6. Residue calculus

Let zg be an isolated singularity of f(z), then there exists a certain
deleted neighborhood N: = {z : O < |z — 29| < €} such that f is
analytic everywhere inside N:. We define

Res (f,20) = [y

where C' is any simple closed contour around zg and inside /Ng.

y

N




Since f(z) admits a Laurent expansion inside Ng, where

oo

FE =S an(c— 20"+ > bulz — 20) ",

then

b =5, 1() d= = Res (f,20).

271

Example

e 1 o 1 ifk=1
(z—20)" %) T 10 ifk#1

Res (el/#,0) = 1 since el/z—l—l———+———|— |z| >0

1 1
Res , 1] = —— by the Cauchy integral formula.
(z—1)(z—2) 1-2



Cauchy residue theorem

Let C be a simple closed contour inside which f(z) is analytic ev-
erywhere except at the isolated singularities z1, 2o, -, zn.

j{C f(Z) dz = Qﬁi[ReS (f7 Zl) _I_ e _I_ Res (f7 Z’n)]
This is a direct consequence of the Cauchy-Goursat Theorem.

y

N




Example

Evaluate the integral

1
]{ 2 dz
2|]=1 22

using

(i) direct contour integration,

(ii) the calculus of residues,

1
(iii) the primitive function logz — —.
<

Solution

(i) On the unit circle, z = € and dz = ie?? d§. We then have

1 21 : : : 21 :
7{ © _2 dz = / (e 04e720)et0 g9 = z/ (14" ) do = 2mi.
z|=1 =% 0 0
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(ii) The integrand (z + 1)/22 has a double pole at z = 0. The

Iiaurelnt expansion in a deleted neighborhood of z = 0 is simply
— + —, where the coefficient of 1/z is seen to be 1. We have
4 <

1
Res (Z_Z ,O) =1,
<

and so

1 1
f{ c _I; dz = 2miRes (Z _Z ,O) = 271.
z|=1 =z z

(iii) When a closed contour moves around the origin (which is the
branch point of the function log z) in the anticlockwise direction,
the increase in the value of arg z equals 27w. Therefore,

1
]{ el = change in value of In|z| +iargz — 1 in
2|=1 22 z

traversing one complete loop around the origin

= 271.



Computational formula

Let zp be a pole of order k. In a deleted neighborhood of zq,

=Y an(z — 20)" + 2

n=0

2—z0  (z—20)F

Consider
g9(z) = (z — 20)" f (2).
the principal part of ¢g(z) vanishes since

g(z) = b+ bp_1(z —20) + - b1(z — 20)" L+ 3 an(z — 20)"T*.

n=0

By differenting (kK — 1) times, we obtain

(k-1
9<(k_)1()2!0) if g(k=1)(2) is analytic at zq
. o dk—l . k
b1 = Res (f,z0) = { |im (z=20)"/(2)] 4 zo is a removable
e=zodF—1 | (k—1)!
\ singularity of ¢g(k=1)(2)




Simple pole

k=1: Res(f,z9) = |im0(z — 20) f(2).

Suppose f(z) = % where p(zg) 7% 0 but ¢(zg) = 0,4¢'(2g) # O.
Res (f,70) = lim (= — 20) (=)
- (z0) +p'(20)(z — 20) + - -
= lim (z — zg) P -
Z—20 0 q/(ZO)(Z_ZO)+q gTO)(Z_ZO)2+"'
p(20)

¢'(z0)



Example
Find the residue of el/z

F(2) =1—

at all isolated singularities.

Solution
(i) There is a simple pole at z = 1. Obviously

Res(f,1) = Iiml(z —1)f(z) = _el/z = —e.
S z=1
(ii) Since
1 1

1)z — 1 4 =

c + z T 2122 T
has an essential singularity at z = 0, so does f(z). Consider
el/z 5 11

— (14242 +..-)(1+—+ 2+.--), for 0 < |2 < 1,

1 —z z 2z

the coefficient of 1/z is seen to be

1 1



Example

Find the residue of
,1/2

f(z) = (- 2)?

at all poles. Use the principal branch of the square root function
1/2
y .

