MATH304

Homework 2

Course Instructor: Prof. Y. K. Kwok

1. If $f(z)=1 / z=u+i v$, construct several members of the families: $u(x, y)=\alpha, v(x, y)=\beta$ where α and β are non-zero constants, showing that they are families of circle.
2. For each of the following functions, examine whether the function is continuous at $z=0$:
(a) $f(z)=\left\{\begin{array}{ll}0 & z=0 \\ \frac{\operatorname{Re} z}{|z|} & z \neq 0\end{array}\right.$;
(b) $f(z)=\left\{\begin{array}{ll}0 & z=0 \\ \frac{(\operatorname{Re} z)^{2}}{|z|} & z \neq 0\end{array}\right.$.
3. A particle moves along a curve $z=e^{-t}(2 \sin t+i \cos t)$.
(a) Find a unit tangent vector to the curve at the point where $t=\pi / 4$.
(b) Determine the magnitudes of velocity and acceleration of the particle at $t=0$ and $\pi / 2$.
4. Consider the function $f(z)=x y^{2}+i x^{2} y, z=x+i y$. Find the point set where
(a) the Cauchy-Riemann relations are satisfied;
(b) the function is differentiable;
(c) the function is analytic.
5. Let $f(z)$ be analytic in a domain \mathcal{D}. Suppose $\operatorname{Re} f(z)=[\operatorname{Im} f(z)]^{2}$ inside \mathcal{D}, show that $f(z)$ is constant inside \mathcal{D}.
6. Find an analytic function $f(z)$ whose real part $u(x, y)$ is
(a) $u(x, y)=y^{3}-3 x^{2} y, \quad f(i)=1+i$;
(b) $u(x, y)=\frac{y}{x^{2}+y^{2}}, \quad f(1)=0$;
(c) $u(x, y)=(x-y)\left(x^{2}+4 x y+y^{2}\right)$.
7. Find the orthogonal trajectories of the following families of curves:
(a) $x^{3} y-x y^{3}=\alpha$;
(b) $2 e^{-x} \sin y+x^{2}-y^{2}=\alpha$;
(c) $\left(r^{2}+1\right) \cos \theta=\alpha r$.
8. Let $\theta=\angle A P B$, which is the angle included between the line segments $P A$ and $P A$. Here, A and B are the fixed points $(-a, 0)$ and $(a, 0)$, respectively, and P is the variable point $z=x+i y$. Show that $\theta(x, y)$ is a harmonic function. Find the corresponding harmonic conjugate v such that $\theta+i v$ is an analytic function.
9. If u and v are harmonic in a region \mathcal{R}, prove that

$$
\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

is analytic in \mathcal{R}.
10. Suppose the isothermal lines of a steady state temperature field are the family of curves

$$
x^{2}+y^{2}=\alpha, \quad \alpha>0 .
$$

Find the general solution of the temperature function, and the equation of the family of flux lines.

