection of the two regions: |z − z0| <
R and |z − z0| >

1

R′ is the empty set. This is because the

combination of |z − z0| >
1

R′ and RR′ ≤ 1 implies |z − z0| ≥ R,

which contradicts with |z − z0| < R.
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The annulus degenerates into

(i) hollow plane if R = ∞

(ii) punctured disc if R′ = ∞.
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Remarks

1. When R = 0,
∞∑

n=0

an(z − z0)
n does not converge for any z other

than the trivial point z0. However, z = z0 is a singularity for

the principal part. Actually, when R = 0, RR′ > 1 can never be

satisfied.

2. A Laurent series defines a function f(z) in its annular region of

convergence. The Laurent series theorem states that a func-

tion analytic in an annulus can be expanded in a Laurent series

expansion.
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Laurent series theorem

Let f(z) be analytic in the annulus A : R1 < |z− z0| < R2, then f(z)

can be represented by the Laurent series,

f(z) =
∞∑

k=−∞
ck(z − z0)

k,

which converges to f(z) throughout the annulus. The Laurent co-

efficients are given by

ck =
1

2πi

∮

C

f(ζ)

(ζ − z0)k+1
dζ, k = 0,±1,±2, · · · ,

where C is any simple closed contour lying completely inside the

annulus and going around the point z0.

50



Remarks

1. Suppose f(z) is analytic in the full disc: |z − z0| < R2 (without

the punctured hole), then the integrand in calculating ck for

negative k becomes analytic in |z − z0| < R2. Hence, ck = 0 for

k = −1,−2, · · · .

The Laurent series is reduced to a Taylor series.

2. When k = −1, c−1 =
1

2πi

∮

C
f(ζ) dζ. We may find c−1 by any

means, so a contour integral can be evaluated without resort to

direct integration.
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Example

The Laurent expansion of e1/z at z = 0 is given by

e1/z =
∞∑

n=0

1

n!zn
.

The function e1/z is analytic everywhere except at z = 0 so that the

annulus of convergence is |z| > 0. We observe

lim
n→∞

∣
∣
∣
∣
∣
∣

bn+1

bn

∣
∣
∣
∣
∣
∣

= lim
n→∞

1/(n+ 1)!

1/n!
= 0 so that

1

R′ = 0.

Lastly, we consider

∮

C
e1/z dz, where the contour C is |z| = 1. Since

C lies completely inside the punctured disc |z| > 0, we have

∮

C
e1/z dz = 2πi(coefficient of

1

z
in Laurent expansion) = 2πi
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Example

Find the Laurent expansion of

f(z) = sin

(

z − 1

z

)

.

The function has a singularity at z = 0 so that the annulus of

convergence is |z| > 0. The Laurent coefficient cn is given by

cn =
1

2πi

∮

C

sin
(

z − 1
z

)

zn+1
dz, n = 0,±1,±2,

where C is chosen to be the unit circle |z| = 1.
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Take z = eiθ so that dz = ieiθ dθ, then

cn =
1

2πi

∫ π

−π
sin(2i sin θ)ieiθ

ei(n+1)θ
dθ

=
1

2π

∫ π

−π
i sinh(2 sin θ)(cosnθ − i sinnθ) dθ.

Note that sinh(2 sin θ) is an odd function in θ, hence
∫ π

−π
sinh(2 sin θ) cosnθ dθ = 0.

Finally,

cn =
1

2π

∫ π

−π
sinh(2 sin θ) sinnθ dθ, n = 0,±1,±2, · · · .
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Example

Find the Laurent expansion of the function

f(z) =
1

z − k

that is valid inside the domain |z| > |k|, where k is real and |k| < 1.

Using the Laurent expansion, deduce that

∞∑

n=1

kn cosnθ =
k cos θ − k2

1 − 2k cos θ+ k2
,

∞∑

n=1

kn sinnθ =
k sin θ

1 − 2k cos θ+ k2
.
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Solution

For |z| > |k|, where |k| < 1, we have

1

z − k
=

1

z
(

1 − k
z

)

=
1

z

(

1 +
k

z
+
k2

z2
+ · · ·

)

for

∣
∣
∣
∣
∣
∣

k

z

∣
∣
∣
∣
∣
∣

< 1.

x

y

| |k

z = e
iq
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Take the point z = eiθ, which lies inside the region of convergence

of the above Laurent series. Substituting into the infinite series

1

eiθ − k
=

1

eiθ
(1 + ke−iθ + k2e−2iθ + · · · + kne−inθ + · · · ).

