MATH304 - Complex Analysis

Solution to Homework 2

1. $f(z)=\frac{1}{z}=\frac{x-i y}{x^{2}+y^{2}} \quad \Rightarrow \quad u=\frac{x}{x^{2}+y^{2}}$ and $v=\frac{-y}{x^{2}+y^{2}}$.
$u=\alpha \quad \Longleftrightarrow \alpha\left(x^{2}+y^{2}\right)=x \quad \Longleftrightarrow \alpha\left(x^{2}-\frac{x}{\alpha}+\frac{1}{4 \alpha^{2}}\right)^{2}+\alpha y^{2}=\frac{1}{4 \alpha}$

$$
\Longleftrightarrow \quad\left(x-\frac{1}{2 \alpha}\right)^{2}+y^{2}=\frac{1}{4 \alpha^{2}}
$$

Hence, $u=\alpha$ and $\alpha \neq 0$ is a family of circles with radius $=\frac{1}{2 \alpha}$ and centered at $\left(\frac{1}{2 \alpha}, 0\right)$.
Similarly,

$$
\begin{aligned}
v=\beta & \Longleftrightarrow \beta\left(x^{2}+\frac{y}{\beta}\right)+\beta y^{2}=0 \\
& \Longleftrightarrow \beta\left(y^{2}+\frac{y}{\beta}+\frac{1}{4 \beta^{2}}\right)+\beta x^{2}=\frac{1}{4 \beta} \\
& \Longleftrightarrow x^{2}+\left(y+\frac{1}{2 \beta}\right)^{2}=\frac{1}{4 \beta^{2}}
\end{aligned}
$$

Hence, $v=\beta$ and $\beta \neq 0$ is a family of circles with radius $=\frac{1}{2 \beta}$ and centered at $\left(0, \frac{-1}{2 \beta}\right)$.
2. (a) $f(z)=\left\{\begin{array}{ll}0, & z=0 \\ \frac{\operatorname{Re} z}{|z|}, & z \neq 0\end{array}\right.$.

For $z \neq 0, f(z)=\frac{x}{\sqrt{x^{2}+y^{2}}}$. Choose the path $y=x$ towards $(0,0)$.
Then $\left.\lim _{z \rightarrow 0} f(z)=\lim _{\substack{z \rightarrow 0 \\ \text { along } y=x}} f(z)=\lim _{\substack{z \rightarrow 0 \\ \text { along } y=x}}\right) \frac{x}{\sqrt{2}|x|}=\frac{\operatorname{sgn}(x)}{\sqrt{2}} \neq 0$
where $\operatorname{sgn}(x)=\left\{\begin{array}{ll}1, & x>0 \\ -1, & x<0\end{array}\right.$.
As $\lim _{z \rightarrow 0} f(z) \neq 0$, so $f(z)$ is not continuous at $(0,0)$.
(b) $f(z)=\left\{\begin{array}{ll}0, & z=0 \\ \frac{(\operatorname{Re} z)^{2}}{|z|}, & z \neq 0\end{array}\right.$.

For $z \neq 0$, and write $z=r e^{i \theta}, f(z)=u(r, \theta)=\frac{r^{2} \cos ^{2} \theta}{r}$. Hence, $\lim _{z \rightarrow 0} u(z)=\lim _{r \rightarrow 0} u(r, \theta)=$ 0 , so $\lim _{z \rightarrow 0} f(z)=f(0)=0$. Hence, $f(z)$ is continuous at 0 .

Remark

How to show $\lim _{z \rightarrow 0} \frac{(\operatorname{Re} z)^{2}}{|z|}=0$ using $\varepsilon-\delta$ criterion? Write $z=r e^{i \theta}$, and for any $\varepsilon>0$, we take $\delta=\varepsilon$. When $|z|=r<\delta=\varepsilon$, we have

$$
\left|\frac{(\operatorname{Re} z)^{2}}{|z|}\right| \leq\left|r \cos ^{2} \theta\right| \leq r<\varepsilon
$$

3. (a)

$$
\begin{aligned}
z & =e^{-t}(2 \sin t+i \cos t) \\
z^{\prime} & =\text { tangent vector }=-e^{-t}(2 \sin t+i \cos t)+e^{-t}(2 \cos t-i \sin t) \\
& =e^{-t}[2 \cos t-2 \sin t-i(\sin t+\cos t)]
\end{aligned}
$$

