
MATH304 — Complex Analysis

Solution to Homework 2

1. f(z) =
1

z
=

x− iy

x2 + y2
⇒ u =

x

x2 + y2
and v =

−y
x2 + y2

.

u = α ⇐⇒ α(x2 + y2) = x ⇐⇒ α

(

x2 − x

α
+

1

4α2

)2

+ αy2 =
1

4α

⇐⇒
(

x− 1

2α

)2

+ y2 =
1

4α2
.

Hence, u = α and α 6= 0 is a family of circles with radius =
1

2α
and centered at

(

1

2α
, 0

)

.

Similarly,

v = β ⇐⇒ β

(

x2 +
y

β

)

+ βy2 = 0

⇐⇒ β

(

y2 +
y

β
+

1

4β2

)

+ βx2 =
1

4β

⇐⇒ x2 +

(

y +
1

2β

)2

=
1

4β2
.

Hence, v = β and β 6= 0 is a family of circles with radius =
1

2β
and centered at

(

0,
−1

2β

)

.

2. (a) f(z) =

{ 0, z = 0
Re z

|z| , z 6= 0.

For z 6= 0, f(z) =
x

√

x2 + y2
. Choose the path y = x towards (0, 0).

Then lim
z→0

f(z) = lim
( z→0

along y=x)
f(z) = lim

( z→0

along y=x
)

x√
2|x|

=
sgn (x)√

2
6= 0

where sgn (x) =

{

1, x > 0
−1, x < 0

.

As lim
z→0

f(z) 6= 0, so f(z) is not continuous at (0, 0).

(b) f(z) =







0, z = 0
(Re z)2

|z| , z 6= 0.

For z 6= 0, and write z = reiθ, f(z) = u(r, θ) =
r2 cos2 θ

r
. Hence, lim

z→0
u(z) = lim

r→0
u(r, θ) =

0, so lim
z→0

f(z) = f(0) = 0. Hence, f(z) is continuous at 0.

Remark

How to show lim
z→0

(Re z)2

|z| = 0 using ε− δ criterion? Write z = reiθ, and for any ε > 0, we

take δ = ε. When |z| = r < δ = ε, we have
∣

∣

∣

∣

(Re z)2

|z|

∣

∣

∣

∣

≤ |r cos2 θ| ≤ r < ε.
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3. (a) z = e−t(2 sin t+ i cos t)

z′ = tangent vector = −e−t(2 sin t+ i cos t) + e−t(2 cos t− i sin t)

= e−t[2 cos t− 2 sin t− i(sin t+ cos t)]

Unit tangent vector =
z′

|z′| =
e−t[2 cos t− 2 sin t− i(sin t+ cos t)]

e−t
√

4(cos t− sin t)2 + (sin t+ cos t)2

z′

|z′|

∣

∣

∣

∣

t=π/4

=
−i

(

sin π
4

+ cos π
4

)

∣

∣

∣

∣

sin π
4

+ cos π
4

∣

∣

∣

∣

= −i.

(b) z′(0) = 2 − i = velocity at t = 0

|z′(0)| = speed at t = 0 =
√

5.

z′
(π

2

)

= e−
π

2 (−2 − i)

Speed at t =
π

2
=

∣

∣

∣

∣

z′
(π

2

)

∣

∣

∣

∣

=
√

5e−
π

2 .

Acceleration = z′′ = −z′ + e−t[−2 sin t− 2 cos t− i(cos t− sin t)]

z′′(0) = −z′(0) + (−2 − i) = −(2 − i) − 2 − i = −4.

Magnitude of acceleration at t = 0 is |z′′(0)| = 4.

z′′
(π

2

)

= −z′
(π

2

)

+ e−
π

2 (−2 + i) = e−
π

2 (2 + i) + e−
π

2 (−2 + i) = e−
π

2 (2i).

Magnitude of acceleration at t =
π

2
=

∣

∣

∣

∣

z′′
(π

2

)

∣

∣

∣

∣

= 2e−
π

2 .

