
CHAPTER 5
American Options

The distinctive feature of an American option is its early exercise privilege,
that is, the holder can exercise the option prior to the date of expiration.
Since the additional right should not be worthless, we expect an American
option to be worth more than its European counterpart. The extra premium
is called the early exercise premium.

First, we would like to recall some of the pricing properties of American
options discussed in Sec. 1.2. The early exercise of either an American call or
American put leads to the loss of insurance value associated with holding of
the option. For an American call, the holder gains on the dividend yield from
the asset but loses on the time value of the strike price. There is no advantage
to exercise an American call prematurely when the asset received upon early
exercise does not pay dividends. In this case, the American call has the same
value as that of its European counterpart. By dominance argument, we have
shown that an American option must be worth at least its corresponding
intrinsic value, namely, max(S − X, 0) for a call and max(X − S, 0) for a
put, where S and X are the asset price and strike price, respectively. While
put-call parity relation exists for European options, we can only obtain lower
and upper bounds on the difference of American call and put option values.

When the underlying asset is dividend paying, it may become optimal for
the holder to exercise prematurely an American call option when the asset
price S rises to some critical asset value, called the optimal exercise price.
Since the loss of insurance value and time value of the strike price is time
dependent, the optimal exercise price depends on time to expiry. For a longer-
lived American call option, the optimal exercise price should assume a higher
value so that larger dividends are received to compensate for the greater loss
on time value of strike. When the underlying asset pays continuous dividend
yield, the collection of these optimal exercise prices for all times constitutes
a continuous curve, which is commonly called the optimal exercise boundary .
For an American put option, the early exercise leads to some gain on time
value of strike. Therefore, when the riskless interest rate is positive, there
always exists an optimal exercise price below which it becomes optimal to
exercise the American put prematurely.

The optimal exercise boundary of an American option is not known in
advance but has to be determined as part of the solution process of the pricing
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model. Since the boundary of the domain of an American option model is
a free boundary, the valuation problem constitutes a free boundary value
problem. In Sec. 5.1, we present the characterization of the optimal exercise
boundary at infinite time to expiry and at the moment immediately prior to
expiry. The optimality condition in the form of smooth pasting of the option
value curve with the intrinsic value line is derived. When the underlying
asset pays discrete dividends, the early exercise of the American call may
become optimal only at time right before a dividend date. Since the early
exercise policy becomes relatively simple, we manage to derive closed form
price formulas for American calls on an asset that pays discrete dividends.
We also discuss the optimal exercise policy of American put options on a
discrete dividend paying asset.

In Sec. 5.2, we present two pricing formulations of American options,
namely, the linear complementarity formulaton and the optimal stopping
formulation. We show how the early exercise premium can be expressed in
terms of the exercise boundary in the form of an integral and examine how
the determination of the optimal exercise boundary is resorted to the solution
of an integral equation. The early exercise premium can be interpreted as the
compensation paid to the holder when the early exercise right is forfeited.
The early exercise feature can be combined with other path dependent fea-
tures in an option contract. We examine the impact of the barrier feature on
the early exercise policies of American barrier options. Also, we obtain the
analytic price formula for the Russian option, which is essentially a perpetual
American lookback option.

In general, analytic price formulas are not available for American op-
tions, except for a few special types. In Sec. 5.3, we present several analytic
approximation methods for estimating the price of an American option. One
approximation approach is to limit the exercise right such that the Ameri-
can option is exercisable only at a finite number of time instants. The other
method is the solution of the integral equation of the exercise boundary by a
recursive integraton method. The third method, called the quadratic approx-
imation approach, is based on the reduction of the Black-Scholes equation to
an ordinary differential equation whose domain boundary is determined by
maximizing the value of the option.

The modeling of a financial derivative with voluntary right on resetting
certain terms in the contract, like resetting the strike price to the prevailing
asset price, also constitutes a free boundary value problem. In Sec. 5.4, we
construct the pricing model for the reset-strike put option and examine the
optimal reset strategy adopted by the option holder. Unlike the American
early exercise right, the right to reset may not be limited to only one time. We
also examine the pricing behaviors of multi-reset put options. Interestingly,
when the right to reset is allowed to be infinitely often, the multi-reset put
option becomes a European lookback option.
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5.1 Characterization of the optimal exercise boundaries

The characteristics of the optimal early exercise policies of American options
depend critically on whether the underlying asset is non-dividend paying
or dividend paying (discrete or continuous). Throughout our discussion, we
assume that the dividends are known in advance, both in amount and time
of payment. In this section, we would like to give some detailed quantitative
analysis of the properties of the early exercise boundary. We show that the
optimal exercise boundary of an American put, with continuous dividend
yield or zero dividend, is a continuous decreasing function of time of expiry
τ . However, the optimal exercise boundary for an American put on an asset
which pays discrete dividends may or may not have jumps of discontinuity,
depending on the size of the discrete dividend payments. For an American call
on an asset which pays a continuous dividend yield, we explain why it becomes
optimal to exercise the call at sufficiently high value of S. The corresponding
optimal exercise boundary is a continuous increasing function of τ . When the
underlying asset of an American call pays discrete dividends, optimal early
exercise of the American call may occur only at those times immediately
before the asset goes ex-dividend. Additional conditions required for optimal
early exercise include (i) the discrete dividend is sufficiently large relative to
the strike price, (ii) the ex-dividend date is fairly close to expiry and (iii)
the asset price level prior to the dividend date is higher than some threshold
value. Since exercise possibilities are limited to a few discrete dividend dates,
the price formula for an American call on an asset paying known discrete
dividends can be obtained by relating the American call option to a European
compound option.

Besides the value matching condition of the American option value across
the optimal exercise boundary, the delta of the option value are also contin-
uous across the boundary. This smooth pasting condition is a result derived
from maximizing the American option value among all possible early exercise
policies (see Sec. 5.1.2).

5.1.1 American options on an asset paying dividend yield

First, we consider the effects of continuous dividend yield (at the constant
yield q > 0) on the early exercise policy of an American call. When the
asset value S is exceedingly high, it is almost certain that the European call
option on a continuous dividend paying asset will be in-the-money at expiry.
Its value then behaves almost like the asset but without its dividend income
minus the present value of the strike price X. When the call is sufficiently
deep in-the-money, by observing that

N (d̂1) ∼ 1 and N (d̂2) ∼ 1

in the European call price formula (3.4.7a), we obtain
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c(S, τ ) ∼ e−qτS − e−rτX when S � X. (5.1.1)

The price of this European call may be below the intrinsic value S − X
at a sufficiently high asset value, due to the presence of the factor e−qτ in
front of S. While it is possible that the value of a European option stays
below its intrinsic value, the holder of an American option with embedded
early exercise right would not allow the value of his option to become lower
than the intrinsic value. Hence, at a sufficiently high asset value, it becomes
optimal for the American option on a continuous dividend paying asset to be
exercised prior to expiry, avoiding its value to drop below the intrinsic value
if unexercised.

Fig. 5.1 The solid curve shows the price function C(S, τ )
of an American call on an asset paying continuous divi-
dend yield. The price curve touches the dotted intrinsic
value line tangentially at the point (S∗(τ ), S∗(τ ) − X),
where S∗(τ ) is the optimal exercise price. When S ≥
S∗(τ ), the American call value becomes S −X.