Unit tangent vector $=\frac{z^{\prime}}{\left|z^{\prime}\right|}=\frac{e^{-t}[2 \cos t-2 \sin t-i(\sin t+\cos t)]}{e^{-t} \sqrt{4(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}}}$
$\left.\frac{z^{\prime}}{\left|z^{\prime}\right|}\right|_{t=\pi / 4}=\frac{-i\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)}{\left|\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right|}=-i$.
(b) $z^{\prime}(0)=2-i=$ velocity at $t=0$
$\left|z^{\prime}(0)\right|=$ speed at $t=0=\sqrt{5}$.
$z^{\prime}\left(\frac{\pi}{2}\right)=e^{-\frac{\pi}{2}}(-2-i)$
Speed at $t=\frac{\pi}{2}=\left|z^{\prime}\left(\frac{\pi}{2}\right)\right|=\sqrt{5} e^{-\frac{\pi}{2}}$.
Acceleration $=z^{\prime \prime}=-z^{\prime}+e^{-t}[-2 \sin t-2 \cos t-i(\cos t-\sin t)]$
$z^{\prime \prime}(0)=-z^{\prime}(0)+(-2-i)=-(2-i)-2-i=-4$.
Magnitude of acceleration at $t=0$ is $\left|z^{\prime \prime}(0)\right|=4$.

$$
z^{\prime \prime}\left(\frac{\pi}{2}\right)=-z^{\prime}\left(\frac{\pi}{2}\right)+e^{-\frac{\pi}{2}}(-2+i)=e^{-\frac{\pi}{2}}(2+i)+e^{-\frac{\pi}{2}}(-2+i)=e^{-\frac{\pi}{2}}(2 i)
$$

Magnitude of acceleration at $t=\frac{\pi}{2}=\left|z^{\prime \prime}\left(\frac{\pi}{2}\right)\right|=2 e^{-\frac{\pi}{2}}$.
4. (a) $f(z)=x y^{2}+i x^{2} y, \quad z=x+i y$

$$
\begin{aligned}
u & =x y^{2}, \quad v=x^{2} y \quad \text { so that } u_{x}=y^{2}, u_{y}=2 x y, v_{x}=2 x y \text { and } v_{y}=x^{2} ; \\
u_{x} & =v_{y} \quad \Rightarrow \quad x= \pm y \\
u_{y} & =-v_{x} \quad \Rightarrow \quad x y=0 .
\end{aligned}
$$

Since $(x, y)=(0,0)$ is the only possible solution, so the C-R equations are satisfied at $(0,0)$ only.
(b) Since u_{x}, u_{y}, v_{x} and v_{y} are continuous everywhere and the C-R equations hold only at $(0,0)$, so $f(z)$ is differentiable only at $(0,0)$.
(c) $f(z)$ is nowhere analytic since $f(z)$ is differentiable only at the single point $(0,0)$.
5. Let $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$. From $u=v^{2}$, we have

$$
\begin{equation*}
u_{x}=2 v v_{x} \quad \text { and } \quad u_{y}=2 v v_{y} . \tag{1}
\end{equation*}
$$

Since f is analytic in \mathcal{D}, we have

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{2}
\end{equation*}
$$

Combining Eqs. (1) and (2), we obtain

$$
2 v v_{x}=v_{y} \quad \text { and } \quad 2 v v_{y}=-v_{x}
$$

so that

$$
v_{x}^{2}+v_{y}^{2}=0 .
$$

This implies $v_{x}=v_{y}=0$ so that $v(x, y)=$ constant. From the Cauchy-Riemann relations, we deduce that $u(x, y)=$ constant also. Hence, f is constant in \mathcal{D}.
6. (a) $u(x, y)=y^{3}-3 x^{2} y$

$$
\begin{aligned}
u_{x} & =-6 x y, \quad u_{y}=3 y^{2}-3 x^{2} \\
v_{y} & =u_{x}=-6 x y \quad \Longrightarrow \quad v=-3 x y^{2}+g(x) \\
-u_{y} & =v_{x}=-3 y^{2}+g^{\prime}(x) \quad \Longrightarrow \quad g^{\prime}(x)=3 x^{2} \quad \Longrightarrow \quad g(x)=x^{3}+C \\
f(i) & =1+i \quad \Longrightarrow \quad 1=v(0,1)=C
\end{aligned}
$$