Solution

The point z = 0 is not a simple pole since z1/2 has a branch point
at this value of z and this in turn causes f(z) to have a branch point
there. A branch point is not an isolated singularity.

However, f(z) has a pole of order 2 at z = 2. Note that

1/2 1/2
Res(f,2) = lim d (= — lim [~ — _L,
z—2 dz z z—2 222 4+/2

where the principal branch of 21/2 has been chosen (which is v/2).

9



Example

Evaluate Res (g(2)f'(z)/f(2), ) if ais a pole of order n of f(z), g(z)
is analytic at « and g(a) # 0.

Solution

Since « is a pole of order n of f(z), there exists a deleted neigh-
borhood {z : 0 < |z — a| < €} such that f(z) admits the Laurent
expansion:

bn b,
f(z)—(z_a)nJr(z_a)n - +(Z_a)

Within the annulus of convergence, we can perform termwise dif-
ferentiation of the above series

+ Z an(z—a)", by £ O.

10



/ — - — e o o . n— 1
J (Z) o (Z — a)n-l—l (Z _ a)n (Z — 04)2 + Z nan(z Oz)
Provided that g(«) # 0O, it is seen that
BN [(z =t - @-3)% B gman(e — ey
— Im g(z
o (2= a)n T (z— Oé)n oot zbla + 2= an(Z —a)n
= -—ng(a) # 0,

so that « is a simple pole of g(z)f'(2)/f(z). Furthermore,

Res <gf7,,oz> = —ng(a).

Remark

When g(a) = 0,a becomes a removable singularity of gf'/f.

11



Example

Suppose an even function f(z) has a pole of order n at «. Within the
deleted neighborhood {z : 0 < |z — a| < €}, f(z) admits the Laurent
expansion

b n
f(z)_(z—a)”+ —I—(Z_a)—l—Zan(z—oz) bn, &= 0.
Since f(z) is even, f(z) = f(—z) so that
— f(—2) = bn, b1 - an(—z — a)"™
@ =)=ttt iy L ana o)

which is valid within the deleted neighborhood {z: 0 < |z + a| < €}.
Hence, —« is a pole of order n of f(—z). Note that

Res(f(z),a) =b; and Res(f(z),—a) = —b;

so that Res(f(z),a) = —Res(f(z),—«). For an even function, if
z = 0 happens to be a pole, then Res(f,0) = 0.

12



Example

tan tan tan
f{ - Zdz = 271 [Res ( Z,g) + Res ( Z,—EH
Z|l=

z z z 2

since the singularity at z = 0 is removable. Observe that g IS a

simple pole and cosz = —sin (z — g) we have
tan — ) tanz
Res( Z,z> = |im ( 2)
Z 2 Z—>%
2z —Z)sinz
= lim ( 2) N3
N

13



2 :
— — using the
7T

As tanz/z is even, we deduce that Res( 75
<
result from the previous example. We then have

tan
fi Zdz::O.
|z|=2 Zz

tanz W)

Remark

2
Let p(z) = sinz/z,q(z) = cos z, and observe that p(g) = —.,q (E> —
7T

0 and q’(g) — _10, then

e (%225) =0 () /4 (5) =2

14



Example

Evaluate

Solution

y ya < <
lim = (Iim ) lim =0
2z—0sin z (22 + 72)2 z—0Sin z <z—>0 (22 + 7'(‘2)2)
so that z = 0 is a removable singularity.

y

i

O —n 0 T o




It is easily seen that z = 7w is a pole of order 2.

