MATH304

Homework 2

Course Instructor: Prof. Y. K. Kwok

- 1. If f(z) = 1/z = u + iv, construct several members of the families: $u(x, y) = \alpha, v(x, y) = \beta$ where α and β are non-zero constants, showing that they are families of circle.
- 2. For each of the following functions, examine whether the function is continuous at z = 0:

(a)
$$f(z) = \begin{cases} 0 & z = 0 \\ \frac{\operatorname{Re} z}{|z|} & z \neq 0 \end{cases}$$
; (b) $f(z) = \begin{cases} 0 & z = 0 \\ \frac{(\operatorname{Re} z)^2}{|z|} & z \neq 0 \end{cases}$

- 3. A particle moves along a curve $z = e^{-t}(2\sin t + i\cos t)$.
 - (a) Find a unit tangent vector to the curve at the point where $t = \pi/4$.
 - (b) Determine the magnitudes of velocity and acceleration of the particle at t = 0 and $\pi/2$.
- 4. Consider the function $f(z) = xy^2 + ix^2y$, z = x + iy. Find the point set where
 - (a) the Cauchy-Riemann relations are satisfied;
 - (b) the function is differentiable;
 - (c) the function is analytic.
- 5. Let f(z) be analytic in a domain \mathcal{D} . Suppose $\operatorname{Re} f(z) = [\operatorname{Im} f(z)]^2$ inside \mathcal{D} , show that f(z) is constant inside \mathcal{D} .
- 6. Find an analytic function f(z) whose real part u(x, y) is

(a)
$$u(x,y) = y^3 - 3x^2y$$
, $f(i) = 1 + i$
(b) $u(x,y) = \frac{y}{x^2 + y^2}$, $f(1) = 0$;
(c) $u(x,y) = (x - y)(x^2 + 4xy + y^2)$.

- 7. Find the orthogonal trajectories of the following families of curves:
 - (a) $x^3y xy^3 = \alpha;$
 - (b) $2e^{-x}\sin y + x^2 y^2 = \alpha;$
 - (c) $(r^2 + 1)\cos\theta = \alpha r$.
- 8. Let $\theta = \angle APB$, which is the angle included between the line segments PA and PA. Here, A and B are the fixed points (-a, 0) and (a, 0), respectively, and P is the variable point z = x + iy. Show that $\theta(x, y)$ is a harmonic function. Find the corresponding harmonic conjugate v such that $\theta + iv$ is an analytic function.

9. If u and v are harmonic in a region \mathcal{R} , prove that

$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

is analytic in \mathcal{R} .

10. Suppose the isothermal lines of a steady state temperature field are the family of curves

$$x^2 + y^2 = \alpha, \quad \alpha > 0.$$

Find the general solution of the temperature function, and the equation of the family of flux lines.