So, $f(z)=y^{3}-3 x^{2} y+i\left(x^{3}-3 x y^{2}+1\right)=i z^{3}+i$.

$$
\begin{align*}
& u(x, y)=\frac{y}{x^{2}+y^{2}} \tag{b}\\
& u_{x}=\frac{-2 x y}{x^{2}+y^{2}}, \quad u_{y}=\frac{x^{2}+y^{2}-y \cdot 2 y}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
& v_{y}=u_{x}=\frac{-2 x y}{x^{2}+y^{2}} \quad \Longrightarrow \quad v=\frac{x}{x^{2}+y^{2}}+g(x) \\
& -u_{y}=v_{x}=\frac{x^{2}+y^{2}-x \cdot 2 x}{x^{2}+y^{2}}+g^{\prime}=\frac{y^{2}-x^{2}}{x^{2}+y^{2}}+g^{\prime} \quad \Longrightarrow \quad g^{\prime}=0 \quad \Longrightarrow \quad g(x)=C \\
& f(1)=0 \quad \Longrightarrow \quad 0=v(1,0)=1+C
\end{align*}
$$

So, $f(z)=\frac{y}{x^{2}+y^{2}}+i\left(\frac{x}{x^{2}+y^{2}}-1\right)=i\left(\frac{1}{z}-1\right)$,
(c) $\quad u(x, y)=(x-y)\left(x^{2}+4 x y+y^{2}\right)$

$$
\begin{aligned}
u_{x} & =\left(x^{2}+4 x y+y^{2}\right)+(x-y)(2 x+4 y)=3 x^{2}+6 x y-3 y^{2} \\
u_{y} & =-\left(x^{2}+4 x y+y^{2}\right)+(x-y)(4 y+2 y)=3 x^{2}-6 x y-3 y^{2} \\
v_{y} & =u_{x}=3 x^{2}+6 x y-3 y^{2} \Longrightarrow \quad v=3 x^{2} y+3 x y^{2}-y^{3}+g(x) \\
-u_{y} & =v_{x}=6 x y+3 y^{2}+g^{\prime} \Longrightarrow \quad g^{\prime}=-3 x^{2} \Longrightarrow \quad g(x)=-x^{3}+C \\
v(x, y) & =-x^{3}+3 x^{2} y+3 x y^{2}-y^{3}+C=-(x+y)\left(x^{2}-4 x y+y^{2}\right)+C
\end{aligned}
$$

So, $f(z)=(x-y)\left(x^{2}+4 x y+y^{2}\right)-i\left[(x+y)\left(x^{2}-4 x y+y^{2}\right)-C\right]=(1-i) z^{3}+i C, C$ is any real constant.
7. Two families of curves are orthogonal if one is a harmonic conjugate of the other.
(a) $\phi(x, y)=x^{3} y-x y^{3}=\alpha$

$$
\begin{aligned}
\phi_{x} & =3 x^{2} y-y^{3}, \quad \phi_{y}=x^{3}-3 x y^{2} \\
\psi_{y} & =\phi_{x}=3 x^{2} y-y^{3} \quad \Longrightarrow \quad \psi=\frac{3}{2} x^{2} y^{2}-\frac{y^{4}}{4}+g(x) \\
-\phi_{y} & =\psi_{x}=3 x y^{2}+g^{\prime} \quad \Longrightarrow \quad g^{\prime}=-x^{3} \quad \Longrightarrow \quad g(x)=-\frac{x^{4}}{4} .
\end{aligned}
$$

So, $\psi(x, y)=-\frac{1}{4}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)=\beta$
(b) $\phi(x, y)=2 e^{-x} \sin y+x^{2}-y^{2}=\alpha$

$$
\begin{aligned}
\phi_{x} & =-2 e^{-x} \sin y+2 x, \quad \phi_{y}=2 e^{-x} \cos y-2 y \\
\psi_{y} & =\phi_{x}=-2 e^{-x} \sin y+2 x \quad \Longrightarrow \quad \psi=2 e^{-x} \cos y+2 x y+g(x) \\
-\phi_{y} & =\psi_{x}=-2 e^{-x} \cos y+2 y+g^{\prime} \quad \Longrightarrow \quad g^{\prime}=0
\end{aligned}
$$