Res (f, im)

lim —[(z —im)? f(2)]

Z—1T Z
= Iim d[ = ]
z—im dz (Z—|—Z7T)25Inz
— lim 2z(z—I—'m)Slnz—zz[(z—l—iw)COSz—I—QSinz]
Z—T (z + im)3 sin?
2sinhm 4+ (— wcoshw—smhw) 1 cosh
—4rsinh? 4xsinhw | 4rsinh27

Recall that sintm = ¢sinht and cos:m = coshw. Hence,

22
j{C ——dz = 2miRes (f,im)

(22 + 72)2sin 2
) 1 cosh
2 sinh sinh<

16



T heorem

If a function f is analytic everywhere in the finite plane except for a
finite number of singularities interior to a positively oriented simple
closed contour C', then

%Cf(z) dz = 2miRes (zizf (%) ,O) ,

17



We construct a circle |z| = R1 which is large enough so that C is
interior to it. If Cp denotes a positively oriented circle |z| = Rp,
where Rg > Rq, then

O

f(z)= ) 2", R1<|z]< oo, (A)
Nn=——00
where
1
Cn = —— f(2) dz n=0,£1,£2,---.
271 JOg 211

In particular,
2mic_q Z]{ f(2)dz.
Co

How to find c_17 First, we replace z by 1/z in Eq. (A) such that
the domain of validity is a deleted neighborhood of z = 0.

18



Now

1 1 s Cn X cp_o 1
—f =] = = , 0 < —,
2/ (Z) n:Z_OO n+2 n:z_:oo n 2| R
so that
1 1
c_1 = Res (—2]" (—) ,O) :
zZ 4
Remark

By convention, we may define the residue at infinity by

Res (f,00) = —ifcf(z) dz = —Res (Zizf (%) ,O) :

271
where all singularities in the finite plane are included inside C'. With

the choice of the negative sign, we have

> Res(f,z)+ Res(f,00) =0.
all

19



Example

Evaluate
5z — 2
7{ © dz.
z|=22(z — 1)
Solution
52 — 2
Write f(2) = < For 0 < |2 < 1,
z(z—1)
bz —2 52 -2 —1 2
2(z—1) z 1—=z z
so that

Res(f,0) = 2.

20



For 0 < |z —1| <1,

52—2 _ 5(x-1)+3 1
(2 —1) z—1 14 (z-1)
~ (5+z31>[1_(2_1)+(Z—1)2—(z—1)3_|-...]
so that
Res(f,1) = 3.
Hence,

foma s 1ye = 2ni[ReS(7.0) F Res (1] = 10mi

21



On the other hand, consider

if(1> _ 5-2z  5-2z 1
227 \z)  z2(1—2)  z 1—=z
5
= (;—2)(1+z+z2+--.)
5
= —+3+4+3z, 0<]|z| <1,
z
so that
52 — 2
?{ © dz = —-2miRes(f,o0)
z|=2 2(z — 1)

= 2miRes (if (1> ,O) = 10mrz.

22 <

22



Evaluation of integrals using residue methods

A wide variety of real definite integrals can be evaluated effectively
by the calculus of residues.

Integrals of trigonometric functions over [0, 27]

We consider a real integral involving trigonometric functions of the
form

2T
/o R(cos#,sin @) db,

where R(x,y) is a rational function defined inside the unit circle
|z| =1,z = x+14y. The real integral can be converted into a contour
integral around the unit circle by the following substitutions:

23



z = ew, dz = ie'? d9 = iz do,
10 —160 1 1

Cosfh = e’ Te =—(z—|——),
z

2 2
el _ =10 1 1
sinfg = _ =—_(z——).
21 21 z

The above integral can then be transformed into

2T
/o R(cos#,sinf) db

_f Lg(z e,
|z|=112 2 21

1 —1 1
= 2 |sum of residues of —R 2tz ,Z Z inside |z| = 1] .
12 2 21

24



Example

2T cos 26
Compute I = dob.
0 24 cosé
Solution
2r _cos20 7{ %(ZQ—I-Z%) dz
= —1
0 2+ cosf |z|:12_|_%(z-|-%)z
P +1

dz.
2|=1 22(22 + 4z + 1)
The integrand has a pole of order two at z = 0. Also, the roots of

224+42+1 =0, namely, 21 = —2—+/3 and 2z, = —2+4+/3, are simple
poles of the integrand.

