MATH 304 - Complex Analysis

Solution to Homework 6

1. Note that z_{n} is a double pole of $1 / \cos ^{2} z$ for any integer n. Since $f(z)$ is analytic on the whole real axis, so $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{n}\right)^{k}$, where $a_{k}=\frac{f^{(k)}\left(z_{n}\right)}{k!}$.
Also, $\frac{1}{\cos ^{2} z}=\frac{b_{2}}{\left(z-z_{n}\right)^{2}}+\frac{b_{1}}{\left(z-z_{n}\right)}+\sum_{k=0}^{\infty} c_{k}\left(z-z_{n}\right)^{k}$ (since z_{n} is a double pole). As shown in later calculations, it is necessary to find the value of b_{2}. The trick is to observe that $\frac{z-z_{n}}{\cos ^{2} z}$ has a simple pole at z_{n} and $\operatorname{Res}\left(\frac{z-z_{n}}{\cos ^{2} z}, z_{n}\right)=b_{2}$. Note that

$$
b_{2}=\lim _{z \rightarrow z_{n}} \frac{\left(z-z_{n}\right)^{2}}{\cos ^{2} z}=\lim _{z \rightarrow z_{n}} \frac{2\left(z-z_{n}\right)}{-2 \sin z \cos z}=\lim _{z \rightarrow z_{n}} \frac{2}{-2 \cos ^{2} z+2 \sin ^{2} z}=1 .
$$

Furthermore, since the Taylor series of $\cos ^{2} z$ at $z=z_{n}$ has even power terms only (see below), the even power terms in the Laurent expansion of $\frac{1}{\cos ^{2} z}$ at $z=z_{n}$ are zero. In particular, we have $b_{1}=0$.

Consider the following series expansion

$$
\frac{f(z)}{\cos ^{2} z}=\left(\sum_{k=0}^{\infty} a_{k}\left(z-z_{n}\right)^{k}\right)\left(\frac{b_{2}}{\left(z-z_{n}\right)^{2}}+\sum_{k=0}^{\infty} c_{2 k}\left(z-z_{n}\right)^{2 k}\right)
$$

so that the coefficient of $\frac{1}{z-z_{n}}$ is $a_{1} b_{2}$. Hence, we obtain

$$
\operatorname{Res}\left(\frac{f(z)}{\cos ^{2} z}, z_{n}\right)=a_{1} b_{2}=a_{1}=f^{\prime}\left(z_{n}\right) .
$$

Alternative method (if $f\left(z_{n}\right) \neq 0$)

$$
\begin{aligned}
\cos ^{2} z & =2\left(z-z_{n}\right)^{2}-8\left(z-z_{n}\right)^{4}+32\left(z-z_{n}\right)^{6}-\cdots \\
& =\left(z-z_{n}\right)^{2}\left\{2-8\left(z-z_{n}\right)^{2}+32\left(z-z_{n}\right)^{4}-\cdots\right\}
\end{aligned}
$$

so z_{n} is a double pole of $\frac{1}{\cos ^{2} z}$. Using the formula in Example 6.2.2 (p. 230), we have

$$
\operatorname{Res}\left(\frac{f(z)}{\cos ^{2} z}, z_{n}\right)=\left.\frac{6 f^{\prime}(z)\left(\cos ^{2} z\right)^{\prime \prime}-2 f(z)\left(\cos ^{2} z\right)^{\prime \prime \prime}}{3\left[\left(\cos ^{2} z\right)^{\prime \prime}\right]^{2}}\right|_{z=z_{n}}=f^{\prime}\left(z_{n}\right) .
$$

2. (a) Note that $z=\frac{\pi}{2}+k \pi, k$ is any integer, are simple pole of $\tan z$ since

$$
\text { Now, } \operatorname{Res}\left(\tan z, \frac{\pi}{2}+k \pi\right)=\frac{\sin \left(\frac{\pi}{2}+k \pi\right)=(-1)^{k} \neq 0 .}{\left.\frac{\sin \left(\frac{\pi}{2}+k \pi\right)}{d z} \cos z\right|_{z=\frac{\pi}{2}+k \pi}}=-1 .
$$

