MATH304, Spring 2007
Final Examination
Time allowed: 100 minutues
Course instructor: Prof. Y.K. Kwok
[points]

1. (a) Find the radius of convergence of the following power series

$$
3+z+3 z^{2}+z^{3}+3 z^{4}+z^{5}+3 z^{6}+\cdots
$$

Hint: Use the root test.
(b) Use Weierstrass' M-test to prove that

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}(n+1)}
$$

is uniformly convergent for $|z| \leq 1$.
(c) Show that

$$
\sum_{n=1}^{\infty} \frac{z^{4}}{\left(1+z^{4}\right)^{n-1}}=1+z^{4} \quad \text { for } \quad\left|1+z^{4}\right|>1
$$

Furthermore, show that the series is uniformly convergent in the region:

$$
\left|1+z^{4}\right| \geq r, \text { where } r>1
$$

Hint: Define $S_{n}(z)=\sum_{k=1}^{n} \frac{z^{4}}{\left(1+z^{4}\right)^{k-1}}$, then

$$
\left|S_{n}(z)-\left(1+z^{4}\right)\right|=\left|\frac{1}{\left(1+z^{4}\right)^{n-1}}\right|
$$

2. Consider the function

$$
f(z)=\frac{z}{(z-\alpha)^{2}}, \quad \alpha \neq 0 \text { and }|\alpha| \neq 1 .
$$

(a) Find the Laurent series of the function expanded at $z_{0}=\alpha$ valid in $|z-\alpha|>0$.
(b) Find the Laurent series of the function expanded at $z_{0}=0$ valid in
(i) $|z|<|\alpha|$
(ii) $|\alpha|<|z|<\infty$.

Explain why the Laurent series in $|z|<|\alpha|$ reduces to a Taylor series.
(c) Is it meaningful to define (i) $\operatorname{Res}(f, \alpha)$, (ii) $\operatorname{Res}(f, 0)$? If yes, find the value of the residue. If not, explain why?
(d) Find all possible values of the following integral

$$
\oint_{|z|=1} \frac{z}{(z-\alpha)^{2}} d z, \quad|\alpha| \neq 1 .
$$

Distinguish the cases where $|\alpha|>1$ and $|\alpha|<1$.
3. Let $p(z)$ and $q(z)$ be analytic at z_{0}, while z_{0} is a simple zero of $p(z)$ and z_{0} is a triple zero of $q(z)$. That is,

$$
\begin{aligned}
& p\left(z_{0}\right)=0, \quad p^{\prime}\left(z_{0}\right) \neq 0 \\
& q\left(z_{0}\right)=q^{\prime}\left(z_{0}\right)=q^{\prime \prime}\left(z_{0}\right)=0, \quad q^{\prime \prime \prime}\left(z_{0}\right) \neq 0 .
\end{aligned}
$$

(a) Show that $f(z)=p(z) / q(z)$ has a double pole at z_{0}.
(b) Compute

$$
\operatorname{Res}\left(f, z_{0}\right)
$$

Hint: In terms of Taylor series expansion of $p(z)$ and $q(z)$ at z_{0}, we have

$$
f(z)=\frac{p(z)}{q(z)}=\frac{p^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+p^{\prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{2} / 2!+\cdots}{q^{\prime \prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{3} / 3!+q^{\prime \prime \prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{4} / 4!+\cdots} .
$$

If f has a double pole at z_{0}, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{d}{d z}\left[\left(z-z_{0}\right)^{2} f\right] .
$$

4. (a) Locate each of the isolated singularities of the function $f(z)=\pi \cot \frac{\pi}{z}$, and determine whether it is a removable singularity, a pole or an essential singularity. If the singularity is removable, then give the limit of the function at the point. If the singularity is a pole, then give the order of the pole, and compute the residue at the singularity.
(b) Is $z=0$ an isolated singularity of $f(z)$? Give detailed explanation to your answer.
5. Find the Cauchy principal value of the following improper integral:

$$
J=\int_{0}^{\infty} \frac{1}{x^{\lambda}(x-4)} d x, \quad 0<\lambda<1
$$

Hint: Choose the branch of the power function z^{λ} as

$$
z^{\lambda}=e^{\lambda \log z}=e^{\lambda(\ln r+i \theta)}, \quad z=r e^{i \theta}, 0<\theta<2 \pi,
$$

where the branch cut of $\log z$ is taken to be along the positive real axis. Note that $z=4$ is a simple pole of the integrand function which lies along the positive real axis. Choose the closed contour C as shown:

Give your justification that the contour integrals along C_{ρ} and Γ_{ϵ} tend to zero as $\rho \rightarrow \infty$ and $\epsilon \rightarrow 0$, respectively.

Distribution of points in this problem
(i) Relate the contour integral along the closed contour C with the principal value of the improper integral J.
(ii) Show

$$
\lim _{\rho \rightarrow \infty} \int_{C_{\rho}} \frac{1}{z^{\lambda}(z-4)} d z=0 \quad \text { and } \quad \lim _{\epsilon \rightarrow 0^{+}} \int_{\Gamma_{\epsilon}} \frac{1}{z^{\lambda}(z-4)} d z=0 .
$$

(iii) Evaluate

$$
\lim _{\delta \rightarrow 0^{+}} \int_{S_{\delta^{+}}} \frac{1}{z^{\lambda}(z-4)} d z \quad \text { and } \quad \lim _{\delta \rightarrow 0^{+}} \int_{S_{\delta^{-}}} \frac{1}{z^{\lambda}(z-4)} d z
$$

(iv) Finally, find the principal value of the integral.
6. Consider the evaluation of the following integral

$$
\int_{-\infty}^{\infty} \frac{e^{p x}}{1+e^{x}} d x, \quad 0<p<1
$$

The result of integrating

$$
f(z)=\frac{e^{p z}}{1+e^{z}}
$$

around a closed rectangular contour C, including the real axis from $x=-A$ to $x=A$ and the line $y=2 \pi$ from $x=A$ to $x=-A$ can be written in the form

$$
\begin{aligned}
& \int_{-A}^{A} \frac{e^{p x}}{1+e^{x}} d x-e^{2 p \pi i} \int_{-A}^{A} \frac{e^{p x}}{1+e^{x}} d x+\int_{s_{1}} f(z) d z+\int_{s_{2}} f(z) d z \\
= & 2 \pi i \operatorname{Res}\left(\frac{e^{p z}}{1+e^{z}}, \pi i\right)
\end{aligned}
$$

where s_{1} and s_{2} are the closing segments of the rectangle. The closing segments are the vertical lines $x=A$ and $x=-A, 0 \leq y \leq 2 \pi$, oriented in the anti-clockwise direction.
(a) Show that the integrals along s_{1} and s_{2} tend to zero as $A \rightarrow \infty$, provided that $0<p<1$. Hence evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{p x}}{1+e^{x}} d x, \quad 0<p<1
$$

(b) Do the results in part (a) also hold when p is complex, where $0<\operatorname{Re} p<1$? Explain your result in details.
(c) Hence, evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\cosh x} d x
$$

Hint: \quad Take $p=\frac{1}{2}(1+i)$.
— End —

