MATH304 — Complex Analysis

Solution to Homework 2
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Hence, u = a and « # 0 is a family of circles with radius = % and centered at (2—, 0).
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Hence, v = 3 and 8 # 0 is a family of circles with radius = 25 and centered at (0, %>
0, z=0
2. (a) f(2) = { Rez
]
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For z # 0, f(2) = ———=. Choose the path y = x towards (0, 0).
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Then lim f(z) = lim  f(z)= lim = # 0
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As lirr(l)f(z # 0, so f(z) is not continuous at (0,0).
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where sgn (z) = { Lo e>0
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For z # 0, and write z = re*?, f(z) = u(r,#) = ————. Hence, hn}J u(z) = hmou(r,ﬂ) =
r z— r—

0, so liII[lJf(Z) = f(0) = 0. Hence, f(z) is continuous at 0.
Remark
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How to show lim (Rez)
P

take = . When |z| =7 < § = ¢, we have

= 0 using € — 6 criterion? Write z = re??, and for any € > 0, we

2
‘(Rez) < |rcos?f| <r<e.
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3. (a) z= e '(2sint +icost)

2/ = tangent vector = —e !(2sint +icost) + e *(2cost — isint)

= e '[2cost — 2sint —i(sint + cost)]
2 e "[2cost —2sint —i(sint 4 cost)]

Unit tangent vector = —- = . :
|2'|  e~t\/4(cost —sint)2 + (sint + cost)?

ZI

|2']

_ —1 (sin% —i—cos%) _

t=m/4 s s
sin 7 + cos 1

(b) 2/(0) =2 — i = velocity at t =0
|2/(0)| = speed at t = 0 = /5.

s

z’(§> —e % (-2—1)

Speed at t = Tl (I) = Vb5e 3.
2 2
Acceleration = 2" = —2' + e~t[—2sint — 2cost — i(cost — sint)]

Z'0)=-20)+(-2—-49)=—(2-4)—2—i=—4
Magnitude of acceleration at ¢ = 0 is |2 (0)| = 4.

2" (g) =—7 (g) +e 2 (—24i)=e 2(24i)Fe 2 (=2+10)=e 2(20).

Magnitude of acceleration at ¢t = g =|z

4. (a)  f(z)=ay® +iz’y, z=x+iy
w=uxy?, v=2z% sothat u, = y2,uy = 2xy,v; = 2vy and v, = z?;
Uy =Vy = X ==y
Uy = =V = xy=0.

Since (x,y) = (0,0) is the only possible solution, so the C-R equations are satisfied at
(0,0) only.

(b) Since ug,uy, v, and v, are continuous everywhere and the C-R equations hold only at
(0,0), so f(z) is differentiable only at (0, 0).

(¢) f(2) is nowhere analytic since f(z) is differentiable only at the single point (0, 0).

5. Let f(2) = u(x,y) + iv(x,y), where z = x + iy. From u = v?, we have
Uy =200, and u, = 2vv,. (1)
Since f is analytic in D, we have
Uy =0y and uy = —U,. (2)
Combining Egs. (1) and (2), we obtain
2uv, = v, and 20V, = —v,
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so that

This implies v, = v, = 0 so that v(z,y) = constant. From the Cauchy-Riemann relations, we
deduce that u(x,y) = constant also. Hence, f is constant in D.

6. (a) u(z,y) =y*— 3%y

u, = —6zy, Uy = 3y? — 322

vy = Uy = —bry = v=-3zy> + g()
—uy =v, = -3y +¢'(z) = J@)=32" = g@)=2>+C
fi)=1+i = 1=0(0,1)=C

So, f(2) = y® — 322y + (2 — 3ay? + 1) =023 + .

