MATH304, Spring 2007

Solution to Final Examination

1. (a) Note that as,—1 = 3,a9, =1,n=1,2,---. By the Root Test,
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vergent. Hence, we have uniform convergence o —— for |z :
(C) Let Sn(Z) = Z W, then
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Hence, ;m =1+2* for |1+ 2% > 1.
To show the property of uniform convergence for |1 + 24| > r,r > 1, we take
In

N to be l—f + 1, which is independent of z.
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Whenever n > n—f + 1, we would have

|Rn(2)| <€, for |1+ 2% >1,

where R,(z) =1+ 2% — S,(2).

1
2. (a) f(z) = e _04&)2 + , valid for |z —a] > 0.
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(b) (i) Inside the domain |z| < |a|, the Laurent series reduces to the Taylor series
as f(z) is analytic in the region. Hence,
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(ii) For |a] < |z] < oo, we have
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(c¢) Res(f,a) =1; Res(f,0) is not defined since z = 0 is not an isolated singularity

of f.
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If |a| > 1, then f(z) =

If |a| < 1, then

j{ = 2miRes(f, o) = 2mi.
|

z|=1 (Z - 04)2

P'(20)(2 — 20) + 1" (20)(z — 20)*/2 + -
Pl 2ol 3 )t~ LTI
Consider Zlirglo(z —20)2f(2) = 77(0)

Hence, z = z is a double pole of f(z).
(b) Consider
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which is finite and non-zero.
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4. The singularities of f(z) are at z = 0 and sinw/z = 0, that is, z = 0, £1, i§, e
1
For z = +£— n is any integer, they are all isolated singularities. Consider
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Hence, z = el is any integer, --- represents a pole of order 1 of f(z) = mcot Z.

Also,



The singular point z = 0 is not an isolated singularity since any e-neighborhood of
z = 0 contains points of the form z = —, n is some integer, and these points are
n

singularities of f(z).

. The principal value of the integral is given by
4—4 p d
[= lim ( + / > =
i \Je ays/) #H(x —4)

1
flz) = ALow 110) (i — 4)’

Choosing the branch

for z =re?, 0<6<2m,

we form the contour as given in the question. Since f(z) has no singularities “inside”
the closed contour, the integral over the latter must be zero. Utilizing different
definitions for f on the upper and lower sides of the branch cut, we can write this
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Now for 0 < A < 1, on the circle of radius p, we have
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which yields the estimate

2mp
Volp —4)

Consequently, the integral over C, tends to zero as p — oo. Similarly, on the inner
circle of radius € we have
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which implies that

[f(2)] <
2me  2m\[e

[ o] g = TE

As ¢ — 07 this also goes to zero. Hence, we obtain

lim f(2)dz=0 and lim f(z)dz = 0.
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To compute the limits as § — 07 of the integrals over S and S5, we apply the
results concerning the behavior of integrals near simple poles. On the upper half-
circle around z = 4, the function f agrees with the principal branch
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which is analytic on the positive real axis except for its simple pole at z = 4. Hence
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However, on the lower half-circle, f(z) equals e 2™ x fi(z), and so
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Finally, on taking the limit as p — 00, — 07 and 0 — 07, we deduce that
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or, equivalently,
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(a) First, we find the pole of the integrand function. Consider

e+1=0 sothat z=mi.
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By the Residue Theorem, we have f ] ¢ dz = 2miRes (%, m’).
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Take I' = {z = x + 2mi, x € [A,—A]}, we have
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(b) Consider
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Since 0 < p < 1, so for large value A, [ f(z)dz tends to zero.

Similar argument can be applied to [ f(z)dz. Now,
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(c¢) It holds if p is a complex number where 0 < Rep < 1 since
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Take p = 5 + %, we have
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By comparing the real parts, we have
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