25



z4—|—1

Write f(z) = . Note that z7 is inside but z» is outside
f(z) 22(22 4+ 424 1) ! 2

|z| = 1.

y

4\

z|=1
simple [ double .
zZ, =—2—\/§

26



4
Res(f,0) = lim & = *1
z—0dzz24+4z+1

323(22 + 42+ 1) - Y+ 1)(22+4)

= (22 42 + 1)2 —
4
Res (f,-2+3) = * 1+ J a2+t
2% =243/ dz z=—2++/3

(—24++V3)4+1 1 7

(—24+v3)2 2(2+V3)+4 V3

I = (—i)2mi [Res (f,0) + Res (f,—2 + \/5)}

7
— 27T<—4+\/—§>-

27



Example

Evaluate the integral

™ 1
1:/‘ d9, a>b>0.
0 a—bcosoh

Solution

Since the integrand is symmetric about 0 = 7w, we have
1 /27 1 21 0
I=—/ o = ¢ do.
2J0 a—bcosH 0 2ae? —b(e2i0 4 1)
The real integral can be transformed into the contour integral
1
I = z]{ dz
2|=1b22 — 2az + b
The integrand has two simple poles, which are given by the zeros
of the denominator.

28



Let a denote the pole that is inside the unit circle, then the other

pole will be é The two poles are found to be

o= and — =

Since a > b > 0, the two roots are distinct, and « is inside but é IS
outside the closed contour of integration. We then have

1 1
ib)|z1=1(z — a) (z — 1)
271 1
= — 7" Res N
ib (z—a) - 1)
271 T

29



Integral of rational functions

| @) da,

where

1. f(z) is a rational function with no singularity on the real axis,

2. lim zf(z) = 0.

It can be shown that

o
/ f(x) de = 27i [sum of residues at the poles of f in the upper
— 00
half-plane].

30



Integrate f(z) around a closed contour C that consists of the upper
semi-circle Cr and the diameter from —R to R.
y

By the Residue Theorem

. R
fcf(z) ez = | @ et [ 1) d:

= 2mi [sum of residues at the poles of f inside C].

31



As R — oo, all the poles of f in the upper half-plane will be enclosed
inside C'. To establish the claim, it suffices to show that as R — oo,

lim dz = 0.

The modulus of the above integral is estimated by the modulus
inequality as follows:

T i0
/CRf(z)dz < [ 1f(re)| R do

. T
< max Ret R/ do
OSeéﬁlf( e")]| ‘

= maXx|zJ(zg)|m
max [z ()],

which goes to zero as R — oo, Since ZIi_(go zf(z) = 0.

32



Example

Evaluate the real integral

by the residue method.

Solution
4 31
The complex function f(z) = 1—ZI— s has simple poles at V3t
<
— 3 Y
and V3t in the upper half-plane, and it has no singularity on

the real axis. The integrand observes the property lim zf(z) = 0.
We obtain

/O:Of(:c) de = 271 |Res(f,i) + Res (f, \/§2+ Z) + Res (f, _\/i_i_i)] :

33



The residue value at the simple poles are found to be

1 )
Res(f,71) = — = ——,
(f, %) 65| c
=1
V341 1 V3 —1
Res | f, =6— = 15
and
—V34i 1 V34
Res | f, > =6— = — 15
ZZ:_\/Qg_l_Z-
so that

/oo 4 (z V3 —i \/§—I—7j> 2
der = 2m [ — — = 3

€+ 12 12

34



Integrals involving multi-valued functions

Consider a real integral involving a fractional power function

oo
/ f(x)daz, O<a<l,
0 xr%

1. f(z) is a rational function with no singularity on the positive real
axis, including the origin.

2. lim f(z) = 0.

z— 00

We integrate ¢(z) = LO,i) along the closed contour as shown.
Z

35



The closed contour C consists of an infinitely large circle and an
infinitesimal circle joined by line segments along the positive z-axis.

36



(i) line segment from £ to R along the upper side of the positive
real axis: z =x,e <z < R,

(ii) the outer large circle Cp: z = Re??, 0< 60 < 27;

(iii) line segment from R to e along the lower side of the positive
real axis

(iv) the inner infinitesimal circle C: in the clockwise direction

zzsew, 0 <6 < 2m.

37



Establish: lim p(z) =0 and Ilim - »(z) = 0.