Y
b = -
0 )= i
—2zy x2+y2—y-2y x2—y2
u = — pry pry
T x2+y2’ Y x2+y2 x2+y2
—2zy T
WSt = mms = VS et
x2+y2—x-2x yz—m2
_uy:vx: x2+y2 g,:x2+y2+gl f— g,:O e g(m):c

f)=0 = 0=0v(1,00=1+C

So, f(z) = %WH(%HP_Q - '(%—1),
(©  ulz,y) = (r—y) (@ +4zy +y°)

up = (2% + dzy + y?) + (v — y) (22 + 4y) = 32% + 6xy — 3y°
uy = — (2 + 4wy + %) + (x — y)(4y + 2y) = 32° — 6zy — 3y°
vy = Uy = 32° + 6y — 3y = v=32"y+32y* — v’ +g(x)
—u, =v, =6ry+3y*+g = ¢ =-3 = g@)=-2*+C
v(z,y) = —2° + 3%y +30y” — P + C = —(x +y)(a® —day +y°) + C

So, f(2) = (z —y)(a® + 4wy +y°) —i [(z + y)(2° — 4wy +y*) = C] = (1 —0)2* +iC,C is
any real constant.

7. Two families of curves are orthogonal if one is a harmonic conjugate of the other.

(a) ¢(z,y) =2y —zy® = a

¢r =32%y —y°, ¢, =" — 3xy?

3 y4
Yy =, =32y —y®? = Y= §x2y2—z+g(w)

—py =V, =3y’ +¢ = g =-1 = g)=-".



1
So,d%w,y)::-—Z(w4-—6w2y24-y4)=:5

(b) ¢(z,y) =2 Tsiny + 2% —y* =«

¢, = —2e T siny + 2z, ¢y =2e “cosy — 2y
Yy =y = —2e “siny+2z = P =2e “cosy+2zy+g(x)
—¢y =ty =—2¢cosy+2y+g = ¢ =0

So, Y(x,y) = 2e “cosy + 2xy = 5

2+ 1)cosb 1472 0
(c) o(z,y) = % = «a. Rewrite ¢(z,y) :( ‘H"TZTCOS - xQ—T—yQ e
2?2 +y? —x 2 E— —2x
bz = ;J oo T1= y2 e T L by = 7 y22
(@ +y?) (@ +y?) (@ +y?)
2_ .2
Yy —x Yy
¢y:¢z:m+1 = ¢:—m+?/+9(ﬂf)
2zy
So, Y(x,y) = _%W +y=0. Similar to ¢, we can rewrite v:
in 6 1 1
¢:_TSIS +rsinf = —(—sinf +r?sinf) = ~(r? — 1) sin 6.
r r r

So the curve is given by (72 — 1)sin 6 = Sr.

—a

at+x

We can easily see that §; = tan™? ot x, 0y = tan~! i
a+x a—=T a(s—t 2a
Let s = + , b= . By inspection, we have z = ( ) and y = .
Y Y s+t s+t



Therefore, we can write our function as
0 =tan"'s+ tan!t.

Take all corresponding partial derivatives:

1 _atzx s _o _ 2(a+z) 28
Sw_§7 Sy = — Y2 _57 Szz = U, Syy 3 ?7
a—x t 2(a —x) 2t
t = ——, t = — = ——, t g 07 t g = —,
z y Yy y2 Yy T vy y3 y2
0. — 1 . —2s 1 2t
s 1 + 827 ss T (1 + 32)27 t — 1 +t27 tt (1 +t2)2'

Then by chain rule,

1 1 1 1
Oy = 055, + 04t = — —— | =
Sa 0t 1+82y+1+t2< >

6, = 0.5, +6:t, = —— (~2) + L (-1 o L.
= SS = _— —_ = —
Y v T 62 Yy 1+1¢2 Yy y|1+s2 1412

—2s 1. -2t 1
(1+s2)2y*  (1+82)2y°

ezx — Hss(sx)2 + ‘955190 + ett(tz)Q + ettxz -

:‘Q%Llfﬁw+<rﬂ%4

—25 §? 1 2s -2t t? 1 2t
_ 2 2 _
6)yy = 088(321) + Hssyy + Htt(ty) + 6’ttyy - (1+ 32)2 E + 1+ s2 ? + (1+ t2)2 E + 1+ ¢2 E
2s 9 9 2t 9 9 2 s t
= | — 1 —_— |t 1+t = — .
(1 + 52)2y2 [ s+ (1+s )] + (1 + 12)2y2 [ + 1+ )] 2 [ (1+ s2)2 + (1+1¢2)2

Therefore, we can see that 6 is harmonic, since 0, + 6,, = 0.