(b) Obviously, $z=1$ is a pole of order n. We have

$$
\begin{aligned}
\operatorname{Res}(f, 1) & =\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[(z-1)^{n} \frac{z^{2 n}}{(z-1)^{n}}\right] \\
& =\frac{(2 n)!}{(n-1)!(n+1)!}
\end{aligned}
$$

3. The point $z=0$ is a removable singularity of $f(z)$ since the Laurent expansion of $f(z)$ valid in the region $|z|>0$ is given by

$$
f(z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots, \quad|z|>0
$$

The function f is simply defined "incorrectly" at $z=0$.

$$
\operatorname{Res}(f, 0)=\text { coefficient of } \frac{1}{z} \text { in the above Laurent series }=0
$$

4. First, consider the Taylor series expansion of $2 \cos z-2+z^{2}$ at $z=0$:

$$
\begin{aligned}
2 \cos z-2+z^{2} & =2\left[1-\frac{z^{2}}{2}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right]-2+z^{2} \\
& =\frac{z^{4}}{12}\left(1-\frac{z^{2}}{30}+\cdots\right) .
\end{aligned}
$$

Consider

$$
\lim _{z \rightarrow 0} z^{8} f=\lim _{z \rightarrow 0} \frac{12^{2}}{1-\frac{z^{2}}{30}+\cdots}=144
$$

so that f has a pole of order 8 at $z=0$. Since f is even so that $\operatorname{Res}(f, 0)=-\operatorname{Res}(f, 0)$; hence,

$$
\operatorname{Res}(f, 0)=0
$$

5. (a) Note that $z=1$ is a double pole of the integrand and it is the only pole included inside $|z|=2$. We then have

$$
\begin{aligned}
\oint_{|z|=2} \frac{z^{4}+z}{(z-1)^{2}} d z & =2 \pi i \operatorname{Res}\left(\frac{z^{4}+z}{(z-1)^{2}}, 1\right) \\
& =2 \pi i \lim _{z \rightarrow 1}\left(z^{4}+z\right)^{\prime}=2 \pi i \lim _{z \rightarrow 1}\left(4 z^{3}+1\right)=10 \pi i
\end{aligned}
$$

(b) Note that $z=0$ is a double pole of the integrand and it is the only pole included inside $|z|=2$. We then have

$$
\begin{aligned}
\oint_{|z|=2} \frac{z^{3}+3 z+1}{z^{4}-5 z^{2}} d z & =2 \pi i \operatorname{Res}\left(\frac{z^{3}+3 z+1}{z^{4}-5 z^{2}}, 0\right) \\
& =2 \pi i \lim _{z \rightarrow 0}\left(\frac{z^{3}+3 z+1}{z^{2}-5}\right)^{\prime} \\
& =2 \pi i \lim _{z \rightarrow 0} \frac{\left(z^{2}-5\right)\left(3 z^{2}+3\right)-\left(z^{2}+3 z+1\right)(2 z)}{\left(z^{2}-5\right)^{2}}=\frac{-6 \pi i}{5} .
\end{aligned}
$$

(c) Note that $z=0$ is a double pole of $\sinh ^{2} z / z^{4}$. Hence

$$
\begin{aligned}
\oint_{|z|=2} \frac{\sinh ^{2} z}{z^{4}} d z & =2 \pi i \operatorname{Res}\left(\frac{\sinh ^{2} z}{z^{4}}, 0\right) \\
& =2 \pi i \lim _{z \rightarrow 0} \frac{d}{d z}\left[\frac{\sinh ^{2} z}{z^{2}}\right] \\
& =2 \pi i \lim _{z \rightarrow 0} \frac{d}{d z}\left[\frac{\left(z+\frac{z^{3}}{3!}+\cdots\right)^{2}}{z^{2}}\right]=0 .
\end{aligned}
$$

(d) Consider

$$
\begin{aligned}
\oint_{|z-i|=2} \frac{e^{z}+z}{(z-1)^{4}} d z & =2 \pi i \operatorname{Res}\left(\frac{e^{z}+z}{(z-1)^{4}}, 1\right) \\
& =2 \pi i \lim _{z \rightarrow 1} \frac{\left(e^{z}+z\right)^{\prime \prime \prime}}{3!}=2 \pi i\left(\frac{e}{6}\right)=\frac{\pi e i}{3} .
\end{aligned}
$$