In Fig. 5.1, the American call option price curve C(S, τ ) touches tan-
gentially the dotted line representing the intrinsic value of the call at some
optimal exericse price S∗(τ ). Note that the optimal exericse price has de-
pendence on τ , the time to expiry. The tangency behavior of the Ameri-
can price curve at S∗(τ ) (continuity of delta value) will be explained in the
next subsection. When S ≥ S∗(τ ), the American call value is equal to its
intrinsic value S − X. The collection of all these points (S∗(τ ), τ ), for all
τ ∈ (0, T ], in the (S, τ )-plane constitutes the optimal exercise boundary.
The American call option remains alive only within the continuation region
{(S, τ ) : 0 ≤ S < S∗(τ ), 0 < τ ≤ T}. The complement is called the stopping
region, inside which the American call should be optimally exercised (see Fig.
5.2).
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Fig. 5.2 An American call on an asset paying continu-
ous dividend yield remains alive inside the continuation
region {(S, τ ) : S ∈ [0, S∗(τ )), τ ∈ (0, T ]}. The optimal
exercise boundary S∗(τ ) is a continuous increasing func-
tion of τ .

Under the assumption of continuity of the asset price path and dividend
yield, we expect that the optimal exercise boundary should also be a con-
tinuous function of τ , for τ > 0. While a rigorous proof of the continuity of
S∗(τ ) is rather technical, a heuristic argument is provided below. Assume the
contrary, suppose S∗(τ ) has a downward jump as τ decreases across the time
instant τ̂ . Assume that the asset price S at τ̂ satisfies S∗(τ̂−) < S < S∗(τ̂+),
the American call option value is strictly above the intrinsic value S − X
at τ̂+ since S < S∗(τ̂+) and becomes equal to the intrinsic value S − X at
τ̂− since S > S∗(τ̂−). The discrete downward jump in option value across τ̂
would lead to an arbitrage opportunity.

5.1.2 Smooth pasting condition

We would like to examine the smooth pasting condition (tangency condition)
along the optimal exercise boundary for an American call on a continuous
dividend paying asset. At S = S∗(τ ), the value of the exercised American
call is S∗(τ ) −X. This is termed value matching condition:

C(S∗(τ ), τ ) = S∗(τ ) −X. (5.1.2)

Suppose S∗(τ ) were a known continuous function, the pricing model be-
comes a boundary value problem with a time dependent boundary. However,
in the American call option model, S∗(τ ) is not known in advance. Rather, it
must be determined as part of the solution. An additional auxiliary condition
has to be prescribed along S∗(τ ) so as to reflect the nature of optimality of
the exercise right embedded in the American option.
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We follow Merton’s (1973; Chap. 1) argument to show the continuity of
the delta of option value of an American call at the optimal exercise price
S∗(τ ). Let f(S, τ ; b(τ )) denote the solution to the Black-Scholes equation
in the domain {(S, τ ) : S ∈ (0, b(τ )), τ ∈ (0, T ]}, where b(τ ) is a known
boundary. The holder of the American call chooses an early exercise policy
which maximizes the value of the call. Using such argument, the American
call value is given by

C(S, τ ) = max
{b(τ )} f(S, τ ; b(τ )) (5.1.3)

for all possible continuous functions b(τ ). For fixed τ , for convenience, we
write f(S, τ ; b(τ )) as F (S, b), where 0 ≤ S ≤ b. It is observed that F (S, b) is
a differentiable function, concave in its second argument. Further, we write
h(b) = F (b, b) which is assumed to be a differentiable function of b. For usual
American call option, h(b) = b − X. The total derivative of F with respect
to b along the boundary S = b is given by

dF

db
=
dh

db
=
∂F

∂S
(S, b)

∣∣∣∣
S=b

+
∂F

∂b
(S, b)

∣∣∣∣
S=b

, (5.1.4)

where the property
∂S

∂b
= 1 along S = b has been incorporated. Let b∗ be the

critical value of b which maximizes F . When b = b∗, we have
∂F

∂b
(S, b∗) = 0

as the first derivative condition at a maximum point. On the other hand,
from the exercise payoff function of the American call option, we have

dh

db

∣∣∣∣
b=b∗

=
d

db
(b−X)

∣∣∣∣
b=b∗

= 1. (5.1.5)

Putting the results together, we obtain

∂F

∂S
(S, b∗)

∣∣∣∣
S=b∗

= 1. (5.1.6)

Note that the optimal choice b∗(τ ) is just the optimal exercise price S∗(τ ).
The above condition can be expressed in an alternative form as

∂C

∂S
(S∗(τ ), τ ) = 1. (5.1.7)

Condition (5.1.7) is commonly called the smooth pasting or tangency condi-
tion. The two conditions (5.1.2) and (5.1.7), respectively, reveal that C(S, τ )

and
∂C

∂S
(S, τ ) are continuous across the optimal exercise boundary (see Fig.

5.1).
The smooth pasting condition is applicable to all types of American put

options. For an American put option, the slope of the intrinsic value line is
−1. The continuity of the delta of the American put value at S = S∗(τ ) gives
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∂P

∂S
(S∗(τ ), τ ) = −1. (5.1.8)

An alternative proof of the above smooth pasting condition is outlined in
Problem 5.5.

5.1.3 Optimal exercise boundary for an American call

Consider an American call on a continuous dividend paying asset, the opti-
mal exercise boundary S∗(τ ) is a continuous increasing function of τ . The
increasing property stems from the fact that the loss of time value of strike
is more significant for a longer-lived American call so that the call must
be deeper-in-the-money in order to induce early exercise decision. In addi-
tion, the compensation from the dividend received from the asset is higher
whereas the loss of insurance value associated with holding of the call option
becomes lower (chance of expiring out-of-the-money becomes lower). Hence,
the American call should be exercised at a higher optimal exericse price S∗(τ )
compared to its shorter-lived counterpart.

The increasing property of S∗(τ ) can also be explained by relating to
the increasing property of the price curve C(S, τ ) as a function of τ [see
Eq. (1.2.5a)]. The option price curve of a longer-lived American call plotted
against S always stays above that of its shorter-lived counterpart. The upper
price curve corresponding to the longer-lived option cuts the intrinsic value
line tangentially at a higher critical asset value S∗(τ ).

Moreover, it is obvious from Fig. 5.1 that the price curve of an American
call always cuts the intrinsic value line at a critical asset value greater than
X. Hence, we have S∗(τ ) ≥ X for τ ≥ 0. Alternatively, assume the contrary,
suppose S∗(τ ) < X, then the early exercise proceed S∗(τ ) − X becomes
negative. Since the early exercise privilege cannot be a liability, the possibility
S∗(τ ) < X is ruled out and so S∗(τ ) ≥ X.

Next, we present the analysis of the asymptotic behaviors of S∗(τ ) at
τ → 0+ and τ → ∞.

