MATH304, Spring 2007

Solution to Test One

1. Note that $\left|z^{n}+\alpha\right| \leq|z|^{n}+|\alpha| \leq 1+|\alpha|$ for $|z| \leq 1$. The upper bound is attained when z is chosen such that $|z|=1$ and $z^{n}=k \alpha$, where k is real positive. Hence, the maximum value of $\left|z^{n}+\alpha\right|=1+|\alpha|$ for $|z| \leq 1$.
2. (a) Consider

$$
\left|g\left(z_{2}\right)-g\left(z_{1}\right)\right|=\left|\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{f(1)-f(0)}\right|=\frac{\left|z_{2}-z_{1}\right|}{|1-0|}=\left|z_{2}-z_{1}\right|
$$

so $g(z)$ is an isometry.
(b) (i) From $|g(z)|^{2}=|z|^{2}$ and $|g(z)-1|^{2}=|z-1|^{2}$ for any z in \mathbb{C}, we have

$$
\begin{aligned}
& {[\operatorname{Re} g(z)]^{2}+[\operatorname{Im} g(z)]^{2}=(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}} \\
& {[\operatorname{Re} g(z)]^{2}-2 \operatorname{Re} g(z)+1+[\operatorname{Im} g(z)]^{2}=(\operatorname{Re} z)^{2}-2 \operatorname{Re} z+1+(\operatorname{Im} z)^{2} .}
\end{aligned}
$$

Subtracting the two equations, we obtain

$$
\operatorname{Re} g(z)=\operatorname{Re} z
$$

(ii) Since $|g(i)|^{2}=1$ and $\operatorname{Re} g(i)=\operatorname{Re} i=0$; hence $g(i)= \pm i$.
3. See lecture note.
4. $f(z)=(x-y)^{2}+2 i(x+y)$.
(a) $u_{x}=2(x-y), \quad u_{y}=-2(x-y), \quad v_{x}=2, \quad v_{y}=2$.

$$
\begin{array}{llll}
u_{x}=v_{y} & \Leftrightarrow & 2(x-y)=2 & \Leftrightarrow \\
u_{y}=-v_{x} & \Leftrightarrow & -2(x-y)=-2 & \Leftrightarrow
\end{array} x-y=1 .
$$

Hence, the Cauchy-Riemann relations are satisfied along $x-y=1$.
(b) Along $x-y=1, f^{\prime}(z)$ exists and it is equal to $u_{x}+i v_{x}=2(1+i)$.

But f^{\prime} exists only along the line $x-y=1$, and every neighborhood of any point on the line contains points not on the line. Hence, f is nowhere analytic.
5. Consider $f(z)=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$.

We then have

$$
u(x, y)=\frac{x}{x^{2}+y^{2}}, \quad v(x, y)=\frac{-y}{x^{2}+y^{2}} .
$$

For $u(x, y)=1$, we then have $x=x^{2}+y^{2}$

$$
\begin{aligned}
& x^{2}-x+y^{2}=0 \\
& \left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4}
\end{aligned}
$$

Therefore, the preimage of of $u(x, y)=1$ is a circle in the $x-y$ plane with center at $\left(\frac{1}{2}, 0\right)$ and radius $=\frac{1}{2}$.
6. It is known that z and z^{2} are entire and

$$
f^{\prime}(z)= \begin{cases}2 z & \text { for }|z|<1 \\ 1 & \text { for }|z|>1\end{cases}
$$

Hence, f is not differentiable on the circle: $|z|=1$. Define $D=\{z:|z| \neq 1\}$, which is an open set since its complement $D^{\prime}=\{z:|z|=1\}$ is closed. Since every point inside D is an interior point and f is differentiable throughout D so f is analytic in D.
7. Consider

$$
\begin{aligned}
& (u v)_{x x}=u_{x x} v+2 u_{x} v_{x}+u v_{x x} \\
& \begin{aligned}
(u v)_{y y} & =u_{y y} v+2 u_{y} v_{y}+u v_{y y} \\
(u v)_{x x} & +(u v)_{y y}
\end{aligned}=\left(u_{x x}+u_{y y}\right) v+u\left(v_{x x}+v_{y y}\right)+2\left(u_{x} v_{x}+u_{y} v_{y}\right) \\
& \quad=2\left[u_{x}\left(-u_{y}\right)+u_{y} u_{x}\right]=0 .
\end{aligned}
$$

hence, $u v$ is harmonic.
8. (a) Let $t=y / x$ and let $T(x, y)$ denote the temperature field where

$$
T(x, y)=f(t)
$$

We have

$$
\begin{array}{rlrl}
T_{x} & =\frac{-y}{x^{2}} f^{\prime}, & T_{y}=\frac{f^{\prime}}{x} \\
T_{x x} & =\frac{2 y}{x^{3}} f^{\prime}+\frac{y^{2}}{x^{4}} f^{\prime \prime}, & & T_{y y}=\frac{f^{\prime \prime}}{x^{2}}
\end{array}
$$

Since T is harmonic

$$
0=T_{x x}+T_{y y}=\frac{1}{x^{2}}\left(\frac{2 y}{x} f^{\prime}+\frac{y^{2}}{x^{2}} f^{\prime \prime}+f^{\prime \prime}\right)
$$

so that

$$
\left(1+t^{2}\right) f^{\prime \prime}+2 t f^{\prime}=0
$$

To solve for f, consider

$$
\frac{f^{\prime \prime}}{f^{\prime}}=\left(\ln f^{\prime}\right)^{\prime}=-\frac{2 t}{1+t^{2}}
$$

so that

$$
\ln f^{\prime}=-\ln \left(1+t^{2}\right)+C^{\prime}
$$

giving

$$
f^{\prime}=\frac{A}{1+t^{2}}, \quad A>0
$$

Lastly, we obtain

$$
f=A \tan ^{-1} t+B=A \tan ^{-1} \frac{y}{x}+B
$$

(b) Let $F(x, y)$ be the flux function so that

$$
\begin{aligned}
F_{y} & =T_{x}=-\frac{A y}{x^{2}+y^{2}} \quad \text { so } \quad F=-\frac{A}{2} \ln \left(x^{2}+y^{2}\right)+g(x) \\
-F_{x} & =T_{y}=\frac{A x}{x^{2}+y^{2}} .
\end{aligned}
$$

To determine $g(x)$, we equate

$$
-F_{x}=\frac{A x}{x^{2}+y^{2}}=\frac{A x}{x^{2}+y^{2}}-g^{\prime}(x)
$$

giving $g(x)=C$. Set $F(x, y)=$ constant, the flux lines are family of circles: $x^{2}+y^{2}=\alpha, \alpha>0$.