4. (a) f(z) = xy2 + ix2y, z = x+ iy

u = xy2, v = x2y so that ux = y2, uy = 2xy, vx = 2xy and vy = x2;

ux = vy ⇒ x = ±y
uy = −vx ⇒ xy = 0.

Since (x, y) = (0, 0) is the only possible solution, so the C-R equations are satisfied at

(0, 0) only.

(b) Since ux, uy, vx and vy are continuous everywhere and the C-R equations hold only at

(0, 0), so f(z) is differentiable only at (0, 0).

(c) f(z) is nowhere analytic since f(z) is differentiable only at the single point (0, 0).

5. Let f(z) = u(x, y) + iv(x, y), where z = x+ iy. From u = v2, we have

ux = 2vvx and uy = 2vvy. (1)

Since f is analytic in D, we have

ux = vy and uy = −vx. (2)

Combining Eqs. (1) and (2), we obtain

2vvx = vy and 2vvy = −vx
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so that

v2
x + v2

y = 0.

This implies vx = vy = 0 so that v(x, y) = constant. From the Cauchy-Riemann relations, we

deduce that u(x, y) = constant also. Hence, f is constant in D.

6. (a) u(x, y) = y3 − 3x2y

ux = −6xy, uy = 3y2 − 3x2

vy = ux = −6xy =⇒ v = −3xy2 + g(x)

−uy = vx = −3y2 + g′(x) =⇒ g′(x) = 3x2 =⇒ g(x) = x3 + C

f(i) = 1 + i =⇒ 1 = v(0, 1) = C

So, f(z) = y3 − 3x2y + i(x3 − 3xy2 + 1) = iz3 + i.

(b) u(x, y) =
y

x2 + y2

ux =
−2xy

x2 + y2
, uy =

x2 + y2 − y · 2y
x2 + y2

=
x2 − y2

x2 + y2

vy = ux =
−2xy

x2 + y2
=⇒ v =

x

x2 + y2
+ g(x)

−uy = vx =
x2 + y2 − x · 2x

x2 + y2
+ g′ =

y2 − x2

x2 + y2
+ g′ =⇒ g′ = 0 =⇒ g(x) = C

f(1) = 0 =⇒ 0 = v(1, 0) = 1 + C

So, f(z) =
y

x2 + y2
+ i

(

x

x2 + y2
− 1

)

= i

(

1

z
− 1

)

,

(c) u(x, y) = (x− y)(x2 + 4xy + y2)

ux = (x2 + 4xy + y2) + (x− y)(2x+ 4y) = 3x2 + 6xy − 3y2

uy = −(x2 + 4xy + y2) + (x− y)(4y + 2y) = 3x2 − 6xy − 3y2

vy = ux = 3x2 + 6xy − 3y2 =⇒ v = 3x2y + 3xy2 − y3 + g(x)

−uy = vx = 6xy + 3y2 + g′ =⇒ g′ = −3x2 =⇒ g(x) = −x3 + C

v(x, y) = −x3 + 3x2y + 3xy2 − y3 + C = −(x+ y)(x2 − 4xy + y2) + C

So, f(z) = (x− y)(x2 + 4xy + y2) − i
[

(x+ y)(x2 − 4xy + y2) − C
]

= (1− i)z3 + iC,C is

any real constant.

7. Two families of curves are orthogonal if one is a harmonic conjugate of the other.

(a) φ(x, y) = x3y − xy3 = α

φx = 3x2y − y3, φy = x3 − 3xy2

ψy = φx = 3x2y − y3 =⇒ ψ =
3

2
x2y2 − y4

4
+ g(x)

−φy = ψx = 3xy2 + g′ =⇒ g′ = −x3 =⇒ g(x) = −x
4

4
.
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So, ψ(x, y) = −1

4
(x4 − 6x2y2 + y4) = β

(b) φ(x, y) = 2e−x sin y + x2 − y2 = α

φx = −2e−x sin y + 2x, φy = 2e−x cos y − 2y

ψy = φx = −2e−x sin y + 2x =⇒ ψ = 2e−x cos y + 2xy + g(x)

