Homework 5

Course instructor: Prof. Y.K. Kwok

1. Intuitively,

$$
\frac{n}{1+i n}=\frac{1}{\frac{1}{n}+i} \longrightarrow-i \text { as } n \rightarrow \infty
$$

Prove that

$$
\lim _{n \rightarrow \infty} \frac{n}{1+i n}=-i
$$

using the definition of limit of a sequence.
2. Consider the following two complex series

$$
\sum_{n=1}^{\infty} \alpha_{n} \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\alpha_{n}\right| .
$$

Suppose $\left|\operatorname{Arg} \alpha_{n}\right| \leq \frac{\pi}{2}-\delta, \delta>0$, show that when $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|$ diverges, $\sum_{n=1}^{\infty} \alpha_{n}$ also diverges.
3. Consider the following series of complex functions

$$
\sum_{k=0}^{\infty} \frac{z^{2}}{\left(1+|z|^{2}\right)^{k}}
$$

Define the partial sum $S_{n}(z)$, where

$$
S_{n}(z)=\sum_{k=0}^{n} \frac{z^{2}}{\left(1+|z|^{2}\right)^{k}}
$$

Compute $S(z)$ where

$$
S(z)=\lim _{n \rightarrow \infty} S_{n}(z) .
$$

Show that the convergence of $S_{n}(z)$ to $S(z)$ inside $|z|<1$ as $n \rightarrow \infty$ is not of uniform convergence.
4. Using the Weierstrass M-test, establish the uniform convergence of

$$
\sum_{n=1}^{\infty} \frac{1}{(1-z)^{n}}, \quad 1.01<|1-z|
$$

5. Find the region of convergence of each of the following Taylor series
(a) $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$,
(b) $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^{3} 4^{n}}$,
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\sin (n+1) \frac{\pi}{4}}{2^{\frac{n+1}{2}}}(z-1)^{n}$.

Remark The last Taylor series converges to $\frac{1}{1+z^{2}}$ inside its region of convergence.
6. Show that

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n}=-\log (1-z) \quad \text { for } z \in \mathcal{D}=\{z:|z|<1\}
$$

Explain why the series $\sum_{n=1}^{\infty} \frac{e^{i n \theta}}{n}, \theta \neq 0$, is conditionally convergent. What happens when $\theta=0$? Use the above series to show that
(a) $\sum_{n=1}^{\infty} \frac{\cos n \theta}{n}=-\ln \left(2 \sin \frac{\theta}{2}\right)$;
(b) $\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}=\frac{\pi-\theta}{2}, \quad 0<\theta<2 \pi$.
7. Expand each of the following functions in a Taylor series about the indicated point and determine the region of convergence in each case.
(a) $\cos z ; z=\pi / 2$,
(b) $1 /(1+z) ; z=1$.
8. (a) Expand $y=e^{x} \cos x$ in Taylor series at $x=0$.
(b) Find the Taylor expansion of $f(z)=\frac{1}{1+z^{2}}$ at $z=1$.
9. If each of the following functions is expanded into a Taylor series about the indicated point, what would be the region of convergence? Do not perform the expansion.
(a) $\frac{\sin z}{\left(z^{2}+4\right)} ; z=0$
(b) $\frac{(z+3)}{(z-1)(z-4)} ; z=2$
(c) $\frac{e^{z}}{z(z-1)} ; z=4 i$.
10. Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in a Laurent series valid for:
(a) $|z|<1$,
(b) $1<|z|<2$,
(c) $|z|>2$,
(d) $|z-1|>1$.
11. Locate each of the isolated singularities of the given function and determine whether it is a removable singularity, a pole or an essential singularity. If the singularity is removable, give the value of the function at the point; if the singularity is a pole, give the order of the pole.
(i) $\frac{e^{z}-1}{z}$,
(ii) $\frac{e^{z}-1}{e^{2 z}-1}$.