6. Recall the following Taylor series:

$$
\begin{aligned}
& e^{z}-1=z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& \sin ^{3} z=z^{3}-\frac{z^{5}}{2}+\cdots \\
& \frac{e^{z}-1}{\sin ^{3} z}=\frac{z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots}{z^{3}-\frac{z^{5}}{2}+\cdots}
\end{aligned}
$$

By performing long division

$$
z ^ { 3 } \quad \frac { z ^ { 5 } } { 2 } \longdiv { z } \begin{array} { l l l }
{ \frac { 1 } { z ^ { 2 } } } & { \frac { 1 } { 2 z } } \\
{ \frac { z ^ { 2 } } { 2 ! } } & { \frac { z ^ { 3 } } { 3 ! } }
\end{array}
$$

the coefficient of $\frac{1}{z}$ is seen to be $\frac{1}{2}$ so that

$$
\operatorname{Res}\left(\frac{e^{z}-1}{\sin ^{3} z}, 0\right)=\frac{1}{2} .
$$

7. (a)

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{d \theta}{1-2 a \cos \theta+a^{2}}=\oint_{|z|=1} \frac{d z}{i z\left(1-2 a\left(\frac{z+z^{-1}}{2}\right)+a^{2}\right)}=\oint_{|z|=1} \frac{d z}{-a i(z-a)\left(z-\frac{1}{a}\right)} \\
= & \begin{cases}2 \pi i \operatorname{Res}\left(\frac{1}{-a i(z-a)\left(z-\frac{1}{a}\right)}, a\right), & |a|>1 \\
2 \pi i \operatorname{Res}\left(\frac{1}{-a i(z-a)\left(z-\frac{1}{a}\right)}, \frac{1}{a}\right), & |a|<1\end{cases} \\
= & \begin{cases}\frac{2 \pi}{a} \lim _{z \rightarrow a}\left(\frac{1}{z-\frac{1}{a}}\right)=\frac{2 \pi}{a^{2}-1}, & |a|>1 \\
\frac{2 \pi}{a} \lim _{z \rightarrow \frac{1}{a}}\left(\frac{1}{z-a}\right)=\frac{2 \pi}{1-a^{2}}, & |a|<1\end{cases}
\end{aligned}
$$

(b) Consider the closed contour C as depicted in the following figure

$$
\oint_{C} \frac{z^{2}}{z^{4}+1} d z=\int_{C_{R}} \frac{z^{2}}{z^{4}+1} d z+\int_{-R}^{R} \frac{x^{2}}{x^{4}+1} d x
$$

By Residue calculus

$$
\oint_{C} \frac{z^{2}}{z^{4}+1} d z=2 \pi i\left[\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i \pi / 4}\right)+\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i 3 \pi / 4}\right)\right],
$$

where the isolated singularities of $\frac{z^{2}}{z^{4}+1}$ enclosed inside C are $z=e^{i \pi / 4}$ and $z=$ $e^{i 3 \pi / 4}$. Both are simple poles so that

$$
\begin{gathered}
\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i \pi / 4}\right)=\left.\frac{z^{2}}{4 z^{3}}\right|_{z=e^{i \pi / 4}}=\frac{1}{4} e^{-i \pi / 4} \\
\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i 3 \pi / 4}\right)=\frac{1}{4} e^{-i 3 \pi / 4} . \\
\int_{C_{R}} \frac{z^{2}}{z^{4}+1} d z=O\left(\frac{R^{2}}{R^{4}}\right) R \rightarrow 0 \text { as } R \rightarrow \infty .
\end{gathered}
$$

By taking the limit $R \rightarrow \infty$, we obtain

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+1} d x & =2 \pi i\left[\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i \pi / 4}\right)+\operatorname{Res}\left(\frac{z^{2}}{z^{4}+1}, e^{i 3 \pi / 4}\right)\right] \\
& =\frac{2 \pi i}{4}\left[e^{-i \pi / 4}+e^{-i 3 \pi / 4}\right]=\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

(c) Consider

$$
\oint_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=\int_{-R}^{R} \frac{x e^{i a x}}{x^{2}+b^{2}} d x+\int_{C_{R}} \frac{z e^{i a z}}{z^{2}+b^{2}} d z
$$