Asymptotic behavior of S∗(τ ) close to expiry
When τ → 0+ and S > X, by the continuity of the call price function, the
call value tends to the terminal payoff value so that C(S, 0+) = S−X. If the
American call is alive, then the call value satisfies the Black-Scholes equation.
By substituting the above call value into the Black-Scholes equation, given
that (S, τ ) lies in the continuation region, we have

∂C

∂τ

∣∣∣∣
τ=0+

=
σ2

2
S2 ∂

2C

∂S2

∣∣∣∣
τ=0+

+ (r − q)S
∂C

∂S

∣∣∣∣
τ=0+

− rC

∣∣∣∣
τ=0+

= (r − q)S − r(S −X) = rX − qS. (5.1.9)

Suppose
∂C

∂τ
(S, 0+) < 0, C(S, τ ) becomes less than C(S, 0) = S−X (intrinsic

value of the American call) immediately prior to expiry. This leads to a
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contradiction since the American call value is always above the intrinsic value.

Therefore, we must have
∂C

∂τ
(S, 0+) ≥ 0 in order that the American call is

kept alive until the time close to expiry. The value of S at which
∂C

∂τ
(S, 0+)

changes sign is S =
r

q
X. Also,

r

q
X lies in the interval S > X only when

q < r. We consider the two separate cases, q < r and q ≥ r.

1. q < r
At time immediately prior to expiry, we argue that the American call will
be kept alive when S <

r

q
X. This is because within a short time interval

δt prior to expiry, the dividend qSδt earned from holding the asset is less
than the interest rXδt earned from depositing the amount X in a bank
at the riskless interest rate r. The above observation is consistent with
positivity of

∂C

∂τ
(S, 0+) when S <

r

q
X. When S >

r

q
X, the American

call should be exercised since the negativity of
∂C

∂τ
(S, 0+) would lead to

the violation of the condition that the American call value must be above
the intrinsic value S − X. Hence, for q < r, the optimal exercise price

S∗(0+) is given by the asset value at which
∂C

∂τ
(S, 0+) changes sign. We

then obtain
S∗(0+) =

r

q
X. (5.1.10a)

In particular, when q = 0, S∗(0+) becomes infinite. Furthermore, since
S∗(τ ) is known to be a monotonically increasing function of τ , we then
deduce that S∗(τ ) → ∞ for all values of τ . This result is consistent with
the well known fact that it is always non-optimal to exercise an American
call on a non-dividend paying asset prior to expiry.

2. q ≥ r

When q ≥ r,
r

q
X becomes less than X and so the above argument has

to be modified. First, we show that S∗(0+) cannot be greater than X.
Assume the contrary, suppose S∗(0+) > X so that the American call
is still alive when X < S < S∗(0+) at time close to expiry. Given the
combined conditions: q ≥ r and S > X, it is observed that the loss in
dividend amount qSδt not earned is more than the interest amount rXδt
earned if the American call is not exercised within a short time interval δt
prior to expiry. This represents a non-optimal early exercise policy. Hence,
we must have S∗(0+) ≤ X. Together with the properties that S∗(τ ) ≥ X
for τ > 0 and S∗(τ ) is a continuous increasing function of τ , we deduce
that for q ≥ r,

S∗(0+) = X. (5.1.10b)
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In summary, the optimal exercise price S∗(τ ) of an American call on a
continuous dividend paying asset at time close to expiry is given by

lim
τ→0+

S∗(τ ) =
{

r
qX q < r
X q ≥ r

= X max
(

1,
r

q

)
. (5.1.11)

At expiry τ = 0, the American call option will be exercised whenever
S ≥ X and so S∗(0) = X. Hence, for q < r, there is a jump of discontinuity
of S∗(τ ) at τ = 0.

Asymptotic behavior of S∗(τ ) at infinite time to expiry
Since S∗(τ ) is a monotonic increasing function of τ , the lower bound for the
optimal exercise boundary S∗(τ ) for τ > 0 is given by lim

τ→0+
S∗(τ ). It would

be interesting to explore whether lim
τ→∞

S∗(τ ) has a finite bound or otherwise.
An option with infinite time to expiration is called a perpetual option. The
determination of lim

τ→∞
S∗(τ ) is related to the analysis of the price function of

corresponding perpetual American option.
Let C∞(S;X, q) denote the price of an American perpetual call option

with strike price X and on an asset which pays a continuous dividend yield
q. The value of a perpetual option is seen to be insensitive to temporal rate of
change so that the Black-Scholes equation is reduced to the following ordinary
differential equation

σ2

2
S2 d

2C∞

dS2
+ (r − q)S

dC∞

dS
− rC∞ = 0, 0 < S < S∗

∞, (5.1.12a)

where S∗
∞ is the optimal exercise price at which the perpetual American call

option should be exercised. Note that S∗
∞ is independent of τ and it is simply

the asymptotic value lim
τ→∞

S∗(τ ). The boundary conditions for the pricing
model of the perpetual American call are

C∞(0) = 0 and C∞(S∗
∞) = S∗

∞ −X. (5.1.12b)

We let f(S;S∗
∞) denote the solution to Eqs. (5.1.12a,b) for a given value

of S∗
∞. Since Eq. (5.1.12a) is a linear equi-dimensional ordinary differential

equation, its general solution is of the form

f(S;S∗
∞) = c1S

µ+ + c2S
µ− , (5.1.13)

where c1 and c2 are arbitrary constants, µ+ and µ− are the respective positive
and negative roots of the auxiliary equation:

σ2

2
µ2 + (r − q − σ2

2
)µ− r = 0. (5.1.14)

Since f(0;S∗
∞) = 0, we must have c2 = 0. Applying the boundary condition

at S∗
∞, we have

f(S∗
∞;S∗

∞) = c1S
∗µ+
∞ = S∗

∞ −X, (5.1.15)
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thus giving

c1 =
S∗
∞ −X

S
∗µ+
∞

. (5.1.16)

The solution f(S;S∗
∞ ) is now reduced to the form

f(S;S∗
∞) = (S∗

∞ −X)
(
S

S∗
∞

)µ+

, (5.1.17a)

where

µ+ =
−(r − q − σ2

2 ) +
√

(r − q − σ2

2 )2 + 2σ2r

σ2
> 0. (5.1.17b)

To complete the solution, S∗
∞ has yet to be determined. We find S∗

∞ by max-
imizing the value of the perpetual American call option among all possible
optimal exercise prices, that is,

C∞(S;X, q) = max
{S∗

∞}

{
(S∗

∞ −X)
(
S

S∗
∞

)µ+}
. (5.1.18)

The use of calculus shows that f(S;S∗
∞) is maximized when

S∗
∞ =

µ+

µ+ − 1
X. (5.1.19)

Suppose we write S∗
∞,C =

µ+

µ+ − 1
X, then the value of the perpetual Ameri-

can call takes the form

C∞(S;X, q) =
(
S∗
∞,C

µ+

) (
S

S∗
∞,C

)µ+

. (5.1.20)

It can be easily verified that the above solution also satisfies the smooth
pasting condition:

dC∞

dS

∣∣∣∣
S=S∗

∞,C

= 1. (5.1.21)

One may solve for S∗
∞,C by applying the smooth pasting condition directly

without going through the above maximization procedure. Indeed, the appli-
cation of the smooth pasting condition implicity incorporates the procedure
of taking the maximum of the option values among all possible choices of
S∗
∞,C .
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5.1.4 Put-call symmetry relations

The behaviors of the optimal exercise boundary for an American put option
on a continuous dividend paying asset can be inferred from those of the
call counterpart once the put-call symmetry relations between their price
functions and optimal exercise prices are established. The plot of the price
function P (S, τ ) of an American put against S is shown in Fig. 5.3.

