MATH304

Homework 3

Course Instructor: Prof. Y. K. Kwok

1. Find all the values of (a) $\cosh ^{-1} i$,
(b) $\sinh ^{-1}\{\log (-1)\}$,
(c) $\tan ^{-1}(2 i)$,
(d) $\tanh ^{-1} 2$.
2. Show that $\operatorname{Re}\left\{\sin ^{-1} z\right\}=\arcsin \frac{1}{2}\left\{\sqrt{x^{2}+y^{2}+2 x+1}-\sqrt{x^{2}+y^{2}-2 x+1}\right\}$.
3. Show that

$$
\left(\frac{i a-1}{i a+1}\right)^{i b}=\exp \left(-2 b \cot ^{-1} a\right), \quad \text { where } a \text { and } b \text { are real. }
$$

4. Show that the mapping function

$$
w=\cosh z
$$

maps the semi-infinite strip $\left\{z=x+i y: x \geq 0\right.$ and $\left.0 \leq y \leq \frac{\pi}{2}\right\}$ in the z-plane onto the first quadrant of the w-plane.
5. Let $w^{3}=z$ and suppose that corresponding to $z=1$ we have $w=1$. (a) If we start at $z=1$ in the z plane and make one complete circuit counterclockwise around the origin, find the value of w on returning to $z=1$ for the first time. (b) What are the values of w on returning to $z=1$ after $2,3,4, \cdots$ complete circuits about the origin? Discuss (a) and (b) if the paths do not enclose the origin.
6. Find $\frac{d}{d z} z^{2 / 3}$ at $z=-8 i$ when the principal branch is used.
7. Consider a branch of $z^{1 / 2}$ that is analytic in the domain consisting of the z-plane less the points on the branch cut $y=0, x \leq 0$. Suppose we choose the branch where $z^{1 / 2}=2$ when $z=4$. What value does this branch assume when

$$
z=9\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) ?
$$