Now that 6 is harmonic, its harmonic conjugate is simply v(z,y) = [ —6,dx + [0, dy. To
reexpress the partial derivatives in terms of x and y, we have

g _L|_s t | _1]_(ata)/y (a—=)/y

Qy_y[1+82+1+t2} y[1+(a+w)2/y2+1+(a—$)2/y2}
a+x a—x

(@t ? g2 a-a)?+

O A —

Ty ll4s? 1482y 14+ (ata)?/y? 14 (a—2)?/y?
y y

(a+2)2+y2 (a—x)2+12

Set the initial point to be (zg,yo) = (0, o) since it is the symmetric point. Then the integral
of the above terms can be easily computed:

r 1 1
/ —0y(x,yo) dx = 3 In [(a + :c)2 + yg] ~3 In [(a — :c)2 + yg}
0

wzlln[(a—i—x)z—i—y%]

0 2 (a —x)? +y§
Yy 1 1 Yy 1 (a+x)2+y2 Yy
0,(z,y)dy = =In[(a+2)*+y°] —=In[(a—=z)* +3*]| =-In [—]
/yo 2 2 w2 (a —x)% +y? o
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@ v 1. [(a+2)*+y?
Theref = —0 d 0. (x,y)dy = =In | ————"=1|.
erefore, v(x,y) /0 (2, Y0) 9E+/yo (z,y)dy o [(a—x)Q—l—yQ

Alternative solution

The included angle §(z,y) = 01 + 03 = Arg(z — a) — Arg(z + a). Note that Arg(z — a) is the
imaginary part of log(z — a) so that a harmonic conjugate of Arg(z — a) is

—Relog(z —a) = —% In[(z —a)® +¢°].

1
Similarly, a harmonic conjugate of Arg(z+a) is —5 In [(z +a)? + yz]. Combining the results,
we obtain ) )
1 r+a)+y
v(z,y) = =In [%} )
2 (r—a)>+y

9. Write f = U(z,y) + iV (z,y), where U = u, — v, and V = u, + v,. Then we have

Up = Uyg — Vg, Uy = Uyy — Vgy

Viy = Ugy + Vyy, Ve = Ugy — Vya

Since u and v are harmonic, they both have continuous derivatives up to the second order.
Therefore, the first partials of U and V are continuous. Furthermore, notice that the Cauchy-
Riemann conditions are also satisfied:

Uy = Vy = —Vpp —vyy =0, Uy + Ve =uyy + gy =0
Therefore, f is analytic.

10. Suppose the isothermal lines are given by the family 22 +y* = a > 0. If T'(z,y) = o = 2% +4?,
then T,z = 2,T,y = 2, so T cannot be harmonic. Instead, we let T'(z,y) = f(t), where
t = 22 + y2. Then

ot\? 02t
T = f"(t) <%> —|—f’(t)@ = f"dx? 4 f 2
S 6t2 / azt_//42 )
wy = 1"(1) oy +f(t)8—y?_f Ayt + [
f/l 1
So T is harmonic if and only if f”(¢)4t + 4f' =0, or 7 =7 To solve this,

f/l 1
(In(f"))’ =F Ty

In(f) =—In(t) + C,
f=At1, A=e1 >0
f(t)=Al({t)+B, BeR

Therefore, the temperature function is given by:
T(x,y) = Aln(2? +y?) + B, where A > 0,B € R.

6



In terms of z, we have
T(z) =Aln(r?) + B=2Aln|z| + B

To find the family of flux lines, which are given by the harmonic conjugates of T'(x,y). We

have

I_x2+y2 ’ y_x2+y2
2Azx 2A/x y
Fy=T,= 5= Flo,y) = | —Fzdy=2Atan"" =
y 22+ 42 (x,y) /1+(y/$)2 Yy an”" — + g(x)
_T :F = — = \——= ! = —-— / e / :0

So finally, we have F(z,y) = 2Atan™" J +C =2A Arg z+ C, where A > 0,C € R.
x

So the flux lines are given by 2A Arg z+ C = 6. We can easily see that the isothermal lines are
circles centered at origin, and the flux lines are straight lines through the origin. By inspection,

they are orthogonal to each other.



