MATH 304 — Complex Analysis

Solution to Homework 6

1. Note that z, is a double pole of 1/ cos? z for any integer n. Since f(z) is analytic on the
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in later calculations, it is necessary to ﬁnd the value of by. The trick is to observe that
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Furthermore, since the Taylor series of cos® z at z = z, has even power terms only (see

below), the even power terms in the Laurent expansion of

2
cos? z
particular, we have b; = 0.

Consider the following series expansion
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is a1by. Hence, we obtain
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Alternative method (if f(z,) #0)
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80 2, is a double pole of ——. Using the formula in Example 6.2.2 (p. 230), we have
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2. (a) Note that z = g + km, k is any integer, are simple pole of tan z since

sin <g + lm) = (=1)* #0.
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Now, Res <tan z, g + k‘7r> = = —1.
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(b) Obviously, z =1 is a pole of order n. We have
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3. The point z = 0 is a removable singularity of f(z) since the Laurent expansion of f(z)
valid in the region |z| > 0 is given by

fz)=2z—=4+—=—--+, |z| >0.
The function f is simply defined “incorrectly” at z = 0.

1
Res (f,0) = coefficient of — in the above Laurent series = 0.
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4. First, consider the Taylor series expansion of 2cosz — 2 + 22 at z = 0:
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Consider
= 144,

so that f has a pole of order 8 at z = 0. Since f is even so that Res(f,0) = —Res (f,0);
hence,

Res (f,0) = 0.

5. (a) Note that z = 1 is a double pole of the integrand and it is the only pole included
inside |z| = 2. We then have
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(b) Note that z = 0 is a double pole of the integrand and it is the only pole included
inside |z| = 2. We then have
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¢) Note that z = 0 is a double pole of sinh? z/2*. Hence
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6. Recall the following Taylor series:
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By performing long division
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the coefficient of — is seen to be 3 so that
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(b) Consider the closed contour C' as depicted in the following figure
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By Residue calculus
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where the isolated singularities of ] enclosed inside C' are z = e
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By taking the limit R — oo, we obtain
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(c¢) Consider
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Letting R — oo, then the integral over Cz vanishes by Jordan’s lemma. This is

because ﬁ — 0 as R — oo. The integrand has a singularity at z = bi which
z
is enclosed inside the closed contour. Since b > 0, we have
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8. One may be tempted to say that the given integral equals the imaginary part of
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This is wrong! (Why?) Moreover, we cannot use (sinz)/(z + @) either, because it is
unbounded in both the upper and lower half-planes. We try the substitution
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which lead to the representation
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Now we deal with each integral separately. For
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we close the contour [—p, p] with the half-circle C7 in the upper half-plane. Then, by

Jordan’s lemma ,
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and since the only singularity of the integrand is in the lower half-plane at z = —i, we
deduce that I; = 0.




Now the second integral
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involves the function e~**, which is unbounded in the upper half-plane, so we close the

contour [—p, p| in the lower half-plane with the semicircle C : 2z = pe= 0 <t < (see
the above figure). Then by the analogue of Jordan’s lemma for the case when m < 0, we
deduce that

—iz
lim -dz = 0.
p—=0 fo- Z +1
P

Observing that the closed contour in the figure is negatively oriented, we obtain
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It is necessary to show that the second integral vanishes as ¢ — 0 and the fourth integral
vanishes as R — oco. The integrand has a simple pole at z = 2i.
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By equating the real parts, we obtain
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Along /3, we have z = x + zg so that
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The integrand function has a simple pole at z = ’LZ inside the closed rectangular contour.

We have
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Taking the imaginary parts of both sides, we obtain
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