Rearranging the terms

eiθ(e−iθ − k)

(eiθ − k)(e−iθ − k)
− 1 =

1 − k(cos θ+ i sin θ) − (1 − 2k cos θ+ k2)

1 − 2k cos θ+ k2

=
k cos θ − k2 − ik sin θ

1 − 2k cos θ+ k2

=
∞∑

n=1

kn cosnθ − i
∞∑

n=1

kn sinnθ.

Equating the real and imaginary parts, we obtain the desired results.
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Example

By evaluating the contour integral

∮

|z|=1

(

z +
1

z

)2n dz

z
,

show that
∫ 2π

0
cos2n θ dθ = 2π

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · ·2n
.

Solution

On |z| = 1, z = eiθ,

(

z+
1

z

)2n
= 22n cos2n θ,

dz

z
= i dθ.

I =

∮

|z|=1

(

z +
1

z

)2n dz

z
= 22ni

∫ 2π

0
cos2n θ dθ.

On the other hand, the integrand can be expanded as

1

z

(

z2n + 2nC1z
2n−2 + · · · + 2nCn + · · · + 2nC2n

1

z2n

)

, 0 < |z| <∞.
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Since the integrand is analytic everywhere except at z = 0, the

above expansion is the Laurent series of the integrand valid in the

annulus: |z| > 0.

∮

|z|=1

(

z +
1

z

)2n dz

z
= 2πi

(

coefficient of
1

z
in the Laurent series

)

= 2πi2nCn.

Hence,

∫ 2π

0
cos2n θ dθ = 2π2nCn

22n

= 2π
(2n)!

(n!)222n

= 2π
1 · 3 · · · (2n− 1)(2nn!)

(2nn!)(2nn!)

= 2π
1 · 3 · · · (2n− 1)

2 · 4 · 6 · · ·2n
.

59



The shaded region is |z| > 0. The circle C : |z| = 1 lies completely

inside the annulus of convergence and goes around z = 0. This is a

punctured complex plane with a single deleted point.
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Example

Find all the possible Taylor and Laurent series expansions of

f(z) =
1

(z − i)(z − 2)
at z0 = 0.

Specify the region of convergence (solid disc or annulus) of each of

the above series.
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Solution

There are two isolated singularities, namely, at z = i and z = 2.

The possible circular or annular regions of analyticity are

(i) |z| < 1, (ii) 1 < |z| < 2, (iii) |z| > 2.

(i) For |z| < 1

1

z − i
=

i

1 − z
i

= i

[

1 +
z

i
+ · · · +

(

zn

in

)

+

]

for |z| < 1

1

z − 2
=

(

−1

2

)
1

1 − z
2

=

(

−1

2

) [

1 +
z

2
+ · · · +

(
z

2

)n
+ · · ·

]

for |z| < 2

f(z) =
1

i− 2

(
1

z − i
− 1

z − 2

)

=
1

i− 2



i
∞∑

n=0

(
z

i

)n
+

1

2

∞∑

n=0

(
z

2

)n




=
1

i− 2

∞∑

n=0

[(
1

i

)n−1

+
1

2n+1

]

zn.

This is a Taylor series which converges inside the solid disc |z| < 1.
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(ii) For 1 < |z| < 2

1

z − i
=

1

z

1

1 − i
z

=
1

z

∞∑

n=0

(
i

z

)n
valid for |z| > 1

1

z − 2
= −

∞∑

n=0

zn

2n+1
valid for |z| < 2

f(z) =
1

i− 2





∞∑

n=0

(

in

zn+1
+

zn

2n+1

)

 valid for 1 < |z| < 2.

(iii) For |z| > 2

1

z − i
=

∞∑

n=0

in

zn+1
valid for |z| > 1

1

z − 2
=

1

z

1

1 − 2
z

=
∞∑

n=0

2n

zn+1
valid for |z| > 2

f(z) =
1

i− 2





∞∑

n=0

(in − 2n)
1

zn+1



 valid for |z| > 2.
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Example

Find all possible Laurent series of

f(z) =
1

1 − z2
at the point α = −1.

Solution

The function has two isolated singular points at z = 1 and z = −1.