Letting $R \rightarrow \infty$, then the integral over C_{R} vanishes by Jordan's lemma. This is because $\left|\frac{z}{z^{2}+b^{2}}\right| \rightarrow 0$ as $R \rightarrow \infty$. The integrand has a singularity at $z=b i$ which is enclosed inside the closed contour. Since $b>0$, we have

$$
2 \pi i \operatorname{Res}\left(\frac{z e^{i a z}}{z^{2}+b^{2}}, b i\right)=\left.2 \pi i\left(\frac{-z e^{i a z}}{z+i b}\right)\right|_{z=b i}=\frac{\pi}{b} b i e^{-a b}
$$

so that

$$
\operatorname{Im} \oint_{C} \frac{z e^{i a z}}{z^{2}+b^{2}} d z=\int_{-\infty}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}} d x=\frac{\pi}{e^{a b}} .
$$

8. One may be tempted to say that the given integral equals the imaginary part of

$$
\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{i x}}{x+i} d x .
$$

This is wrong! (Why?) Moreover, we cannot use $(\sin z) /(z+i)$ either, because it is unbounded in both the upper and lower half-planes. We try the substitution

$$
\sin x=\frac{e^{i x}-e^{-i x}}{2 i}
$$

which lead to the representation

$$
I=\frac{1}{2 i}\left(\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{i x}}{x+i} d x-\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x+i} d x\right)
$$

Now we deal with each integral separately. For

$$
I_{1}:=\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{i e}}{x+i} d x
$$

we close the contour $[-\rho, \rho]$ with the half-circle C_{ρ}^{+}in the upper half-plane. Then, by Jordan's lemma

$$
\lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{+}} \frac{e^{i z}}{z+i} d z=0
$$

and since the only singularity of the integrand is in the lower half-plane at $z=-i$, we deduce that $I_{1}=0$.

Now the second integral

$$
I_{2}:=\mathrm{PV} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x+i} d x
$$

involves the function $e^{-i z}$, which is unbounded in the upper half-plane, so we close the contour $[-\rho, \rho]$ in the lower half-plane with the semicircle $C_{\rho}^{-}: z=\rho e^{-i t}, 0 \leq t \leq \pi$ (see the above figure). Then by the analogue of Jordan's lemma for the case when $m<0$, we deduce that

$$
\lim _{\rho \rightarrow \infty} \int_{C_{\rho}^{-}} \frac{e^{-i z}}{z+i} d z=0
$$

Observing that the closed contour in the figure is negatively oriented, we obtain

$$
\begin{aligned}
I_{2} & =-2 \pi i \operatorname{Res}\left(\frac{e^{-i z}}{z+i} ;-i\right) \\
& =-2 \pi i \lim _{z \rightarrow-i} e^{-i z}=-2 \pi i e^{-1}
\end{aligned}
$$

Consequently,

$$
I=\frac{1}{2 i}\left(I_{1}-I_{2}\right)=\frac{1}{2 i}\left(0+2 \pi i e^{-1}\right)=\frac{\pi}{e} .
$$

9. Consider

$$
\begin{aligned}
\oint_{C} \frac{\log z}{z^{2}+4} d z= & \int_{-R}^{-\varepsilon} \frac{\log z}{z^{2}+4} d x+\int_{C_{\varepsilon}} \frac{\log z}{z^{2}+4} d z \\
& +\int_{\varepsilon}^{R} \frac{\ln x}{x^{2}+4} d x+\int_{C_{R}} \frac{\log z}{z^{2}+4} d z
\end{aligned}
$$

It is necessary to show that the second integral vanishes as $\varepsilon \rightarrow 0$ and the fourth integral vanishes as $R \rightarrow \infty$. The integrand has a simple pole at $z=2 i$.
Now

$$
\begin{aligned}
& \int_{C_{\varepsilon}} \frac{\log z}{z^{2}+4} d z=O(\varepsilon \ln \varepsilon) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \\
& \int_{C_{R}} \frac{\log z}{z^{2}+4} d z=O\left(\frac{\ln R}{R^{2}} \cdot R\right) \rightarrow 0 \text { as } R \rightarrow \infty .
\end{aligned}
$$

