MATH 304 — Complex Analysis

Solution to Homework 5

1. Consider

$$\left| \frac{n}{1+in} + i \right| = \left| \frac{1}{1+in} \right| = \frac{1}{\sqrt{1+n^2}} < \frac{1}{n}$$
, n is a positive integer.

Hence,

$$\left| \frac{n}{1+in} + i \right| < \frac{1}{n} < \frac{1}{N}$$
 whenever $n > N$.

For any given $\epsilon > 0$, choose N such that $N > \frac{1}{\epsilon}$. We then have

$$\left| \frac{n}{1+in} + i \right| < \epsilon$$
 whenever $n > N$,

as required.

2. Write $\alpha_n = a_n + ib_n$, and note that

$$|\alpha_n| = \frac{a_n}{\cos(\operatorname{Arg} \, \alpha_n)} \le \frac{a_n}{\cos\left(\frac{\pi}{2} - \delta\right)} = \frac{a_n}{\sin \delta}.$$

Hence, when $\sum_{n=1}^{\infty} |\alpha_n|$ diverges, $\sum_{n=1}^{\infty} a_n$ diverges and so does $\sum_{n=1}^{\infty} \alpha_n$.

3. For |z| > 0, we have

$$S_n(z) = \sum_{k=0}^n \frac{z^2}{(1+|z|^2)^k} = z^2 \sum_{k=0}^n \frac{1}{(1+|z|^2)^k}$$

$$= z^2 \left[\frac{1 - \frac{1}{(1+|z|^2)^{n+1}}}{1 - \frac{1}{1+|z|^2}} \right]$$

$$= \frac{z^2}{|z|^2} \left[1 + |z|^2 - \frac{1}{(1+|z|^2)^n} \right]$$

$$S_n(z) \to S(z) = \frac{z^2}{|z|^2} (1 + |z|^2).$$

For z = 0, obviously both $S_n(0)$ and S(0) equals 0. Therefore,

$$|S_n(z) - S(z)| = \begin{cases} \left| \frac{z^2}{|z|^2} \frac{1}{(1+|z|^2)^n} \right| = \frac{1}{(1+|z|^2)^n} & \text{if } |z| > 0\\ 0 & \text{if } z = 0 \end{cases}.$$

Note that for any positive integer n, we have

$$\lim_{|z| \to 0, z \neq 0} \frac{1}{(1+|z|^2)^2} = 1.$$

Now, for each $n, 0 < \epsilon < 1$, there exists z with |z| > 0 such that

$$|S_n(z) - S(z)| > \epsilon.$$

1

Thus it is not uniformly convergent.

4. For all z inside 1.01 < |1 - z|, we have

$$\left| \frac{1}{(1-z)^n} \right| = \frac{1}{|1-z|^n} \le r^n$$

where $r = \frac{1}{1.01} < 1$. Since $\sum_{n=1}^{\infty} r^n$ is convergent, for r < 1, we have uniform convergence of $\sum_{n=1}^{\infty} \frac{1}{(1-z)^n}$ by virtue of the Weierstrass M-test.

- 5. (a) By the ratio test, $\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = 0$, so the region of convergence is the whole complex plane. Indeed, it is the Taylor expansion of e^z .
 - (b) Consider the limit of the ratio of the moduli of successive terms

$$\lim_{n \to \infty} \left| \frac{(z+2)^n}{(n+2)^3 4^{n+1}} \middle/ \frac{(z+2)^{n-1}}{(n+1)^3 4^n} \right| = \lim_{n \to \infty} \left| \frac{(z+2)}{4} \frac{(n+1)^3}{(n+2)^3} \right| = \frac{|z+2|}{4};$$

the series converges within the circle $\frac{|z+2|}{4} < 1$ i.e. |z+2| < 4.

(c) We consider the evaluation of

$$\frac{\lim_{n\to\infty}\sqrt{\frac{\left|\sin(n+1)\frac{\pi}{4}\right|}{2^{\frac{n+1}{2}}}}.$$

For the subsequence where n + 1 = 2k, we have

$$\lim_{k \to \infty} \sqrt[2k-1]{\frac{\left|\sin\frac{k\pi}{2}\right|}{2^{\frac{2k}{2}}}} = \frac{1}{\sqrt{2}};$$

otherwise

$$\sqrt{\frac{\left|\sin(n+1)\frac{\pi}{4}\right|}{2^{\frac{n+1}{2}}}} \le \frac{1}{2^{\frac{n+1}{2n}}} \le \frac{1}{\sqrt{2}}.$$

Hence,

$$\frac{1}{\lim_{n \to \infty}} \sqrt[n]{\frac{|\sin(n+1)\frac{\pi}{4}|}{2^{\frac{n+1}{2}}}} = \frac{1}{\sqrt{2}},$$

so the series converges for $|z-1| < \sqrt{2}$. This is not surprising since the distance from z=1 to the nearest singularity of $\frac{1}{1+z^2}$ is $\sqrt{2}$.