Fig. 5.3 The solid curve shows the price function of an
American put at a given time to expiry τ . The price curve
touches the dotted intrinsic value line tangentially at the
point (S∗(τ ), X − S∗(τ )), where S∗(τ ) is the optimal ex-
ercise price. When S ≤ S∗(τ ), the American put value
becomes X − S.

We may consider an American call option as providing the right to ex-
change X dollars of cash for one unit of stock which is worth S dollars at any
time during the option’s life. If we take asset one to be the stock, asset two to
be the cash, then asset one and asset two have dividend yield q and r, respec-
tively. The above call option can be considered as an exchange option which
exchanges asset two for asset one. Similarly, we may consider an American
put option as providing the right to exchange one unit of stock which is worth
S dollars for X dollars of cash at any time. What would happen if we inter-
change the role of stock and cash in the American put option? Now, this new
American put can be considered to be equivalent to the usual American call
since both options confer the same right of exchanging cash for stock to their
holders. If we use P (S, τ ;X, r, q) to denote the price function of the usual
American put, then the price function of the modified American put (after
interchanging the role of stock and cash) is given by P (X, τ ;S, q, r), where S
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and X are interchanged and so do r and q. Since the modified American put
is equivalent to the usual American call, we then have

C(S, τ ;X, r, q) = P (X, τ ;S, q, r). (5.1.22)

This symmetry between the price functions of American call and put is called
the put-call symmetry relation.

Next, we would like to establish the put-call symmetry relation for the
optimal exercise prices for American put and call options. Let S∗

P (τ ; r, q)
and S∗

C(τ ; r, q) denote the optimal exercise boundary for the American put
and call options on a continuous dividend paying stock, respectively. When
S = S∗

C (τ ; r, q), the call owner is willing to exchange X dollars of cash for
one unit of stock which is worth S∗

C dollars or one dollar of cash for 1
X

units of stock which is worth
S∗

C

X
dollars. Similarly, when S = S∗

P (τ ; r, q),

the put owner is willing to exchange
1
S∗

P

units of stock which is worth one

dollar for
X

S∗
P

dollars of cash. If both of these American call and put options

can be considered as exchange options and the roles of cash and stock are
interchangeable, then the corresponding put-call symmetry relation for the
optimal exercise prices is deduced to be

S∗
C (τ ; r, q) =

X2

S∗
P (τ ; q, r)

. (5.1.23)

A mathematical proof of symmetry relation (5.1.22) can be established
quite easily (see Problem 5.7). Indeed, more complicated symmetry relations
between the price functions of American call and put options can be derived
(see Problems 5.8–5.9).

Behavior of S∗
P (τ ) near expiry

From Eq. (5.1.23) and the monotonically increasing property of S∗
C(τ ), we

can deduce that S∗
P (τ ) is a monotonically decreasing function of τ . Since Eq.

(5.1.23) remains valid as τ → 0+, the lower bound for S∗
P (τ ) is given by

lim
τ→0+

S∗
P (τ ; r, q) =

X2

lim
τ→0+

S∗
C(τ ; q, r)

=
X2

X max
(
1, q

r

) = X min
(

1,
r

q

)
.

(5.1.30)

From Eq. (5.1.30), we observe that when q ≤ r, we have lim
τ→0+

S∗
P (τ ) = X.

Now, even when q = 0, S∗
P (τ ) is non-zero since S∗

P (τ ) is a continuous decreas-
ing function of τ for τ > 0 and its lower bound equals X. Hence, it is always
optimal to exercise an American put even when the underlying asset pays no
dividend. On the other hand, at zero interest rate, lim

τ→0+
S∗

P (τ ) becomes zero.

It then follows that S∗
P (τ ) = 0 for τ > 0 since S∗

P (τ ) is a decreasing function
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of τ . Therefore, it is never optimal to exercise an American put prematurely
when the interest rate is zero. From financial intuition, such a conclusion is
obvious since there is no time value gained on X from the early exercise of
the American put when there is null interest.

The quest for more refined asymptotic behaviors of S∗
P (τ ) when τ → 0+

poses great mathematical challenges. Evans et al . (2002) show that at time
close to expiry the optimal exercise boundary is parabolic when q > r but
it becomes parabolic-logarithmic when q ≤ r. The asymptotic expansion of
S∗

P (τ ) as τ → 0+ takes the following forms
(i) 0 ≤ q < r

S∗
P (τ ) ∼ X −Xσ

√
τ ln

(
σ2

8πτ (r − q)2

)
(5.1.31a)

(ii) q = r

S∗
P (τ ) ∼ X −Xσ

√
2τ ln

(
1

4
√
πqτ

)
(5.1.31b)

(iii) q > r

S∗
P (τ ) ∼ r

q
X(1 − σα

√
2τ ). (5.1.31c)

Here, α is a numerical constant which satisfies the following transcen-
dental equation

− α3eα2
∫ ∞

α

e−u2
du =

1 − 2α2

4
. (5.1.31d)

Behavior of S∗
P (τ ) at infinite time to expiry

Following a similar derivation procedure as that for the perpetual American
call option, the price of the perpetual American put option can be deduced
to be

P∞(S;X, q) = −
S∗
∞,P

µ−

(
S

S∗
∞,P

)µ−

. (5.1.32)

Here, S∗
∞,P denotes the optimal exercise price at infinite time to expiry and

its value is equal to
S∗
∞,P =

µ−

µ− − 1
X, (5.1.33a)

where

µ− =
−(r − q − σ2

2 ) −
√

(r − q − σ2

2 )2 + 2σ2r

σ2
< 0. (5.1.33b)
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One can verify easily that

S∗
∞,P (r, q) =

X2

S∗
∞,C(q, r)

, (5.1.34)

a result that is consistent with the relation given in Eq. (5.1.23).

5.1.5 American call options on an asset paying single dividend

It has been explained in Sec. 1.2 that when an asset pays discrete dividend
payments, the asset price declines by the same amount as the dividend right
after the dividend date if there are no other factors affecting the income pro-
ceeds. Empirical studies show that the relative decline of the stock price as
a proportion of the amount of the dividend is shown to be not meaningfully
different from one. For simplicity, we assume that the asset price falls by
the same amount as the discrete dividend. An option is said to be dividend
protected if the value of the option is invariant of the choice of the dividend
policy. This is done by adjusting the strike price in relation to the dividend
amount. Here, we consider the effects of discrete dividends on the early exer-
cise policy of American options which are not protected against the dividend,
that is, the strike price is not marked down (for calls) or marked up (for puts)
by the same amount as the dividend.