There exist two annular regions (i) 0 < |z+ 1| < 2 and (ii) |z+ 1| >
2 where the function is analytic everywhere inside the respective

region.
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(i) 0 < |z+ 1| < 2

1

1 − z2
=

1

2(z + 1)
(

1 − z+1
2

)

=
1

2(z + 1)

∞∑

k=0

(z + 1)k

2k

=
1

2(z + 1)
+

1

4
+

1

8
(z + 1) +

1

16
(z + 1)2 + · · · .

The above expansion is valid provided

∣
∣
∣
∣
∣
∣

z + 1

2

∣
∣
∣
∣
∣
∣

< 1 and z+1 6= 0.

Given that 0 < |z + 1| < 2, the above requirement is satisfied.

For any simple closed curve C1 lying completely inside |z+1| < 2

and encircling the point z = −1, we have

c−1 =
1

2πi

∮

C1

1

1 − z2
dz =

1

2
.
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(ii) |z + 1| > 2

1

1 − z2
= − 1

(z+ 1)2
(

1 − 2
z+1

)

= − 1

(z+ 1)2

∞∑

k=0

2k

(z + 1)k
since

∣
∣
∣
∣
∣
∣

2

z + 1

∣
∣
∣
∣
∣
∣

< 1

= −
[

1

(z + 1)2
+

2

(z + 1)3
+

4

(z + 1)4
+ · · ·

]

.

For any simple closed curve C2 encircling the circle: |z+1| = 2,

we have

c1 =
1

2πi

∮

C2

1

1 − z2
dz = 0.
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Example

Suppose f(z) is analytic inside the annulus: r < |z| < 1

r
, r < 1 and

satisfies f

(
1

z

)

= f(z). Write the Laurent expansion of f(z) at z = 0

as f(z) =
∞∑

k=−∞
akz

k. Show that

(a) ak = a−k,

(b) f(z) is real on |z| = 1.
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Solution

(a) Consider

f

(
1

z

)

=
∞∑

k=−∞
akz

−k =
∞∑

k=−∞
a−kz

k

f(z) =
∞∑

k=−∞
akz

k

f

(
1

z

)

= f(z) ⇒ ak = a−k.

(b) It suffices to show f(z) = f(z) when z satisfies zz = 1. This is

obviously satisfied from the given property f

(
1

z

)

= f(z), for all

z lying inside the annulus: r < |z| < 1

r
.
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Example

From the Maclaurin series expansion of ez, it follows that the Lau-

rent series expansion of e1/z about 0 is

e1/z =
∞∑

n=0

1

znn!
, |z| > 0.

The Laurent coefficients are

bn =
1

2πi

∮

C
e1/z

z1−n
dz

where C is chosen to be the circle |z| = 1. Such choice of C is

feasible since the circle |z| = 1 lies completely inside the annulus

region of convergence of e1/z and it goes around the point z = 0.

By comparing the coefficients, we obtain

∮

C
e1/z

z1−n
dz =

2πi

n!
, n ∈ N.
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On |z| = 1, z = eiθ,−π ≤ θ ≤ π, so that the complex integral can be

expressed as

∫ π

−π
exp(e−iθ)
e(1−n)iθ

ieiθ dθ =

∫ π

−π
ie(cos θ−i sin θ+inθ) dθ =

2πi

n!

giving
∫ π

−π
ecos θ[cos(nθ − sin θ) + i sin(nθ − sin θ)] dθ =

2π

n!
.

Comparing the real parts on both sides, we obtain
∫ π

−π
ecos θ cos(nθ − sin θ) dθ =

2π

n!
, for all n ∈ N.

Equating the imaginary parts gives
∫ π

−π
ecos θ sin(nθ − sin θ) dθ = 0.

The above result is obvious since the integrand ecos θ sin(nθ − sin θ)

is an odd function.
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Classification of singularities and residue calculus

Singular point of a function f(z) is a point at which f(z) is not

analytic.

Isolated singularity Existence of a neighborhood of z0 in which z0 is

the only singular point of f(z).

e.g. f(z) =
1

z2 + 1
has ±i as isolated singularities.

Singularities of csc z are all isolated and they are simply the zeros

of sin z, namely, z = kπ, k is any integer.

Non-isolated singularities

f(z) = z is nowhere analytic so that every point in C is a non-isolated

singularity.

71



Consider f(z) = csc
π

z
, all points z = 1/n, n = ±1,±2, · · · , are iso-

lated singularities, while the origin is a non-isolated singularity.