2

6. The primitive function of $\frac{1}{1-z}$ is Log(1-z) and $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, |z| < 1$. For $z \in D = \{z : |z| < 1\}$, we have

$$-\text{Log}(1-z) = \int_C \frac{d\xi}{1-\xi} = \int_C \sum_{n=0}^{\infty} \xi^n d\xi = \sum_{n=0}^{\infty} \int_C \xi^n d\zeta = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1},$$

where C is any simple curve joining 0 and z and lying completely inside D. Note that termwise integration is valid in D. Also, z^n is entire so the integral $\int_C \xi^n d\xi$ is path independent and hence $\int_C \xi^n d\xi = \frac{z^{n+1}}{n+1}$.

We then have

$$-\text{Log}(1-z_0) = \lim_{\substack{z \to z_0 \\ z \neq z_0}} \sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{z_0^n}{n}, \quad \forall z_0 \neq 1, z_0 \text{ lies on } |z| = 1.$$

Hence, the series expansion $-\text{Log}(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ is valid for all z lying on |z| = 1 except at the point z = 1.

For the series $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}$, we observe that $\sum_{n=1}^{\infty} \left| \frac{e^{in\theta}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$. The last series is well known to be divergent. Therefore, $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}$, $\theta \neq 0$, is only conditionally convergent.

(a)
$$-\text{Log}(1 - e^{i\theta}) = -[\ln|1 - e^{i\theta}| + i\text{Arg}(1 - e^{i\theta})]$$

 $|1 - e^{i\theta}|^2 = (1 - \cos\theta)^2 + \sin^2\theta = 2 - 2\cos\theta = 4\sin^2\frac{\theta}{2}$
so $|1 - e^{i\theta}| = 2\sin\frac{\theta}{2}$ if $0 < \theta < 2\pi$. Therefore,

Re
$$\left(\sum_{n=1}^{n} \frac{e^{in\theta}}{n}\right) = \sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = -\ln\left(2\sin\frac{\theta}{2}\right), \quad 0 < \theta < 2\pi.$$

(b) Next, we consider the imaginary part of $-\text{Log}(1 - e^{i\theta})$. Arg $(1 - e^{i\theta}) = \text{Arg}(1 - \cos \theta + i(-\sin \theta)) = \tan^{-1}\left(\frac{-\sin \theta}{1 - \cos \theta}\right)$, provided that $-\pi < \tan^{-1}\left(\frac{-\sin \theta}{1 - \cos \theta}\right) \le \pi$. Note that

$$\frac{-\sin\theta}{1-\cos\theta} = \frac{-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = -\cot\frac{\theta}{2}.$$

Hence,

$$\operatorname{Im}\left(\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}\right) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = -\tan^{-1}\left(-\cot\frac{\theta}{2}\right) = \frac{\pi - \theta}{2}, \quad 0 < \theta < 2\pi.$$

Note that $0 < \theta < 2\pi$ implies $-\pi < \tan^{-1} \left(-\cot \frac{\theta}{2} \right) \le \pi$.

7. (a)
$$\cos z = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{(z-\pi/2)^{2n+1}}{(2n+1)!}, \quad |z-\pi/2| < \infty;$$

(b)
$$\frac{1}{1+z} = \frac{1}{2\left(1+\frac{z+1}{2}\right)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2} \left(\frac{z-1}{2}\right)^n, \quad |z-1| < 2.$$

8. (a) Consider

$$e^{x} \cos x = \text{Re } e^{z} = \text{Re } e^{(1+i)x}, \quad z = (1+i)x$$

= $\text{Re } \sum_{n=0}^{\infty} \frac{(1+i)^{n}}{n!} = \sum_{n=0}^{\infty} 2^{n/2} \cos \frac{n\pi}{4} \frac{x^{n}}{n!}.$

(b) The function is analytic inside $|z-1| < \sqrt{2}$.