Early exercise policies
Since the holder of an American call on an asset paying discrete dividends
will not receive any dividends between successive dividend dates, it is never
optimal to exercise the American call on any non-dividend paying date. For
those times between dividend dates, the early exercise right is non-effective.
If the American call were exercised at all, the possible choices of exercise
times are those instants immediately before the asset goes ex-dividend. As a
result, he owns the asset right before the asset goes ex-dividend and receives
the dividend in the next instant. We explore the conditions under which the
holder of such American call would optimally choose to exercise his option.

In the following discussion, it is more convenient to characterize the time
dependence of the optimal exercise boundary using the calendar time t. We
consider an American call on an asset which pays only one discrete dividend of
deterministic amount D at the known dividend date td. The generalization
to multi-dividend models can be found in Problems 5.15-17. Let S−

d (S+
d )

denote the asset price at time t−d (t+d ) which is immediately before (after) the
discrete dividend date td. If the American call is exercised at t−d , the call value
becomes S−

d − X. Otherwise, the asset price drops to S+
d = S−

d − D right
after the asset goes ex-dividend. Since there is no further discrete dividend
after time td, the American price function behaves like that of its European
counterpart for t > t+d . To preclude arbitrage opportunities, the call price
function must be continuous across the ex-dividend instant since the holder
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of the call option does not receive any dividend payment on the dividend
date (unlike holding the asset).

From Eq. (1.2.11), the lower bound of the American call value at t+d is
S+

d −Xe−r(T−t+
d

), where T − t+d is the time to expiry. As far as time to expiry
is concerned, the quantities T−td, T−t+d and T −t−d are considered equal. By
virtue of the continuity of the call value across the dividend date, the lower
bound for the call value at time t−d should also be equal to S+

d −Xe−r(T−td) =
(S−

d −D) −Xe−r(T−td). Note that the lower bound for the call value at t−d
is driven down by D in anticipation of the known discrete dividend amount
D in the next instant. Now, it may occur that the lower bound value at t−d
becomes less than the exercise payoff of S−

d −X when D is sufficiently large.
We compare the following two quantities: exercise payoff E = S−

d − X and
lower bound of the call value B = (S−

d −D) −Xe−r(T−td). Suppose E ≤ B,
that is

S−
d −X ≤ (S−

d −D) −Xe−r(T−td) or D ≤ X [1− e−r(T−td)], (5.1.35)

then it is never optimal to exercise the American call. This is because at any
value of asset price S−

d the call is worth more when it is held than exercised.
However, when the discrete dividend D is deep enough, in particular D >
X[1 − e−r(T−td)], then it may become optimal to exercise at t−d when the
asset price S−

d is above some threshold value. This requirement on D gives
one of the necessary conditions for the commencement of early exercise. The
dividend amount D must be sufficiently deep to offset the loss in the time
value of the strike price, where the loss is given by X[1 − e−r(T−td)].

Let Cd(S, t) denote the price function of the one-dividend American call
option with the calendar time t as the time variable. By virtue of the conti-
nuity property of the call value across the dividend date, we have

Cd(S−
d , t

−
d ) = c(S−

d −D, t+d ), (5.1.36)

where c(S−
d − D, t+d ) is the European call price given by the Black-Scholes

formula with asset price S−
d −D and calendar time t+d . To better understand

the decision of early exercise at t−d , we plot the call price function, the exercise
payoff E (corresponds to line `1: E = S−

d −X) and the lower bound value B
(corresponds to line `2: B = S−

d −D−Xe−r(T−td)) versus the asset price S−
d

(see Fig. 5.4). The exercise payoff line l1 lies to the left of the lower bound
value line l2 when D > X[1 − e−r(T−td)]. Now, the call price curve may
intersect (not tangentially) the exercise payoff line l1 at some critical asset
price S∗

d , which is given by the solution to the following algebraic equation

c(S−
d −D, td) = S−

d −X. (5.1.37)

It can be shown mathematically that when D ≤ X[1 − e−r(T−td)], there is
no solution to Eq. (5.1.37), a result that is consistent with the necessary
condition on D discussed earlier (see also Problem 5.13). When the discrete
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dividend is sufficiently deep such that D > X[1 − e−r(T−td)], the American
call remains alive beyond the dividend date only if S−

d < S∗
d . When S−

d is at or
above S∗

d , the call should be optimally exercised at t−d . Hence, the American
call price at time t−d is given by

Cd(S−
d , t

−
d ) =

{
c(S−

d −D, t+d ) when S−
d < S∗

d

S−
d −X when S−

d ≥ S∗
d .

(5.1.38)

If the American call is not optimally exercised at t−d , then its value remains
unchanged as time lapses across the dividend date. Note that S∗

d depends
on D, which decreases in value when D increases (see Problem 5.13). This
agrees with the financial intuition that the propensity of optimal early ex-
ercise becomes higher (corresponding to a lower value of S∗

d) with deeper
discrete dividend payment.

− D,(
−
d )+

dtSc

X

1l 2l

dS −

dS ∗ Xe + D−r(T−t )d

Fig. 5.4 The curve representing the European call price
function V = c(S–

d −D, t
+
d ) falls below the exercise payoff

line `1 : E = S–
d −X when `1 lies to the left of the lower

bound value line `2 : B = S–
d −D−Xe−r(T−td ). Here, S∗

d

is the value of S−
d at which the European call price curve

cuts the exercise payoff line `1.

In summary, the holder of an American call option on an asset paying
single discrete dividend will exercise the call optimally only at the instant
immediately prior to the dividend date, provided that S−

d ≥ S∗
d , where S∗

d

satisfies Eq. (5.1.37). Also, S∗
d exists only when D > X[1 − e−r(T−td)], im-

plying that the dividend is sufficiently deep to offset the loss on time value
of strike.

Analytic price formula for an one-dividend American call
Since the American call on an asset paying known discrete dividends will
be exercised only at instants immediately prior to ex-dividend dates, the
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American call can be replicated by a European compound option with the
expiration dates of the compound options coinciding with the ex-dividend
dates. Such a replication strategy makes possible the derivation of an analytic
price formula for an American call on an asset paying discrete dividends.

If the whole asset price S follows the lognormal process, this would imply
there exists some non-zero probability that the dividends cannot be paid since
the asset price may fall below the dividend payment on a dividend date. The
difficulty can be resolved if we modify the assumption on the diffusion process
where the asset price net of the present value of the escrowed dividends,
denoted by S̃, follows the lognormal diffusion process. We call S̃ to be the
risky component of the asset price.

Suppose the asset pays single discrete dividend of amount D at time td,
then the risky component of S is defined by

S̃ =
{
S for t+d ≤ t ≤ T
S −De−r(td−t) for t ≤ t−d .

