MATH 304 — Complex Analysis

Solution to Homework 5
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For any given € > 0, choose N such that N > —. We then have
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as required.
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Hence, when E |, | diverges, E a, diverges and so does E Q.
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3. For |z| > 0, we have
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Sul2) = S(2) = (1 +1af),
For z = 0, obviously both 5,(0) and S(0) equals 0. Therefore,
22 1 _ 1
212 A=) | (]z2)"
0 if =0

15,(2) — 5(2)| = itz >0

Note that for any positive integer n, we have
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Now, for each n,0 < e < 1, there exists z with |z| > 0 such that
|Sn(2) — S(2)| > e.

Thus it is not uniformly convergent.



4. For all z inside 1.01 < |1 — z|, we have
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where r = 101 < 1. Since Zr is convergent, for r < 1, we have uniform convergence
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(b)

is the whole complex plane. Indeed, it is the Taylor expansion of e*.

Consider the limit of the ratio of the moduli of successive terms
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the series converges within the circle | 1 | <lie |z42| <4
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so the series converges for |z — 1| < 4/2. This is not surprising since the distance

is v/2.

from z = 1 to the nearest singularity of
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6. The primitive function of

{z : |z| < 1}, we have

g2 = [ Fe= [Sea=3 [eac=3 T

where C' is any simple curve joining 0 and z and lying completely inside D. Note that

termwise integration is valid in D. Also, 2" is entire so the integral [ £"d¢ is path
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We then have

—Log (1 — 29) = lim Z Z ZO Vzo # 1,29 lies on |z] = 1.
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Hence, the series expansion —Log (1 —z) = Z — is valid for all z lying on |z| = 1 except
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at the point z = 1.
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For the series Z = Z —. The last series is well known
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to be divergent. Therefore, Z - ,0 # 0, is only conditionally convergent.
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(b) Next, we consider the imaginary part of —Log (1 — €). Arg(l — e?) = Arg (1 —
_sind
cosf +i(—sinf)) = tan™? (&) :

1 —cost

_sin®
provided that —7 < tan™! _—omy < 7. Note that
1—cos@
—siné# -2 sin ? cos g
= = —cot —.
1 —cost 231n29 2
Hence,
[oe) ZTLG o0 .
e sin nd 0 T—0
I = =—tan ' | —cot= | =——, 0<60<2m.
m<zn>zn an(COQ) . .

Note that 0 < § < 27 implies —7 < tan™! (— cot g) < 7.
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(a) Consider
e*cosx = Re ¢ = Re eI 9% 2 = (1 4+ i)z

= Re Z 22"/2(:05 an;'

(b) The function is analytic inside |z — 1] < /2.
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Since 1 —i =2 ™4 and 1 +i = \/56”/4, we then have

= Lsin ((n+1)%) .
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(a) Since 211 has singularities at z = +2¢ and sin z is entire, so the Taylor expansion
z
at z = 0 has a radius of convergence equals 2, and the circle of convergence is |z| < 2.
(b) The function has singularities at z = 1 and z = 4. The distance from z = 2 to the
nearest singularity is 1, so the radius of convergence is 1. The region of convergence
is |z — 2| < L.
(¢) The function has singularities at z = 0 and z = 1. Note that z = 44 is closer to
z = 0. Hence, the region of convergence is |z — 4i| < 4.



10. First, we write
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Define f(()) = 1 with f(Z) =

removed. Hence, z = 0 is removable singularity of f(z).

The singularity of f(z) at z = 0 is thus

(ii) The roots of €* — 1 are z = 2kmi, where k is any integer. The roots of €** — 1 are
z = kmi, where k is any integer.

(a) For z = (20 + 1)mi, £ is any integer, it is a simple root of €¢** — 1 but not a root
of e — 1. In this case
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Hence, 2z = (2¢ 4 1)7i is a simple pole of — T
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(b) For z = 2(ri, { is any integer, it is a simple pole of both e* — 1 and e* — 1.
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Hence, it is a removable singularity.