$$\frac{1}{1+z^2} = \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right]$$

$$= \frac{1}{2i} \left[\frac{1}{1-i} \frac{1}{1+\frac{z-1}{1-i}} - \frac{1}{i+1} \frac{1}{1+\frac{z-1}{i+1}} \right]$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{2i} \left[\frac{1}{(1-i)^{n+1}} - \frac{1}{(1+i)^{n+1}} \right] (z-1)^n.$$

Since $1 - i = \sqrt{2}e^{-i\pi/4}$ and $1 + i = \sqrt{2}e^{i\pi/4}$, we then have

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n \frac{\sin\left((n+1)\frac{\pi}{4}\right)}{2^{(n+1)/2}} (z-1)^n.$$

- 9. (a) Since $\frac{1}{z^2+4}$ has singularities at $z=\pm 2i$ and $\sin z$ is entire, so the Taylor expansion at z=0 has a radius of convergence equals 2, and the circle of convergence is |z|<2.
 - (b) The function has singularities at z=1 and z=4. The distance from z=2 to the nearest singularity is 1, so the radius of convergence is 1. The region of convergence is |z-2| < 1.
 - (c) The function has singularities at z = 0 and z = 1. Note that z = 4i is closer to z = 0. Hence, the region of convergence is |z 4i| < 4.

10. First, we write

$$\frac{z}{(z-1)(2-z)} = \frac{1}{z-1} + \frac{2}{2-z},$$

and observe

$$\frac{1}{z-1} = \begin{cases} -\sum_{n=0}^{\infty} z^n, & |z| < 1\\ \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}, & |z| > 1 \end{cases}$$

$$\frac{2}{2-z} = \begin{cases} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n, & |z| < 2\\ -\sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^{n+1}, & |z| > 2 \end{cases}$$

(a) For
$$|z| < 1$$
, $\frac{z}{(z-1)(2-z)} = -\sum_{n=0}^{\infty} z^n + \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{2^n} - 1\right) z^n$.

(b) For
$$1 < |z| < 2$$
, $\frac{z}{(z-1)(2-z)} = \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=1}^{\infty} \left(\frac{z}{2}\right)^n$

(c) For
$$|z| > 2$$
, $\frac{z}{(z-1)(2-z)} = \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^{n+1} = \sum_{n=0}^{\infty} \frac{1-2^{n+1}}{z^{n+1}}$

(d) For |z - 1| > 1,

$$\frac{2}{2-z} = \frac{2}{1-(z-1)} = \frac{-2}{(z-1)\left(1-\frac{1}{z-1}\right)} = \frac{-2}{z-1} \sum_{n=0}^{\infty} \left(\frac{1}{z-1}\right)^n$$

$$\frac{z}{(z-1)(2-z)} = \frac{1}{z-1} - \frac{2}{z-1} \sum_{n=0}^{\infty} \left(\frac{1}{z-1}\right)^n = \frac{1}{z-1} - 2 \sum_{n=1}^{\infty} \frac{1}{(z-1)^{n+1}}.$$

11. (i)
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \implies \frac{e^z - 1}{z} = \sum_{n=0}^{\infty} \frac{z^n}{(n+1)!}, \quad z \neq 0.$$

Define f(0) = 1 with $f(z) = \frac{e^z - 1}{z}$. The singularity of f(z) at z = 0 is thus removed. Hence, z = 0 is removable singularity of f(z).

- (ii) The roots of $e^z 1$ are $z = 2k\pi i$, where k is any integer. The roots of $e^{2z} 1$ are $z = k\pi i$, where k is any integer.
 - (a) For $z = (2\ell + 1)\pi i$, ℓ is any integer, it is a simple root of $e^{2z} 1$ but not a root of $e^z 1$. In this case

$$\lim_{z \to (2\ell+1)\pi i} \left[z - (2\ell+1)\pi i\right] \frac{e^z - 1}{e^{2z} - 1} = \frac{e^{(2\ell+1)\pi i} - 1}{2e^{(4\ell+2)\pi i}} = -1.$$

Hence, $z = (2\ell + 1)\pi i$ is a simple pole of $\frac{e^z - 1}{e^{2z} - 1}$.

(b) For $z = 2\ell\pi i$, ℓ is any integer, it is a simple pole of both $e^z - 1$ and $e^{2z} - 1$. Consider

$$\lim_{z \to 2\ell \pi i} \frac{e^z - 1}{e^{2z} - 1} = \frac{1}{2} \frac{e^z}{e^{2z}} \bigg|_{z = 2\ell \pi i} = \frac{1}{2}.$$

Hence, it is a removable singularity.