R—oo JCp e—0

/ o(2)dz| < / 2W|¢(Rei9)Rew|d9<2w max |z¢(z)|
CR o 0 o ZECR

/ngb(z) dz| < /027T|q§(€ei9)|6d9§27?22%>€<|z¢(z)|.

It suffices to show that z¢(z) — 0 as either z — oo or z — 0.

1. Since lim f(z) =0 and f(z) is a rational function,

Z— 00

deg (denominator of f(z)) > 1+ deg (numerator of f(z)).

Further, 1 —a < 1,2¢(2) = 2172f(2) — 0 as z — .

2. Since f(z) is continuous at z = 0 and f(z) has no singularity at
the origin, zé(z) = 2172 f(2) ~0- f(0) =0 as z — O.

38



The argument of the principal branch of z% is chosen to be 0 <0 <
27, as dictated by the contour.

d(z) dz = gb(z) dz + gb(z) dz
C
/Rf(:c) flae?)

R xa€2a7m

= 2mi [sum of residues at all the isolated singularities
of f enclosed inside the closed contour C].

By taking the limits ¢ — 0 and R — oo, the first two integrals vanish.
The last integral can be expressed as

_ > f(CU) 6—2a7m' OOf(aj)d
0 xoz€20m7j 0 T

der = —

Combining the results,

00 271
/ f(=) de = ik [sum of residues at all the isolated

singularltles of f in the finite complex plane].

39



Example

00 1
Evaluate / dr, 0O0<a<]l1.
0 (14 x)x“

Solution

1

f(z) = 1+ )
z = —1. By the Residue Theorem,

IS multi-valued and has an isolated singularity at

1
j{C (14 2)z« az

dz dz

__—2am R dx
= (d-e )/e (1—|—:1:):130‘+ CR(l—I—z)zO‘+ Ce (1 4 2)z

1 1) = 271
(1+ 2)zo — eami’

|

N
N

~.
A
)
n

40



The moduli of the third and fourth integrals are bounded by

1 2
/ i) < 2™ g0 a5 R-— oo
Cr(l 4 2)z« (R—1)R“
/ 1 dz| < 2me ~elT® 50 as e — 0.
Ce(1 4 2)z™ T (1 —e)e™

On taking the limits R — oo and ¢ — 0, we obtain

) o0 1 2711
(1-— 6_20‘7”)/ dr = 7r7,.;
0 (14 x)z™ el

SO
00 1 21 7
| S o
o (14 z)x“ eami (1 — e—2am)  sinam

41



Example

Evaluate the real integral

00 eOé.fC
de, O0<a<]l.
/—ool—|-€x v “

Solution

The integrand function in its complex extension has infinitely many
poles in the complex plane, namely, at z = (2k + 1)mi¢, k is any
integer. We choose the rectangular contour as shown

1. y=0, —R < x <R,
I =R, 0<y<2m,
l3: y=2m, —R<x<R,
la. = —-R, 0<y<2m.

42



P 271 l,
i
14 i A
4 X i 62
l, N X
—R 0 R

T he chosen closed rectangular contour encloses only one simple pole

at z = m.

43



The only simple pole that is enclosed inside the closed contour C is
z = m1. By the Residue Theorem, we have

d 21 ea(R—i_Zy) d
clte /R1+ew +/ 1+ eftiy Y
ca(z+2mi) 0 ea(—R+iy) |
+/ 1 4 ext2mi ar + on 1 4 e R+ idy

eozz
2w Res , T
1 4 e*

oz

e
= 2mi—
eZ

— —2me?™

Z=T1

44



Consider the bounds on the moduli of the integrals as follows:

/271' e (R+iy)

21 Rt
: N —(1-a)R
0 1 _|_€R—|—zy Zdy S /O GR— 1 dy 0(6 )7

0 ea(_R_l_iy)
2 1 + e~ R+1y

21 —aR
idy S/ c = dy ~ O(e~ .

