

MATH304, Spring 2007

Test Two

Time allowed: 75 minutes

Course instructor: Prof. Y.K. Kwok

[points]

[4]

[3]

[3]

1. Consider the mapping associated with the complex function

$$w = \cos z, \quad z = x + iy$$

find the image curve of $x = \alpha, \alpha$ is a constant, under the above mapping in the *w*-plane. In particular, examine the special cases where $\cos \alpha = 0$ and $\sin \alpha = 0$.

Hint: $\cos z = \cosh y \cos x - i \sinh y \sin x$.

2. Show that, if a is a positive real constant, then

$$\operatorname{coth}^{-1} \frac{z}{a} = \frac{1}{2} \log \frac{z+a}{z-a} = \frac{1}{2} \left[\ln \left| \frac{z+a}{z-a} \right| + i \operatorname{arg} \left(\frac{z+a}{z-a} \right) \right].$$
[2]

Hint: $\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}, \quad \coth z = \frac{\cosh z}{\sinh z}.$

3. Show that all the values of

$$\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{\sqrt{2}i}$$

lie on a straight line in the complex plane. Find the equation of this line.

- 4. Consider the multi-valued function: $f(z) = (z 1)^{1/3}$.
 - (a) Describe the Riemann surface of the function. [Specify the branch cut, branch points and the number of sheets.]
 - (b) Suppose we choose the branch such that $f(1+i) = e^{\frac{5\pi}{6}i}$, compute f(-1). [2]
- 5. (a) Evaluate

$$\int_{C_1} \cosh z \, dz$$

where C_1 is the line segment joining Log 2 and $i\pi/2$ in the complex plane. [2] (b) Estimate an upper bound on

(b) Estimate an upper bound on

$$\left| \int_{C_2} \frac{1}{\sinh z} \, dz \right|$$

where C_2 is the line segment joining $i\frac{\pi}{4}$ and $i\frac{\pi}{2}$ in the complex plane. *Hint:* sinh $iy = i \sin y$. 6. (a) Evaluate

$$\oint_{x^2+y^2=2x} \frac{\sin\frac{\pi z}{4}}{z^2-1} \, dz$$

using Cauchy's integral formula.

- (b) Find the maximum value of $\left|\frac{1}{z+1}\right|$ on and inside the circle: $x^2 + y^2 = 2x$. [3] *Hint*: Use the Maximum Modulus Theorem or other judicious method.
- 7. Let f be entire and suppose $\operatorname{Re} f(z) \leq M$ for all z, where M is a fixed real constant. Prove that f must be a constant function.
 - *Hint*: Apply Liouville's Theorem to the function e^f . It is necessary to show that e^f is also entire.
- 8. Let f be an entire function such that

$$|f(z)| \le A|z| \quad \text{for all } z,$$

where A is a fixed positive number.

(a) Let $f^{(n)}(z)$ denote the n^{th} order derivative of f(z). Recall Cauchy's inequality:

$$|f^{(n)}(z_0)| \le \frac{n!M_R}{R^n}, \quad n = 1, 2, \cdots,$$

where M_R denotes an upper bound of |f(z)| on $C_R : |z - z_0| = R$. Use it to show that

$$\left| f^{(n)}(z_0) \right| \le \frac{n! A(R+|z_0|)}{R^n}, \quad R > 0.$$
 [2]

(b) Hence, show that

 $f(z) = a_1 z$, where a_1 is a complex constant such that $|a_1| \le A$.

Hint: Show that $f^{(n)}$ is zero everywhere in the plane, for $n \ge 2$, and f(0) = 0.

- End -

[2]

[3]

[3]