(5.1.39)

Note that S̃ is continuous across the dividend date. The Black-Scholes as-
sumption on the asset price movement is modified such that under the risk
neutral measure the risky component S̃ follows the lognormal diffusion pro-
cess

dS̃

S̃
= r dt+ σ dZ, (5.1.40)

where σ is the volatility of the risky component of the asset price.
Now, we would like to derive the price formula for an American call option

on an asset paying single discrete dividend D at time td, where D > X[1 −
e−r(T−td)]. Let Cd(S̃, t) denote the price of this one-dividend American call
and c(S̃, t) denote the European call price given by the Black-Scholes formula,
where t is the calendar time. Let S̃d denote the risky component of the asset
value on the ex-dividend date td. Let S̃∗

d denote the critical value of the risky
component at t = td, above which it is optimal to exericse. This critical value
S̃∗

d is the solution to the following equation [see Eq. (5.1.37)]

S̃d +D −X = c(S̃d, td). (5.1.41)

The one-dividend American call option can be replicated by a European
compound option with a zero strike price whose first expiration date coincides
with the ex-dividend date td. The compound option pays at td either S̃d +
D − X if S̃d ≥ S̃∗

d or a European call option with strike price X and time
to expiry T − td if S̃d < S̃∗

d . Let ψ(S̃d, S̃; td, t) denote the transition density
function under the risk neutral measure of S̃d at time td, given the asset price
S̃ at an earlier time t < td. The one-dividend American call price at time t
earlier than td is given by (Whaley, 1981)
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Cd(S̃, t) = e−r(td−t)

[∫ ∞

S̃∗
d

[S̃d − (X −D)] ψ(S̃d , S̃; td, t) dS̃d

+
∫ S̃∗

d

0

c(S̃d, td) ψ(S̃d, S̃; td, t) dS̃d

]
, t < td.

(5.1.42)

The first term may be interpreted as the price of a European call with two
different strike prices. The strike price S̃∗

d determines the moneyness of the
call option at expiry and the other strike price X − D is the amount paid
in exchange of the asset at expiry. The second term represents the price of
a European put-on-call with strike price S̃∗

d at td and strike price X at T .
The price formula for the one-dividend American call option is obtained as
follows:

Cd(S̃, t)

= S̃N (a1) − (X −D)e−r(td−t)N (a2) −Xe−r(T−t)N2

(
−a2, b2;−

√
td − t

T − t

)

+ S̃N2

(
−a1, b1;−

√
td − t

T − t

)

= S̃

[
1 − N2

(
−a1,−b1;

√
td − t

T − t

)]
+De−r(td−t)N (a2)

−X

[
e−r(td−t)N (a2) + e−r(T−t)N2

(
−a2, b2;−

√
td − t

T − t

)]
,

(5.1.43a)
where

a1 =
ln S̃

S̃∗
d

+ (r + σ2

2 )(td − t)

σ
√
td − t

, a2 = a1 − σ
√
td − t,

b1 =
ln S̃

X
+ (r + σ2

2
)(T − t)

σ
√
T − t

, b2 = b1 − σ
√
T − t. (5.1.43b)

The generalization of the pricing procedure to the two-dividend American
call option model is considered in Problem 5.17.

Black’s approximation formula
Black (1975) proposes an approximate pricing formula for the one-dividend
American call option model. Let c(S, τ ) denote the price function of a Eu-
ropean call, where the temporal variable τ is the time to expiry. The ap-
proximate value of the one-dividend American call is given by max{c(S̃, T −
t;X), c(S, td − t;X)}. The first term gives the one-dividend American call
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value when the probability of early exercise is zero while the second term as-
sumes the probability of early exercise to be one. Since both cases represent
sub-optimal early exercise policies, it is obvious that

Cd(S̃, T − t;X) ≥ max {c(S̃, T − t;X), c(S, td − t;X)}, t < td. (5.1.44)

5.1.6 One-dividend and multi-dividend American put options

Consider an American put on an asset which pays out discrete dividends with
certainty during the life of the option, the corresponding optimal exercise
policy exhibits more complicated behaviors compared to its call counterpart.
Within some short time period prior to a dividend payment date, the put
holder may choose not to exercise at any asset price level due to the antic-
ipation of the dividend payment. That is, the holder prefers to defer early
exercise until immediately after an ex-dividend date in order to benefit from
the receipt of the dividend by holding the asset through the dividend date.
From the last dividend date to expiration, the optimal exercise boundary be-
haves like that of an American put on a non-dividend payment asset, so the
optimal exercise price S∗(t) increases monotonically with increasing calendar
time t. For times in between the dividend dates and before the first dividend
date, S∗(t) may rise or fall with increasing t or even becomes zero (see Figs.
5.5 and 5.6). Due to the complicated nature of the optimal exercise policy, no
analytic price formula exists for an American put on an asset paying discrete
dividends.

One-dividend American put
First, we would like to consider the early exercise policy for the one-dividend
American put model. Let the ex-dividend date be td, the expiration date be T
and the dividend amount be D. Since the exercise policy at t > td is identical
to that of American put on the same asset with zero dividend, it suffices to
consider the exercise policy at time t before the ex-dividend date. Suppose
the American put is exercised at time t, then the interest received from t to
td arising from time value of the strike price X is X[er(td−t) − 1], where r is
the riskless interest rate. When the interest is less than the discrete dividend,
that is, X[er(td−t) − 1] < D, the early exercise of the American put is never
optimal. This is because the benefit from the receipt of the dividend amount
D by holding the asset through the dividend date td is more attractive than
the interest income gained. Therefore, there exists a period prior to td such
that it is never optimal for the holder to exercise the one-dividend American
put.

One observes that the interest income X[er(td−t) − 1] depends on td − t,
and its value increases when td − t increases. There exists a critical value ts
such that

X[er(td−ts) − 1] = D. (5.1.45a)
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Solving for ts, we obtain

ts = td −
1
r

ln
(

1 +
D

X

)
. (5.1.45b)

Over the interval [ts, td], it is never optimal to exercise the American put.
When t < ts, we have X[er(td−t) − 1] > D. Under such condition, early

exercise may become optimal when the asset price is below certain critical
value. The optimal exercise price S∗(t) is governed by two offsetting effects,
the time value of the strike and the discrete dividend. When t is approaching
ts, the dividend effect is more dominant so that the American put would
be exercised only when it is deeper-in-the-money, that is, at a lower opti-
mal exercise price S∗(t). When t is farther away from ts, the dividend effect
diminishes so that the optimal exercise policy behaves more like usual Amer-
ican put on a zero-dividend asset. In this case, S∗(t) assumes a lower value
as t stays farther from ts. As a result, the plot of S∗(t) against t resembles a
humped shape curve for the time interval prior to ts (see Fig. 5.5).

From Eq. (5.1.45b), ts is seen to increase with increasing r so that the
interval of “no-exercise” [ts, td] shrinks with higher interest rate. Since the
early exercise of an American put results in gain of time value of strike, a
higher interest rate implies a higher opportunity cost of holding an in-the-
money American put so that the propensity of early exercise increases.

Fig. 5.5 The behaviors of the optimal exercise boundary
S∗(t) as a function of t for a one-dividend American put
option.

In summary, the optimal exercise boundary S∗(t) of the one-dividend
American put model exhibits the following behaviors (see Figure 5.5).
(i) When t < ts, S∗(t) first increases then decreases smoothly with increas-

ing t until it drops to the zero value at ts.
(ii) S∗(t) stays at the zero value in the interval [ts, td].
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(iii) When t ∈ (td, T ], S∗(t) is a montonically increasing function of t with
S∗(T ) = X.

