MATH304, Spring 2007

Test Two

Time allowed: 75 minutes
Course instructor: Prof. Y.K. Kwok

1. Consider the mapping associated with the complex function

$$
w=\cos z, \quad z=x+i y,
$$

find the image curve of $x=\alpha, \alpha$ is a constant, under the above mapping in the w-plane. In particular, examine the special cases where $\cos \alpha=0$ and $\sin \alpha=0$.

Hint: $\quad \cos z=\cosh y \cos x-i \sinh y \sin x$.
2. Show that, if a is a positive real constant, then

$$
\operatorname{coth}^{-1} \frac{z}{a}=\frac{1}{2} \log \frac{z+a}{z-a}=\frac{1}{2}\left[\ln \left|\frac{z+a}{z-a}\right|+i \arg \left(\frac{z+a}{z-a}\right)\right] .
$$

Hint: $\quad \sinh z=\frac{e^{z}-e^{-z}}{2}, \quad \cosh z=\frac{e^{z}+e^{-z}}{2}, \quad \operatorname{coth} z=\frac{\cosh z}{\sinh z}$.
3. Show that all the values of

$$
\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{\sqrt{2} i}
$$

lie on a straight line in the complex plane. Find the equation of this line.
4. Consider the multi-valued function: $f(z)=(z-1)^{1 / 3}$.
(a) Describe the Riemann surface of the function. [Specify the branch cut, branch points and the number of sheets.]
(b) Suppose we choose the branch such that $f(1+i)=e^{\frac{5 \pi}{6} i}$, compute $f(-1)$.
5. (a) Evaluate

$$
\int_{C_{1}} \cosh z d z
$$

where C_{1} is the line segment joining $\log 2$ and $i \pi / 2$ in the complex plane.
(b) Estimate an upper bound on

$$
\left|\int_{C_{2}} \frac{1}{\sinh z} d z\right|
$$

where C_{2} is the line segment joining $i \frac{\pi}{4}$ and $i \frac{\pi}{2}$ in the complex plane.
Hint: $\quad \sinh i y=i \sin y$.
6. (a) Evaluate

$$
\oint_{x^{2}+y^{2}=2 x} \frac{\sin \frac{\pi z}{4}}{z^{2}-1} d z
$$

using Cauchy's integral formula.
(b) Find the maximum value of $\left|\frac{1}{z+1}\right|$ on and inside the circle: $x^{2}+y^{2}=2 x$.

Hint: Use the Maximum Modulus Theorem or other judicious method.
7. Let f be entire and suppose $\operatorname{Re} f(z) \leq M$ for all z, where M is a fixed real constant. Prove that f must be a constant function.

Hint: Apply Liouville's Theorem to the function e^{f}. It is necessary to show that e^{f} is also entire.
8. Let f be an entire function such that

$$
|f(z)| \leq A|z| \quad \text { for all } z,
$$

where A is a fixed positive number.
(a) Let $f^{(n)}(z)$ denote the $n^{\text {th }}$ order derivative of $f(z)$. Recall Cauchy's inequality:

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}, \quad n=1,2, \cdots
$$

where M_{R} denotes an upper bound of $|f(z)|$ on $C_{R}:\left|z-z_{0}\right|=R$. Use it to show that

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!A\left(R+\left|z_{0}\right|\right)}{R^{n}}, \quad R>0 .
$$

(b) Hence, show that

$$
f(z)=a_{1} z, \quad \text { where } a_{1} \text { is a complex constant such that }\left|a_{1}\right| \leq A .
$$

Hint: Show that $f^{(n)}$ is zero everywhere in the plane, for $n \geq 2$, and $f(0)=0$.