So, $\psi(x, y)=2 e^{-x} \cos y+2 x y=\beta$
(c) $\phi(x, y)=\frac{\left(r^{2}+1\right) \cos \theta}{r}=\alpha$. Rewrite $\phi(x, y)=\frac{\left(1+r^{2}\right) r \cos \theta}{r^{2}}=\frac{x}{x^{2}+y^{2}}+x$

$$
\begin{aligned}
\phi_{x} & =\frac{x^{2}+y^{2}-x \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}+1=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+1, \quad \phi_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
\psi_{y} & =\phi_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+1 \quad \Longrightarrow \quad \psi=-\frac{y}{x^{2}+y^{2}}+y+g(x) \\
-\phi_{y} & =\psi_{x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime} \quad \Longrightarrow \quad g^{\prime}=0
\end{aligned}
$$

So, $\psi(x, y)=-\frac{y}{x^{2}+y^{2}}+y=\beta . \quad$ Similar to ϕ, we can rewrite ψ :

$$
\psi=-\frac{r \sin \theta}{r^{2}}+r \sin \theta=\frac{1}{r}\left(-\sin \theta+r^{2} \sin \theta\right)=\frac{1}{r}\left(r^{2}-1\right) \sin \theta
$$

So the curve is given by $\left(r^{2}-1\right) \sin \theta=\beta r$.
8.

We can easily see that $\theta_{1}=\tan ^{-1} \frac{a+x}{y}, \quad \theta_{2}=\tan ^{-1} \frac{a-x}{y}$
Let $s=\frac{a+x}{y}, t=\frac{a-x}{y}$. By inspection, we have $x=\frac{a(s-t)}{s+t}$ and $y=\frac{2 a}{s+t}$.

Therefore, we can write our function as

$$
\theta=\tan ^{-1} s+\tan ^{-1} t
$$

Take all corresponding partial derivatives:

$$
\begin{array}{ll}
s_{x}=\frac{1}{y}, \quad s_{y}=-\frac{a+x}{y^{2}}=-\frac{s}{y}, \quad s_{x x}=0, \quad s_{y y}=\frac{2(a+x)}{y^{3}}=\frac{2 s}{y^{2}} \\
t_{x}=-\frac{1}{y}, & t_{y}=-\frac{a-x}{y^{2}}=-\frac{t}{y}, \\
t_{x x}=0, \quad t_{y y}=\frac{2(a-x)}{y^{3}}=\frac{2 t}{y^{2}} \\
\theta_{s}=\frac{1}{1+s^{2}}, \quad \theta_{s s}=\frac{-2 s}{\left(1+s^{2}\right)^{2}}, & \theta_{t}=\frac{1}{1+t^{2}}, \quad \theta_{t t}=-\frac{2 t}{\left(1+t^{2}\right)^{2}}
\end{array}
$$

Then by chain rule,

$$
\begin{aligned}
\theta_{x} & =\theta_{s} s_{x}+\theta_{t} t_{x}=\frac{1}{1+s^{2}} \frac{1}{y}+\frac{1}{1+t^{2}}\left(-\frac{1}{y}\right)=\frac{1}{y}\left[\frac{1}{1+s^{2}}-\frac{1}{1+t^{2}}\right] \\
\theta_{y} & =\theta_{s} s_{y}+\theta_{t} t_{y}=\frac{1}{1+s^{2}}\left(-\frac{s}{y}\right)+\frac{1}{1+t^{2}}\left(-\frac{t}{y}\right)=-\frac{1}{y}\left[\frac{s}{1+s^{2}}+\frac{t}{1+t^{2}}\right] \\
\theta_{x x} & =\theta_{s s}\left(s_{x}\right)^{2}+\theta_{s} s_{x x}+\theta_{t t}\left(t_{x}\right)^{2}+\theta_{t} t_{x x}=\frac{-2 s}{\left(1+s^{2}\right)^{2}} \frac{1}{y^{2}}+\frac{-2 t}{\left(1+t^{2}\right)^{2}} \frac{1}{y^{2}} \\
& =-\frac{2}{y^{2}}\left[\frac{s}{\left(1+s^{2}\right)^{2}}+\frac{t}{\left(1+t^{2}\right)^{2}}\right] \\
\theta_{y y} & =\theta_{s s}\left(s_{y}\right)^{2}+\theta_{s} s_{y y}+\theta_{t t}\left(t_{y}\right)^{2}+\theta_{t} t_{y y}=\frac{-2 s}{\left(1+s^{2}\right)^{2}} \frac{s^{2}}{y^{2}}+\frac{1}{1+s^{2}} \frac{2 s}{y^{2}}+\frac{-2 t}{\left(1+t^{2}\right)^{2}} \frac{t^{2}}{y^{2}}+\frac{1}{1+t^{2}} \frac{2 t}{y^{2}} \\
& =\frac{2 s}{\left(1+s^{2}\right)^{2} y^{2}}\left[-s^{2}+\left(1+s^{2}\right)\right]+\frac{2 t}{\left(1+t^{2}\right)^{2} y^{2}}\left[-t^{2}+\left(1+t^{2}\right)\right]=\frac{2}{y^{2}}\left[\frac{s}{\left(1+s^{2}\right)^{2}}+\frac{t}{\left(1+t^{2}\right)^{2}}\right]
\end{aligned}
$$