Suppose z0 is an isolated singularity, then there exists a positive

number R such that f(z) is analytic inside the deleted neighborhood

0 < |z − z0| < R.

This forms an annular domain within which the Laurent series the-

orem is applicable, where

f(z) =
∞∑

n=0

an(z − z0)
n +

∞∑

n=1

bn(z − z0)
−n, 0 < |z − z0| < R.

The isolated singularity z0 is classified according to the property

of the principal part of the Laurent series expanded in the deleted

neighborhood of z0 where f is analytic. A singular point must be

either a removable singularity, an essential singularity or a pole.
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Removable singularity

The principal part vanishes and the Laurent series is essentially a

Taylor series. The series represents an analytic function in |z−z0| <
R.

For example,
1 − cos z

z2
is undefined at z = 0. The Laurent expansion

of
1 − cos z

z2
in a deleted neighborhood of z = 0 is

1 − cos z

z2
=

1

z2

[

1 −
(

1 − z2

2!
+
z4

4!
· · ·

)]

=
1

2!
− z2

4!
+
z4

6!
· · ·+, 0 < |z| <∞,

Note that lim
z→0

1 − cos z

z2
=

1

2!
. The singularity at z = 0 can be re-

moved by defining f(0) =
1

2
. The function f(z) =

{

(1 − cos z)/z2, z 6= 0
1/2, z = 0

admits the above Taylor series expansion valid for |z| < ∞.
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Essential singularity

The principal part has infinitely many non-zero terms. For example,

consider z2e1/z. Inside the annular region 0 < |z| < ∞, the Laurent

series of z2e1/z is

z2e1/z = z2 + z+
1

2!
+

1

3!

1

z
+

1

4!

1

z2
+ · · · , 0 < |z| <∞.

Pole of order k

The Laurent expansion in the deleted neighborhood of z0 is

f(z) =
∞∑

n=0

an(z − z0)
n +

b1
z − z0

+
b2

(z − z0)2
+ · · · + bk

(z − z0)k
,

with bk 6= 0. It is called a simple pole when k = 1. For example,

z = ±i are simple poles of
1

1 + z2
.

74



Example

Observe that

1 − cos z

z5
=

1

z3

[

1

2!
− z2

4!
+
z4

6!
− · · ·

]

, 0 < |z| < ∞,

so that (1 − cos z)/z5 has a pole of order 3 at z = 0.

Example

The function f(z) =
1

z(z − 1)2
has a pole of order 2 at z = 1. It

admits the following Laurent expansion

1

z(z − 1)2
=

1

(z − 1)3
− 1

(z − 1)4
+

1

(z − 1)5
− · · · + · · · , |z − 1| > 1.

It is incorrect to conclude that z = 1 is an essential singularity

by observing that the above Laurent expansion has infinitely many

negative power terms. This is because the annulus of convergence

of the series is not a deleted neighborhood of z = 1.
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Example

The Laurent expansion

∞∑

n=1

z−n +
∞∑

n=0

zn

2n+1

contains infinitely many negative power terms of z. Is z = 0 an

essential singularity of the function represented by the series?

The first sum converges to
1/z

1 − 1/z
=

1

z − 1
for |z| > 1 and the

second sum converges to
1/2

1 − z/2
=

1

2 − z
for |z| < 2.

Hence, the Laurent series converges to

f(z) =
1

z − 1
+

1

2 − z
= − 1

z2 − 3z + 2
in 1 < |z| < 2.

The annulus of convergence is not a deleted neighborhood of z =

0. Hence, we cannot make any claim about whether z = 0 is an

essential singularity of f(z) simply through the examination of the

above series.

76



Simple method of finding the order of a pole

If z0 is a pole of order k, then

lim
z→z0

(z − z0)
kf(z) = bk, bk 6= 0.

In general, if we multiply f(z) by (z−z0)m and take the limit z → z0,

then

lim
z→z0

(z − z0)
mf(z) =







bk m = k
0 m > k
∞ m < k

.

For example, take f(z) =
1 − cos z

z5
.

lim
z→0

zm
1 − cos z

z5
=







1
2 m = 3

0 m > 3
∞ m < 3

.

Hence, z = 0 is a pole of order 3 of (1 − cos z)/z5.
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Example

Suppose z = 0 is a pole of order n and m, respectively, of the

functions f1(z) and f2(z), find the possible order of z = 0 as a pole

for f1(z) + f2(z). Without loss of generality, we assume n ≥ m.