0O 1—e—

As 0 < a < 1, both e=(1=®)R gnd =R tend to zero as R tends to
infinity. T herefore, the second and the fourth integrals tend to zero
as R — oo. On taking the limit R — oo, the sum of the first and
third integrals becomes

(1-— Gzam)/ de = —2mwie®™"
oo 1 —|— et
SO
oo et . 271 _om
/—oo 1+ e*  eami _g—ami  sinaqm
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Example

Evaluate

o0 1
/ dx.
0o 14 z3

Solution

Since the integrand is not an even function, it serves no purpose to
extend the interval of integration to (—oo,>0). Instead, we consider

the branch cut integral
Lo
?{ J 2 dz,
c1l-+ 23

where the branch cut is chosen to be along the positive real axis
whereby 0 < Arg z < 2m7. Now

Lo R In e Lo 2
O 4y = xda:—l—/ g (@e™™) 4
c1l+4 23 e 1423 R 1+ (ze2m)3
Log z Log z
d d
R AP S i R
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3
_ Log z
= 27sz:§ 3 Res (m, Zj) )

where z;,j = 1,2,3 are the zeros of 1/(1 + z3). Note that

Lo N
gzdz :O(6 6) >0 as € — O;
c.1+4 23 1
Lo RIn R
gzdz — O( ) O as R — oc.
CR1+Z3 R3
Hence
Lo 0 In O Lo 2im
lim 9% 1 =/ v daz—l—/ g (ze™™)
oo c1l+ 23 0 1423 0o 1 + (ze2im)3
o0 1
= —27rz'/ dx,
o 143

thus giving

47



The zeros of 1 + 23 are a = €™/3,83 = €™ and v = 5™/3. Sum of

residues is given by

_ Log o n Log B n Log v
(a—B)a—7) ' B-a)B-7)  G—a)y—-H)

BB+ -)+Fa-B)] 2n

- (- B)(B -7 —a) T 33

Hence,

/OO 1 J 27
r= ——.
o 1423 3v3

48



Evaluation of Fourier integrals

A Fourier integral is of the form

oo .
/ eme (1) dz,  m >0,
— 0

1. lim f(z) =0,

Z— 0

2. f(z) has no singularity along the real axis.

Remarks

1. The assumption m > 0 is not strictly essential. The evaluation
method works even when m is negative or pure imaginary.

2. When f(z) has singularities on the real axis, the Cauchy principal
value of the integral is considered.
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Jordan Lemma
We consider the modulus of the integral for A > 0O

. T . . q
f(2)eM dz| < /O |f(Re7’9)| |e7’>‘R66| R df

7T .
< max|f(z)|R/ e~ AESING g
z€eCp

= 2R max |f(2) /2 —ARSING g
zeCp

< 2R max |f(z)| /2 —ARZ do
2€CR

— 2R max (1 —e
max |f(2)|2RA( e ),

which tends to 0 as R — oo, given that f(z) — 0 as R — oo.

50



e
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To evaluate the Fourier integral, we integrate e"%f(z) along the
closed contour C that consists of the upper half-circle Cr and the
diameter from —R to R along the real axis. We then have

mz _ R me mz
7{06 f(z) dz = /_Re f(x) doe + CR@ f(z) d=z.

Taking the limit R — oo, the integral over Cpr vanishes by virtue of
the Jordan Lemma.

Lastly, we apply the Residue Theorem to obtain

@) .
/ e f(x) dr = 2mi [sum of residues at all the isolated
— OO
singularities of f in the upper half-plane]

since C' encloses all the singularities of f in the upper half-plane as

R — .
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Example

Evaluate the Fourier integral

00 sin 2x
/ dx
—ox? 4+ x4+ 1

Solution

It is easy to check that f(z) =

. . 1
the real axis and le_)ngO e

271
poles, namely, z = e 3 in the upper half-plane and e 3 in the lower
half-plane. By virtue of the Jordan Lemma, we have

1 i i
P has no singularity along

= 0. The integrand has two simple

53



00 sin 2 00 2ix 21z
/ 5 nee dr = Im / € dr = Im 7{ € dz,
—oxc+x+1 ozl + 41 cz24+z+1
where C is the union of the infinitely large upper semi-circle and its
diameter along the real axis.