The sum of the first and third integrals is

$$
\begin{aligned}
& i \pi \int_{-\infty}^{0} \frac{1}{x^{2}+4} d x+2 \int_{0}^{\infty} \frac{\ln x}{x^{2}+4} d x \\
= & 2 \pi i \operatorname{Res}\left(\frac{\log z}{z^{2}+4}, 2 i\right) \\
= & 2 \pi i \frac{\log 2 i}{4 i}=\frac{\pi}{2}\left(\ln 2+i \frac{\pi}{2}\right) .
\end{aligned}
$$

By equating the real parts, we obtain

$$
\int_{0}^{\infty} \frac{\ln x}{x^{2}+4} d x=\frac{\pi}{4} \ln 2
$$

10. Along ℓ_{1}, we have

$$
I_{1}=\int_{\ell_{1}} \frac{z e^{z}}{e^{4 z}+1} d z=\int_{-R}^{R} \frac{x e^{x}}{e^{4 x}+1} d x
$$

Along ℓ_{3}, we have $z=x+i \frac{\pi}{2}$ so that

$$
\begin{aligned}
I_{3} & =\int_{R}^{-R} \frac{\left(x+i \frac{\pi}{2}\right) e^{x} e^{i \pi / 2}}{e^{4 x}+1} d x \\
& =-i \int_{-R}^{R} \frac{x e^{x}}{e^{4 x}+1} d x+\frac{\pi}{2} \int_{-R}^{R} \frac{e^{x}}{e^{4 x}+1} d x
\end{aligned}
$$

For $z=R+i y, 0 \leq y \leq \frac{\pi}{2}$ on ℓ_{2}, we have $|z| \leq R+y \leq R+\frac{\pi}{2}$ so that

$$
\left|\frac{z e^{z}}{e^{4 z}+1}\right|=|z|\left|\frac{e^{z}}{e^{4 z}+1}\right| \leq\left(R+\frac{\pi}{2}\right) \frac{e^{R}}{e^{4 R}-1}=\frac{R+\frac{\pi}{2}}{e^{3 R}-e^{-R}}
$$

which tends to 0 as $R \rightarrow \infty$. Hence,

$$
\left|I_{2}\right|=\left|\int_{\ell_{2}} \frac{z e^{z}}{e^{4 z}+1} d z\right| \leq \frac{R+\frac{\pi}{2}}{e^{3 R}-e^{-R}} \frac{\pi}{2} \rightarrow 0 \text { as } R \rightarrow \infty
$$

In a similar manner, $\left|I_{4}\right|=\left|\int_{\ell_{4}} \frac{z e^{z}}{e^{z z}+1} d z\right| \rightarrow 0$ as $R \rightarrow \infty$.
The integrand function has a simple pole at $z=i \frac{\pi}{4}$ inside the closed rectangular contour. We have

$$
\begin{aligned}
\oint_{C} \frac{z e^{z}}{e^{4 z}+1} d z & =2 \pi i \operatorname{Res}\left(\frac{z e^{z}}{e^{4 z}+1} ; i \frac{\pi}{4}\right) \\
& =(2 \pi i) \frac{i \frac{\pi}{4} e^{i \pi / 4}}{4 e^{i \pi}}=\frac{(2 \pi i)(-i \pi)(1+i)}{16 \sqrt{2}}=\frac{\pi^{2}(1+i)}{8 \sqrt{2}} .
\end{aligned}
$$

Lastly,

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \oint_{C} \frac{z e^{z}}{e^{4 z}+1} d z & =\lim _{R \rightarrow \infty}\left[I_{1}+I_{2}+I_{3}+I_{4}\right] \\
& =(1-i) \int_{-\infty}^{\infty} \frac{x e^{x}}{e^{4 x}+1} d x+\frac{\pi}{2} \int_{-\infty}^{\infty} \frac{e^{x}}{e^{4 x}+1} d x \\
& =\frac{\pi^{2}(1+i)}{8 \sqrt{2}}
\end{aligned}
$$

Taking the imaginary parts of both sides, we obtain

$$
\int_{-\infty}^{\infty} \frac{x e^{x}}{e^{4 x}+1} d x=-\frac{\pi^{2}}{8 \sqrt{2}}
$$