(i) When n > m

f1(z) =
n∑

k=1

b
(1)
k z−k +

∞∑

k=0

a
(1)
k zk, b

(1)
n 6= 0,

f2(z) =
m∑

k=1

b
(2)
k z−k +

∞∑

k=0

a
(2)
k zk, b

(2)
m 6= 0,

so f1(z) + f2(z) must contain negative power terms up to z−n.

(ii) When n = m, in general, z = 0 is a pole of order n for f1(z) +

f2(z). However, it is possible that f1(z) = −f2(z)+
1

zℓ
,0 ≤ ℓ ≤ n.

In this case, z = 0 is a pole of order ℓ. When ℓ = 0, z = 0 is not

an isolated singularity.
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Behavior of f near isolated singularities

1. If z0 is a pole of f , then

lim
z→z0

f(z) = ∞.

To show the claim, suppose f has a pole of order m at z0, then

f(z) =
φ(z)

(z − z0)m

where φ(z) is analytic and non-zero at z0. Since

lim
z→z0

1

f(z)
= lim

z→z0

(z − z0)
m

φ(z)
=

lim
z→z0

(z − z0)
m

lim
z→z0

φ(z)
=

0

φ(z0)
= 0,

hence lim
z→z0

f(z) = ∞.
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2. If z0 is a removable singularity of f , then f admits a Taylor

series in some deleted neighborhood 0 < |z − z0| < δ of z0, so it

is analytic and bounded in that neighborhood.

3. In each deleted neighborhood of an essential singularity, the

function assumes values that come arbitrarily close to any given

number.

Casorati-Weierstrass Theorem

Suppose that z0 is an essential singularity of a function f , and let

w0 be any complex number. Then, for any positive number ǫ,

|f(z) − w0| < ǫ (A)

is satisfied at some point z in each deleted neighborhood of z0.
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Proof

Take any deleted neighborhood of z0. Since z0 is an isolated sin-

gularity, the neighborhood itself or a subset of which will have the

property that f is analytic inside 0 < |z − z0| < δ for some value

of δ. Assume that inequality (A) is not satisfied for any z in the

neighborhood 0 < |z − z0| < δ (inside which f is analytic). Thus,

|f(z) − w0| ≥ ǫ when 0 < |z − z0| < δ.

Define

g(z) =
1

f(z) − w0
, 0 < |z − z0| < δ,

which is bounded and analytic. Hence, z0 is a removable singularity

of g⋆. We let g be defined at z0 such that it is analytic there.

⋆ We use the following result: Suppose f is analytic and bounded

in 0 < |z − z0| < ǫ. If f is not analytic at z0, then it has a

removable singularity at z0.
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We consider the following two cases:

(i) If g(z0) 6= 0, then

f(z) =
1

g(z)
+ w0, 0 < |z − z0| < δ, (B)

becomes analytic at z0 if f(z0) =
1

g(z0)
+ w0. This means that

z0 is a removable singularity of f , not an essential one. We have

a contradiction.

(ii) If g(z0) = 0, then g must have a zero of some finite order m at

z0 since g(z) is not identically equal to zero in the neighborhood

|z − z0| < δ. Write g(z) = (z − z0)
mψ(z0), where ψ(z0) 6= 0. In

this case, f has a pole of order m since

lim
z→z0

f(z)(z − z0)
m = lim

z→z0

(z − z0)
m

g(z)
=

1

ψ(z0)

which is finite. Again, there is a contradiction.
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Example

Classify the zeros and singularities of the function sin(1 − z−1).

Solution

Since the zeros of sinw occur only when w is an integer multiple of

π, the function sin(1 − z−1) has zeros when

1 − z−1 = nπ,

i.e., at

z =
1

1 − nπ
, n = 0,±1,±2, · · · .
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Furthermore, the zeros are simple because the derivative at these

points is

d

dz
sin(1 − z−1)

∣
∣
∣
∣
∣
z=(1−nπ)−1

=
1

z2
cos(1 − z−1)

∣
∣
∣
∣
∣
z=(1−nπ)−1

= (1 − nπ)2 cosnπ 6= 0.

The only singularity of sin(1−z−1) appears at z = 0. Suppose we let

z approach 0 through positive values, sin(1−z−1) oscillates between

±1. Such behavior can only characterize an essential singularity.
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