Note that
€2iz . 6222’ o
7{ dz = 2mi Res ,€ 3
Cz24+2+1 224241
211
21z 2ie 3
= 2m 2€+ 1 , = 271 ezm'
< e B 2¢ 3 +1
Hence,
2
o sin?2 e 2
| e = Im|2mi 5 = meV3sinl.
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Example

Show that

o0 & @) 1
/ sinz2 dz = / cosz2dr = —\/T.
0 0 2V 2

Solution

Rel'n/4

13




.2 R . 2 E . 220 .
:740622 dy — /O i d:c—i—/o467’ReZiRe7’9d9

O .5 ;2/o .
+ / el i/ e7,7r/4 dr.
R

Rearranging

R . . R 2 7'('/4 -2 2 . .
/O (cos z?+isinz?) dx = 67’71-/4/0 e " dr—/o gtfte Cos20—R=siN20; poib gg

Next, we take the limit R — oo. We recall the well-known result

ei%/OOOe_Tzdrz eim/4 = \/7—|— \/7
2¢

Also, we use the transformation 20 = ¢ and observesing > —,0 < ¢ <
T

N[ 3

to obtain
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/4

7'('/4 -2 2 . D . 2 .
/ iR cos 20— R?sin QiRewdQ‘ < / —R2sin20p 19

0 0
2 :
— E/ﬂ-/ e—R25|n¢d¢
2.J0
< E/W/Q o —2R%¢/m do
- 2Jo

— %{(1—6—32)%0 as R — oo.

We then obtain
o0 5 .. 9 1 /7 1 /7
COS Sin dr = —,/— — /=
/o( vt risina®)dr =5y /5 +iny5

00 00 1
/ cos z2 dx = / sinzlde = = I
0 0 2V 2

so that
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Example

o In(z? 4+ 1
Evaluate/ (2% + )d:c.
0 x2 4+ 1

Hint: Use Log(i —z) 4+ Log(i + z) = Log(i? — z2) = In(z2 + 1) + .

Solution
L .
Consider f{ °9(z +1) dz around C as shown.
c 2241
Y
C;
N
/
> X
—R R
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Lo '
9(z + 1) in the upper half plane is the simple
2241

The only pole of

pole z = ¢. Consider

2miRes (Log;z(zﬁ—i)’i)
z<+1
. . (z—19)Log(z+1) . T2
= QWZ,LIanj (s — ) (z & 0) = wLog 2z—7r|r12—|——2 1.

L ) I
/ ng(z—|—z) dz = O (InR)R »0 as R — o
CR z +1 R2
R Log(i— x) R Log(z + 1) Log(z + ©) 2
d d dz=7mIn2 4+ —
/O x2 41 z ¥ 0 x2 4+ 1 z ¥ Cr 2241 F=mi +QZ
and Log(i —z) 4+ Log(i 4+ z) = In(z? 4+ 1) + mi.
From Ooln(mz_l_l)d -+ o _m d In2—|—7T2'and/C>O dz m
X T =TT — i
0 2+ 1 0 xz241 2 0o 14+x22 2
soO that
2
/OOln(aj + 1) dr = 7 ln 2.
0 x2 41
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Cauchy principal value of an improper integral

Suppose a real function f(x) is continuous everywhere in the interval
[a,b] except at a point zg inside the interval. The integral of f(x)
over the interval [a,b] is an improper integral, which may be defined
as

61,62—>O a ZCO—|—€2

b To—€1 b
/af(az) dr = |im [/ f(x) doe + f(x) da:] , €1, €eo > 0.

In many cases, the above limit exists only when e¢; = €5, and does
not exist otherwise.

60



Example
Consider the following improper integral

2 1
/ dx,
—1x—1

show that the Cauchy principal value of the integral exists, then find
the principal value.

