MATH304

Homework 4

Course Instructor: Prof. Y. K. Kwok

1. Evaluate $\int_{c}\left(z^{2}+3 z\right) d z$ along the circle $|z|=2$ from $(2,0)$ to $(0,2)$ in a counterclockwise direction.
2. Evaluate $\oint_{C} \bar{z}^{2} d z$ around the circles (a) $|z|=1$, (b) $|z-1|=1$.
3. Let C be any simple closed curve bounding a region having area A. Prove that

$$
A=\frac{1}{2} \oint_{C} x d y-y d x \text {. }
$$

Use the result to find the area bounded by the ellipse: $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta<2 \pi$.
4. Let C be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant. Without evaluating the integral, show that

$$
\left|\int_{C} \frac{1}{z^{2}-1} d z\right| \leq \frac{\pi}{3} .
$$

5. Let C represent a semi-circle of radius R, with center at the origin, where $R>1$, and consider the functions

$$
f_{1}(z)=z^{2}-1, \quad f_{2}(z)=\frac{1}{z^{2}+1} .
$$

(a) Using the triangle inequalities, show that when z assumes values on C

$$
R^{2}-1 \leq\left|f_{1}(z)\right| \leq R^{2}+1, \quad \frac{1}{R^{2}+1} \leq\left|f_{2}(z)\right| \leq \frac{1}{R^{2}-1}
$$

(b) Deduce that

$$
\left|\int_{C} f_{1}(z) d z\right| \leq \pi R\left(R^{2}+1\right), \quad\left|\int_{C} f_{2}(z) d z\right| \leq \frac{\pi R}{R^{2}-1} .
$$

(c) Hence show that

$$
\left|\int_{C} f_{1}(z) f_{2}(z) d z\right| \leq \pi R \frac{R^{2}+1}{R^{2}-1} .
$$

6. Let C be the circle: $|z|=r>1$.

Evaluate

$$
\oint_{C} \frac{e^{z}}{\left(z^{2}+1\right)^{2}} d z
$$

7. By evaluating $\oint_{C} e^{z} d z$ around the circle $|z|=1$, show that

$$
\int_{0}^{2 \pi} e^{\cos \theta} \cos (\theta+\sin \theta) d \theta=\int_{0}^{2 \pi} e^{\cos \theta} \sin (\theta+\sin \theta) d \theta=0
$$

8. Let

$$
g(z)=\oint_{|\zeta|=2} \frac{2 \zeta^{2}-\zeta+1}{\zeta-z} d \zeta
$$

Compute (a) $g(1) ;\left(\right.$ b) $g\left(z_{0}\right),\left|z_{0}\right|>2$. Can we evaluate $g(2) ?$
9. If $f(z)$ is an n th-degree polynomial with non-zero leading coefficient,

$$
f(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}
$$

and C is a simple closed contour enclosing all the zeros of $f(z)$, show that

$$
\frac{1}{2 \pi i} \oint_{C} \frac{z f^{\prime}(z)}{f(z)} d z=-\frac{a_{1}}{a_{0}}
$$

10. (a) Let $f(z)$ be analytic inside and on a simple closed curve C. Prove that if $f(z) \neq 0$ inside C, then $|f(z)|$ must assume its minimum value on C.
(b) Give an example to show that if $f(z)$ is analytic inside and on a simple closed curve C and $f(z)=0$ at some point inside C, then $|f(z)|$ need not assume its minimum value on C.