Multi-dividend American put
The analysis of the optimal exercise policy for the multi-dividend Ameri-
can put model can be performed in a similar manner. Suppose dividends of
amount D1, D2, · · · , Dn are paid on the ex-dividend dates t1, t2, · · · , tn,
there is an interval [t∗j , tj] before the ex-dividend time tj , j = 1, 2, · · · , n such
that it is never optimal to exercise the put prematurely. That is, S∗(t) = 0
for t ∈ [t∗j , tj], j = 1, 2, · · · , n., where the critical time t∗j is given by

t∗j = tj −
1
r

ln
(

1 +
Dj

X

)
, j = 1, 2, · · ·, n. (5.1.46)

Fig. 5.6 The characterization of the optimal exercise
boundary S∗(t) as a function of the calendar time t
for a three-dividend American put option model. Ob-
serve that S∗(t) is monotonically increasing in (t3, T ) and
S∗(T ) = X. It stays at the zero value in [t∗3, t3]. Further-
more, S∗(t) can be increasing to some peak value then
decreasing as in (t2, t∗3), or simply decreasing monotoni-
cally as in (t1, t∗2).

Here, we follow the calendar time in the description of the optimal exercise
boundary. At times falling within the intervals (tj−1, t

∗
j ), j = 2, · · · , n and

t ≤ t∗1, the optimal exercise price S∗(t) may first increase with time to some
peak value, then decreases and eventually drops to the zero value when the
time reaches t∗j . When the dividend is sufficently deep, S∗(t) may decrease
monotonically throughout the interval (tj−1, t

∗
j) from some peak value to the

zero value. When Dj increases further, it may be possible that t∗j is less than
tj−1. As a consequence, S∗(t) = 0 for the whole time interval [tj−1, tj]. For the



256 5 American Options

last time interval (tn, T ], the optimal exercise price increases monotonically
to X as expiration is approached.

The behaviors of the optimal exercise boundary S∗(t) of a three-dividend
American put model as a function of the calendar time t are depicted in Fig.
5.6. Meyer (2001) performed careful numerical studies on the optimal exercise
policies of multi-dividend American put options. His results are consistent
with the behaviors of S∗(t) described above.

5.2 Analytic formulations of American option pricing
models

In this section, we consider two analytic formulations of American option
pricing models, namely, the linear complementarity formulation and the for-
mulation as an optimal stopping problem. First, we develop the variational
inequalities that are satisfied by the American option price function, and
from which we derive the linear complementarity formulation. Alternatively,
the American option price can be seen to be the supremum of the discounted
expectation of the exercise payoff among all possible stopping times. It can
be shown rigorously that the solution to the optimal stopping formulation
satisfies the linear complementarity formulation. From the theory of con-
trolled diffusion process, we are able to derive the integral representation of
an American price formula in terms of the optimal exercise boundary. We also
show how to obtain the integral representation of the early exercise premium
using the financial argument of delay exercise compensation. Using the fact
that the optimal exercise price is the asset price at which one is indifferent
between exercising or non-exercising, we deduce the integral equation for the
optimal exercise price. This section is ended with the discussion of two types
of American path dependent option models. We consider the pricing of the
American barrier option and a special form of perpetual American lookback
option coined with the name “Russian option”.

5.2.1 Linear complementarity formulation

The valuation of an American option can be formulated as a free boundary
value problem, where the free boundary is the optimal exercise boundary
which separates the continuation and stopping regions. When the asset price
falls into the stopping region where the American call option should be ex-
ercised optimally, we have

C(S, τ ) = S −X, S ≥ S∗(τ ). (5.2.1)

The exercise payoff, C = S −X, does not satisfy the Black-Scholes equation
since
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[
∂

∂τ
− σ2

2
S2 ∂2

∂S2
− (r − q)S

∂

∂S
+ r

]
(S −X) = qS − rX. (5.2.2a)

From S ≥ S∗(τ ) > S∗(0+) = X max
(

1,
r

q

)
, we deduce that qS − rX > 0.

We then deduce that in the stopping region, the call value C(S, τ ) observes
the following inequality

∂C

∂τ
− σ2

2
S2 ∂

2C

∂S2
− (r − q)S

∂C

∂S
+ rC > 0 for S ≥ S∗(τ ). (5.2.2b)

The above inequality can also be deduced from the following financial
argument. Let Π denote the value of the riskless hedging portfolio defined by

Π = C −∆S where ∆ =
∂C

∂S
. (5.2.3a)

We argue that optimal early exercise of the American call occurs when the
rate of return from the riskless hedging portfolio is less than the riskless
interest rate, that is,

dΠ < rΠ dt. (5.2.3b)

By computing dΠ using Ito’s lemma, the above inequality can be shown to
be equivalent to Ineq. (5.2.2b).

In the continuation region where the asset price S is less than the opti-
mal exercise price S∗(τ ), the American call value satisfies the Black-Scholes
equation. We then conclude that

∂C

∂τ
− σ2

2
S2 ∂

2C

∂S2
− (r − q)S

∂C

∂S
+ rC ≥ 0, S > 0 and τ > 0, (5.2.4)

where equality holds when (S, τ ) lies in the continuation region. On the other
hand, the American call value is always above the intrinsic value S−X when
S < S∗(τ ) and equal to the intrinsic value when S ≥ S∗(τ ), that is,

C(S, τ ) ≥ S −X, S > 0 and τ > 0. (5.2.5)

In the above inequality, equality holds when (S, τ ) lies in the stopping region.
Since (S, τ ) is either in the continuation region or stopping region, equality
holds in one of the above pair of variational inequalities. We then deduce that

[
∂C

∂τ
− σ2

2
S2 ∂

2C

∂S2
− (r − q)S

∂C

∂S
+ rC

]
[C − (S −X)] = 0, (5.2.6)

for all values of S > 0 and τ > 0. To complete the formulation of the model,
we have to include the terminal payoff condition in the model formulation

C(S, 0) = max(S −X, 0). (5.2.7)
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Inequalities (5.2.4–5) and Eq. (5.2.6) together with the auxiliary condition
(5.2.7) constitute the linear complementarity formulation of the American
call option pricing model (Dewynne et al., 1993).

From the above linear complementarity formulation, we can deduce the
following two properties for the optimal exercise price S∗(τ ) of an American
call.
1. It is the lowest asset price for which the American call value is equal to

the exercise payoff.
2. It is the asset price at which one is indifferent between exercising and

not exercising the American call.
Bunch and Johnson (2000) presents another interesting property of S∗(τ ).

It is the lowest asset price at which the American call value does not depend
on the time to expiry, that is,

∂C

∂τ
= 0 at S = S∗(τ ). (5.2.8)

This agrees with the financial intuition that at the moment when it is optimal
to exercise immediately, it does not matter how much time is left to maturity.
A simple mathematical proof can be constructed as follows. On the optimal
exercise boundary S∗(τ ), we have

C(S∗(τ ), τ ) = S∗(τ ) −X. (5.2.9a)

Differentiating both sides with respect to τ , we obtain

∂C

∂τ
(S∗(τ ), τ ) +

∂C

∂S
(S∗(τ ), τ )

dS∗(τ )
dτ

=
dS∗(τ )
∂τ

. (5.2.9b)

Using the smooth pasting condition:
∂C

∂S
(S∗(τ ), τ ) = 1, we then obtain the

result in Eq. (5.2.8).