Solution
2
Principal value of . 1 dx exists if the following limit exists.
x_
[ rl—e 1 2 1
lim / dz + d
e—0+t |[/-1 x—1 14+ex — 1
i 1—¢ 2
= Ilim [In]z — 1| +Injz — 1|
e—0T | 1 1+e
= I|im [(Ine—=In2)4+ (In1 —In¢e)] = —In2.
e—0T
2

dx exists and its value is

Hence, the principal value of /
o —1x—-1
—|In 2.
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Lemma

If f has a simple pole at z = c¢ and T} is the circular arc defined by
T, 2= c+ re? (01 <0< 05),

then

lim - f(z)dz =1(6> — 61)Res (f, c).

r—0

In particular, for the semi-circular arc Sy

rircr)]+ s f(z)dz = iwRes ([, ¢).
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Proof

Since f has a simple pole at c,

f(z) =

Z_

FOFO<T<R,/T f(z)dz=a_1/

a_1

©.@)
+ ) ap(z—c)*, 0<|z—c| <R for some R.
¢ k=0

\ 7
~~

9(z)

1

TrZ—C

dz—|—/T g(z) dz.
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Since ¢g(z) is analytic at ¢, it is bounded in some neighborhood of
z = c. lhatis,

g(z)| < M for |z—c|<T.

For O <r < R,

‘/T g(z)dz| < M - arc length of T, = Mr(0> — 04)
and so
lim dz = 0.
lim, Trg(Z) z
Finally,
1 0> 1 . 0
/ dz=/2—.ire7’9d9=i °d6 = i(65 — 67)
T, 2z — C 01 rett 01
so that

lim f(z) dz = a_li(«92 — 91) = Res (f, C)i((92 — (91).
r—0Qt JTr
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Example

Compute the principal value of
21x

o0
/ 3326 dzx.
—oco x4 —1

Solution

The improper integral has singularities at + = +1. The principal
value of the integral is defined to be

21x

—1—?"1 1—?"2 R €Te
lim / +/ +/ S da.
R—oo  \J-R 14 14 22— 1

rl,r2—>0+
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Let

ze
i = / dz
212
ze
I = / dz
2 S z2—1

rD
21z

Ze
I = / dz.
R CR 22 — 1
21z

Now, f(z) = o IS analytic inside the above closed contour.
22 -1

By the Cauchy Integral Theorem

SR ze® 4T+ Tp=0
/ +/1—|—'r'1 /1—|—?“2 562—1 v 1 2 k==

66



By the Jordan Lemma, and since QZ 7 >0 as z — oo, SO
y

lim Ip = 0.

R—o0

Since z = x1 are simple poles of f,

im I; = —inrRes(f,—1) = —ir lim (z 4+ 1)f(z)
r1—071 z——1
= (—im)e 2'/2.
: —ime?
Similarly, lim I = —imRes(f,1) =
ro—0Tt 2
o0 L —21 21
PV/ we” = MTGQ -+ MT; = 1 COS 2.

67



Poisson integral formula

1 f(s)
mJC S —Z
Here, C' is the circle with radius rg centered at the origin. Write
s = rget® and z = re?, r > rg. We choose z1 such that |z1| |z| = r%

and both z; and z lie on the same ray so that

ds.

2 2 =

(S r SS

le—oezezfzt-
r Z Z
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Since z1 lies outside C', we have

f(2)

The integrand can

1 1 1
- 2—m7{Cf(S) (s—z_s—zl> as

1 /2 S S
- Z/O <s—z_s—z1> f(s) do.

be expressed as

s 1 _ S n z _ 7“8—7“2
s—z 1—-3/Z2 s—z 3—2Z |s—2z|?
_ 2 .2 on 10
and so f(rei?) =0 _" / f(roe )dqb.
2 Jo  |s— z|?
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Now |s — 2|2 = r8 — 2rgr cos(¢ — 0) + r2 > 0 (from the cosine rule).
Taking the real part of f, where f = u 4 iv, we obtain

0) 1 /27 7“8 2 ( Yd

9 — ) ) < .

u(r 2 /O 7“8 — 2rgr cos(¢p — 0) + r2 u(ro, ¢)de, <709
P(ro,r,¢—6)

Knowing u(rg,¢) on the boundary, u(r,0) is uniquely determined.

The kernel function P(rg,r, ¢ — 6) is called the Poisson kernel.

2 .2 —
P(roro—0) = 10— =Re (- 4=}

|s — 2|2 s—z S$—2Z
2
et )
Ss—z S—2z

= Re (8 + Z) which is harmonic for |z| < rgq.
S — <
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