Therefore, we can see that θ is harmonic, since $\theta_{x x}+\theta_{y y}=0$.
Now that θ is harmonic, its harmonic conjugate is simply $v(x, y)=\int-\theta_{y} d x+\int \theta_{x} d y$. To reexpress the partial derivatives in terms of x and y , we have

$$
\begin{aligned}
-\theta_{y} & =\frac{1}{y}\left[\frac{s}{1+s^{2}}+\frac{t}{1+t^{2}}\right]=\frac{1}{y}\left[\frac{(a+x) / y}{1+(a+x)^{2} / y^{2}}+\frac{(a-x) / y}{1+(a-x)^{2} / y^{2}}\right] \\
& =\frac{a+x}{(a+x)^{2}+y^{2}}+\frac{a-x}{(a-x)^{2}+y^{2}} \\
\theta_{x} & =\frac{1}{y}\left[\frac{1}{1+s^{2}}-\frac{1}{1+t^{2}}\right]=\frac{1}{y}\left[\frac{1}{1+(a+x)^{2} / y^{2}}-\frac{1}{1+(a-x)^{2} / y^{2}}\right] \\
& =\frac{y}{(a+x)^{2}+y^{2}}-\frac{y}{(a-x)^{2}+y^{2}}
\end{aligned}
$$

Set the initial point to be $\left(x_{0}, y_{0}\right)=\left(0, y_{0}\right)$ since it is the symmetric point. Then the integral of the above terms can be easily computed:

$$
\begin{aligned}
& \int_{0}^{x}-\theta_{y}\left(x, y_{0}\right) d x=\frac{1}{2} \ln \left[(a+x)^{2}+y_{0}^{2}\right]-\left.\frac{1}{2} \ln \left[(a-x)^{2}+y_{0}^{2}\right]\right|_{0} ^{x}=\frac{1}{2} \ln \left[\frac{(a+x)^{2}+y_{0}^{2}}{(a-x)^{2}+y_{0}^{2}}\right] \\
& \int_{y_{0}}^{y} \theta_{x}(x, y) d y=\frac{1}{2} \ln \left[(a+x)^{2}+y^{2}\right]-\left.\frac{1}{2} \ln \left[(a-x)^{2}+y^{2}\right]\right|_{y_{0}} ^{y}=\left.\frac{1}{2} \ln \left[\frac{(a+x)^{2}+y^{2}}{(a-x)^{2}+y^{2}}\right]\right|_{y_{0}} ^{y}
\end{aligned}
$$

Therefore, $v(x, y)=\int_{0}^{x}-\theta_{y}\left(x, y_{0}\right) d x+\int_{y_{0}}^{y} \theta_{x}(x, y) d y=\frac{1}{2} \ln \left[\frac{(a+x)^{2}+y^{2}}{(a-x)^{2}+y^{2}}\right]$.
Alternative solution
The included angle $\theta(x, y)=\theta_{1}+\theta_{2}=\operatorname{Arg}(z-a)-\operatorname{Arg}(z+a)$. Note that $\operatorname{Arg}(z-a)$ is the imaginary part of $\log (z-a)$ so that a harmonic conjugate of $\operatorname{Arg}(z-a)$ is

$$
-\operatorname{Re} \log (z-a)=-\frac{1}{2} \ln \left[(z-a)^{2}+y^{2}\right] .
$$