−φy = ψx = −2e−x cos y + 2y + g′ =⇒ g′ = 0

So, ψ(x, y) = 2e−x cos y + 2xy = β

(c) φ(x, y) =
(r2 + 1) cos θ

r
= α. Rewrite φ(x, y) =

(1 + r2)r cos θ

r2
=

x

x2 + y2
+ x

φx =
x2 + y2 − x · 2x

(x2 + y2)2
+ 1 =

y2 − x2

(x2 + y2)2
+ 1, φy =

−2xy

(x2 + y2)2

ψy = φx =
y2 − x2

(x2 + y2)2
+ 1 =⇒ ψ = − y

x2 + y2
+ y + g(x)

−φy = ψx =
2xy

(x2 + y2)2
+ g′ =⇒ g′ = 0

So, ψ(x, y) = − y

x2 + y2
+ y = β. Similar to φ, we can rewrite ψ:

ψ = −r sin θ

r2
+ r sin θ =

1

r
(− sin θ + r2 sin θ) =

1

r
(r2 − 1) sin θ.

So the curve is given by (r2 − 1) sin θ = βr.

8.

a−a

P=x+iy

a+x a−x

y

θ
1

θ
2

We can easily see that θ1 = tan−1 a+ x

y
, θ2 = tan−1 a− x

y

Let s =
a+ x

y
, t =

a− x

y
. By inspection, we have x =

a(s− t)

s+ t
and y =

2a

s+ t
.
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Therefore, we can write our function as

θ = tan−1 s+ tan−1 t.

Take all corresponding partial derivatives:

sx =
1

y
, sy = −a+ x

y2
= − s

y
, sxx = 0, syy =

2(a+ x)

y3
=

2s

y2
,

tx = −1

y
, ty = −a− x

y2
= − t

y
, txx = 0, tyy =

2(a − x)

y3
=

2t

y2
,

θs =
1

1 + s2
, θss =

−2s

(1 + s2)2
, θt =

1

1 + t2
, θtt = − 2t

(1 + t2)2
.

Then by chain rule,

θx = θssx + θttx =
1

1 + s2
1

y
+

1

1 + t2

(

−1

y

)

=
1

y

[

1

1 + s2
− 1

1 + t2

]

θy = θssy + θtty =
1

1 + s2

(

− s
y

)

+
1

1 + t2

(

− t

y

)

= −1

y

[

s

1 + s2
+

t

1 + t2

]

θxx = θss(sx)2 + θssxx + θtt(tx)2 + θttxx =
−2s

(1 + s2)2
1

y2
+

−2t

(1 + t2)2
1

y2

= − 2

y2

[

s

(1 + s2)2
+

t

(1 + t2)2

]

θyy = θss(sy)
2 + θssyy + θtt(ty)2 + θttyy =

−2s

(1 + s2)2
s2

y2
+

1

1 + s2
2s

y2
+

−2t

(1 + t2)2
t2

y2
+

1

1 + t2
2t

y2

=
2s

(1 + s2)2y2

[

−s2 + (1 + s2)
]

+
2t

(1 + t2)2y2

[

−t2 + (1 + t2)
]

=
2

y2

[

s

(1 + s2)2
+

t

(1 + t2)2

]

.

Therefore, we can see that θ is harmonic, since θxx + θyy = 0.

Now that θ is harmonic, its harmonic conjugate is simply v(x, y) =
∫

−θy dx +
∫

θx dy. To

reexpress the partial derivatives in terms of x and y, we have

−θy =
1

y

[

s

1 + s2
+

t

1 + t2

]

=
1

y

[

(a+ x)/y

1 + (a+ x)2/y2
+

(a− x)/y

1 + (a− x)2/y2

]

=
a+ x

(a+ x)2 + y2
+

a− x

(a− x)2 + y2

θx =
1

y

[

1

1 + s2
− 1

1 + t2

]

=
1

y

[

1

1 + (a+ x)2/y2
− 1

1 + (a− x)2/y2

]

=
y

(a+ x)2 + y2
− y

(a− x)2 + y2

Set the initial point to be (x0, y0) = (0, y0) since it is the symmetric point. Then the integral

of the above terms can be easily computed:

∫ x

0

−θy(x, y0) dx =
1

2
ln

[

(a+ x)2 + y2
0

]

− 1

2
ln

[

(a− x)2 + y2
0

]

∣

∣

∣

∣

x

0

=
1

2
ln

[

(a+ x)2 + y2
0

(a− x)2 + y2
0

]

∫ y

y0

θx(x, y) dy =
1

2
ln

[

(a+ x)2 + y2
]

− 1

2
ln

[

(a− x)2 + y2
]

∣

∣

∣

∣

y

y0

=
1

2
ln

[

(a+ x)2 + y2

(a− x)2 + y2

]
∣

∣

∣

∣

y

y0
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Therefore, v(x, y) =

∫ x

0

−θy(x, y0) dx+

∫ y

y0

θx(x, y) dy =
1

2
ln

[

(a+ x)2 + y2

(a− x)2 + y2

]

.

Alternative solution

The included angle θ(x, y) = θ1 + θ2 = Arg(z − a) − Arg(z + a). Note that Arg(z − a) is the

imaginary part of log(z − a) so that a harmonic conjugate of Arg(z − a) is

−Re log(z − a) = −1

2
ln

[

(z − a)2 + y2
]

.

Similarly, a harmonic conjugate of Arg(z+ a) is −1

2
ln

[

(z + a)2 + y2
]

. Combining the results,

we obtain

v(x, y) =
1

2
ln

[

(x+ a)2 + y2

(x− a)2 + y2

]

.

9. Write f = U(x, y) + iV (x, y), where U = uy − vx and V = ux + vy. Then we have

Ux = uyx − vxx, Uy = uyy − vxy

Vy = uxy + vyy, Vx = uxx − vyx

Since u and v are harmonic, they both have continuous derivatives up to the second order.

Therefore, the first partials of U and V are continuous. Furthermore, notice that the Cauchy-

Riemann conditions are also satisfied:

Ux − Vy = −vxx − vyy = 0, Uy + Vx = uyy + uxx = 0

Therefore, f is analytic.

10. Suppose the isothermal lines are given by the family x2 +y2 = α > 0. If T (x, y) = α = x2 +y2,

then Txx = 2, Tyy = 2, so T cannot be harmonic. Instead, we let T (x, y) = f(t), where

t = x2 + y2. Then

Txx = f ′′(t)

(

∂t

∂x

)2

+ f ′(t)
∂2t

∂x2
= f ′′ · 4x2 + f ′ · 2

Tyy = f ′′(t)

(

∂t

∂y

)2

+ f ′(t)
∂2t

∂y2
= f ′′ · 4y2 + f ′ · 2

So T is harmonic if and only if f ′′(t)4t+ 4f ′ = 0, or
f ′′

f ′
= −1

t
. To solve this,

(ln(f ′))′ =
f ′′

f ′
= −1

t

ln(f ′) = − ln(t) + C1

f ′ = At−1, A = eC1 ≥ 0

f(t) = A ln(t) +B, B ∈ R

Therefore, the temperature function is given by:

T (x, y) = A ln(x2 + y2) +B, where A ≥ 0, B ∈ R.
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In terms of z, we have

T (z) = A ln(r2) +B = 2A ln |z| +B

To find the family of flux lines, which are given by the harmonic conjugates of T (x, y). We

have

Tx =
2Ax

x2 + y2
, Ty =

2Ay

x2 + y2

Fy = Tx =
2Ax

x2 + y2
=⇒ F (x, y) =

∫

2A/x

1 + (y/x)2
dy = 2A tan−1 y

x
+ g(x)

−Ty = Fx =
2A

1 + (y/x)2
(− y

x2
) + g′(x) = − 2Ay

x2 + y2
+ g′(x) =⇒ g′(x) = 0.

So finally, we have F (x, y) = 2A tan−1 y

x
+ C = 2A Arg z + C, where A ≥ 0, C ∈ R.

So the flux lines are given by 2A Arg z+C = θ. We can easily see that the isothermal lines are

circles centered at origin, and the flux lines are straight lines through the origin. By inspection,

they are orthogonal to each other.
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