Similarly, a harmonic conjugate of $\operatorname{Arg}(z+a)$ is $-\frac{1}{2} \ln \left[(z+a)^{2}+y^{2}\right]$. Combining the results, we obtain

$$
v(x, y)=\frac{1}{2} \ln \left[\frac{(x+a)^{2}+y^{2}}{(x-a)^{2}+y^{2}}\right] .
$$

9. Write $f=U(x, y)+i V(x, y)$, where $U=u_{y}-v_{x}$ and $V=u_{x}+v_{y}$. Then we have

$$
\begin{array}{ll}
U_{x}=u_{y x}-v_{x x}, & U_{y}=u_{y y}-v_{x y} \\
V_{y}=u_{x y}+v_{y y}, & V_{x}=u_{x x}-v_{y x}
\end{array}
$$

Since u and v are harmonic, they both have continuous derivatives up to the second order. Therefore, the first partials of U and V are continuous. Furthermore, notice that the CauchyRiemann conditions are also satisfied:

$$
U_{x}-V_{y}=-v_{x x}-v_{y y}=0, \quad U_{y}+V_{x}=u_{y y}+u_{x x}=0
$$

Therefore, f is analytic.
10. Suppose the isothermal lines are given by the family $x^{2}+y^{2}=\alpha>0$. If $T(x, y)=\alpha=x^{2}+y^{2}$, then $T_{x} x=2, T_{y} y=2$, so T cannot be harmonic. Instead, we let $T(x, y)=f(t)$, where $t=x^{2}+y^{2}$. Then

$$
\begin{aligned}
& T_{x x}=f^{\prime \prime}(t)\left(\frac{\partial t}{\partial x}\right)^{2}+f^{\prime}(t) \frac{\partial^{2} t}{\partial x^{2}}=f^{\prime \prime} \cdot 4 x^{2}+f^{\prime} \cdot 2 \\
& T_{y y}=f^{\prime \prime}(t)\left(\frac{\partial t}{\partial y}\right)^{2}+f^{\prime}(t) \frac{\partial^{2} t}{\partial y^{2}}=f^{\prime \prime} \cdot 4 y^{2}+f^{\prime} \cdot 2
\end{aligned}
$$

So T is harmonic if and only if $f^{\prime \prime}(t) 4 t+4 f^{\prime}=0$, or $\frac{f^{\prime \prime}}{f^{\prime}}=-\frac{1}{t}$. To solve this,

$$
\begin{aligned}
\left(\ln \left(f^{\prime}\right)\right)^{\prime} & =\frac{f^{\prime \prime}}{f^{\prime}}=-\frac{1}{t} \\
\ln \left(f^{\prime}\right) & =-\ln (t)+C_{1} \\
f^{\prime} & =A t^{-1}, \quad A=e^{C_{1}} \geq 0 \\
f(t) & =A \ln (t)+B, \quad B \in \mathcal{R}
\end{aligned}
$$

Therefore, the temperature function is given by:

$$
T(x, y)=A \ln \left(x^{2}+y^{2}\right)+B, \quad \text { where } A \geq 0, B \in \mathcal{R}
$$

In terms of z, we have

$$
T(z)=A \ln \left(r^{2}\right)+B=2 A \ln |z|+B
$$

To find the family of flux lines, which are given by the harmonic conjugates of $T(x, y)$. We have

$$
\begin{gathered}
T_{x}=\frac{2 A x}{x^{2}+y^{2}}, \quad T_{y}=\frac{2 A y}{x^{2}+y^{2}} \\
F_{y}=T_{x}=\frac{2 A x}{x^{2}+y^{2}} \Longrightarrow F(x, y)=\int \frac{2 A / x}{1+(y / x)^{2}} d y=2 A \tan ^{-1} \frac{y}{x}+g(x) \\
-T_{y}=F_{x}=\frac{2 A}{1+(y / x)^{2}}\left(-\frac{y}{x^{2}}\right)+g^{\prime}(x)=-\frac{2 A y}{x^{2}+y^{2}}+g^{\prime}(x) \Longrightarrow g^{\prime}(x)=0
\end{gathered}
$$

So finally, we have $F(x, y)=2 A \tan ^{-1} \frac{y}{x}+C=2 A \operatorname{Arg} z+C$, where $A \geq 0, C \in \mathcal{R}$.
So the flux lines are given by $2 A \operatorname{Arg} z+C=\theta$. We can easily see that the isothermal lines are circles centered at origin, and the flux lines are straight lines through the origin. By inspection, they are orthogonal to each other.