5.2.2 Optimal stopping problem

The pricing of an American option can also be formulated as an optimal stop-
ping problem. A stopping time t∗ can be considered as a function assuming
value over an interval [0, T ] such that the decision to “stop at time t∗” is de-
termined by the information on the asset price path Su, 0 ≤ u ≤ t∗. Consider
an American put option, and suppose that it is exercised at time t∗, t∗ < T ,
the payoff is max(X −St∗ , 0). The fair value of the put option with payoff at
t∗ defined above is given by

Et[e−r(t∗−t) max(X − St∗ , 0)],

where Et is the expectation under the risk neutral measure conditional on the
filtration Ft. This is valid provided that t∗ is a stopping time, independent
of whether it is deterministic or random.
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Since the holder can exercise at any time during the life of the option,
we deduce that the American put value is given by (Karatzas, 1988; Jacka,
1991; Myneni, 1992)

P (St, t) = sup
t≤t∗≤T

Et[e−r(t∗−t) max(X − St∗ , 0)], (5.2.10)

where t is the calendar time and the supremum is taken over all possible
stopping times. Recall that P (St, t) always stays at or above the payoff and
P (St, t) equals the payoff at the stopping time t∗. The above supremum is
reached at the optimal stopping time (Krylov, 1980) so that

t∗ = inf
u
{t ≤ u ≤ T : P (Su, u) = max(X − Su, 0)}, (5.2.11)

the first time that the American put value drops to its payoff value.
We would like to verify that the solution to the linear complementarity

formulation gives the American put value as stated in Eq. (5.2.10), where the
optimal stopping time is determined by Eq. (5.2.11). We recall the renowed
optional stopping theorem which states that if (Mt)t≥0 is a continuous mar-
tingale with respect to the filtration (Ft)t≥0, and if t∗1 and t∗2 are two stopping
times, t∗1 < t∗2, then

E[Mt∗2
|Ft∗1

] = Mt∗1
. (5.2.12)

For any stopping time t∗, t < t∗ < T , we apply Ito’s formula to the solution
P (St, t) of the linear complementarity formulation to obtain

e−rt∗P (St∗ , t
∗)

= e−rtP (St, t)

+
∫ t∗

t

e−ru

[
∂

∂t
+
σ2

2
S2 ∂2

∂S2
+ (r − q)S

∂

∂S
− r

]
P (Su, u) du

+
∫ t∗

t

e−rσS
∂P

∂S
(Su, u) dZu. (5.2.13)

Now, the integrand of the first integral is non-positive as deduced from one
of the variational inequalities [see Eq. (5.2.4)]. When we take the expectation
of the martingle term in the second integral, the expectation value becomes
zero by virtue of the optional sampling theorem. We then have

P (St, t) ≥ Et[e−r(t∗−t)P (St∗ , t
∗)]

= Et[e−r(t∗−t) max(X − St∗ , 0)]. (5.2.14)

Lastly, if we choose t∗ as defined by Eq. (5.2.11), the above inequality becomes
an equality, hence the result in Eq. (5.2.10).
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5.2.3 Integral representation of the early exercise premium

From the theory of controlled diffusion process, the American put price is
given by [a rigorous proof is presented in Krylov’s text (1980)]

P (St, t) = Et[e−r(T−t) max(X − ST , 0)]

+
∫ T

t

e−r(u−t)Eu

[
(rX − qSu)1{Su<S∗(u)}

]
du. (5.2.15)

The first term represents the usual European put price while the second term
represents the early exercise premium. Let ψ(Su;St) denote the transition
density function of Su conditional on St. We may rewrite the above put price
formula as follows

P (St, t) = e−r(T−t)

∫ X

0

(X − ST )ψ(ST ;St) dST

+
∫ T

t

e−r(u−t)

∫ S∗(u)

0

(rX − qSu)ψ(Su;St) dSu du. (5.2.16)

The early exercise premium is seen to be positive since

rX − qSu > 0 as Su < S∗(u) <
rX

q
.

We would like to provide an intuitive proof to the American put price
formula by arguing that the early exercise premium can be interpreted as
delay exercise compensation (Jamshidian, 1992).

Delay exercise compensation
In order that the American put option is kept alive for all values of asset price
until expiration, the holder needs to be compensated by a continuous cash
flow when the put should be exercised optimally. Within the time interval
between u and u + du and suppose Su falls within the stopping region, the
amount of compensation paid to the holder of the American put should be
(rX − qSu) du in order that the holder agrees not to exercise even when it is
optimal for him to do so. This is because the holder would earn interest rX du
from the cash received and lose dividend qSu du from the short position of
the asset if he were to choose to exercise his put. The discounted expectation
for the above continuous cash flow compensation is given by

e−r(u−t)

∫ S∗(u)

0

(rX − qSu)ψ(Su;St) dSu.

The integration of the above discounted cash flow from u = t to u = T gives
the early exercise premium of the American put option, which is precisely
the early exercise premium term in Eq. (5.2.16).
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Value matching and smooth pasting conditions
Here, we present the financial interpretation of the necessity of the “value
matching” and “smooth pasting” conditions, namely, the continuity of P

and
∂P

∂S
across the optimal exercise boundary S∗(u). Consider the following

dynamic trading strategy proposed by Carr et al. (1992). After purchasing
the American put at the current time t, the investor would instantaneously
exercise the put whenever the asset price falls from above to the optimal
exercise price S∗(u) and purchase back the put whenever the asset price rises
from below to S∗(u). Since the transactions of converting put into holding of
cash plus short position in asset and vice versa all occur on the early exercise
boundary, we require the “value matching“ and “smooth pasting” conditions
in order to ensure that these transactions are self-financing, that is, each
portfolio revision undertaken is exactly financed by the proceeds from the
sale of the previous position.

Analytic representation of American put price function
In the subsequent exposition in this section, we use the time to expiry τ as the
temporal variable in optimal exericse boundary S∗(τ ) and write S for St. The
integrals in Eq. (5.2.16) can be evaluated to give the following representation
of the American put price formula

P (S, τ ) = Xe−rτN (−d2) − Se−qτN (−d1)

+
∫ τ

0

[rXe−rξN (−dξ,2) − qSe−qξN (−dξ,1)] dξ,
(5.2.17a)

where τ = T − t and

d1 =
ln S

X +
(
r − q + σ2

2

)
τ

σ
√
τ

, d2 = d1 − σ
√
τ ,

dξ,1 =
ln S

S∗(τ−ξ) +
(
r − q + σ2

2

)
ξ

σ
√
ξ

, dξ,2 = dξ,1 − σ
√
ξ.

(5.2.17b)

The dummy time variable ξ can be considered as the time period lapsed from
the current time so that ξ = 0 and ξ = τ correspond to the current time and
expiration date, respectively.

When the interest rate is zero, r = 0, the early exercise premium becomes

−
∫ τ

0

qSe−qξN (−dξ,1) dξ,

which is seen to be a non-positive quantity. However, the early exercise pre-
mium must be non-negative. These two arguments together lead to

∫ τ

0

qSe−qξN (−dξ,1) dξ = 0, (5.2.18)
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which is satisfied only by setting S∗(ξ) = 0 for all values of ξ. The zero
value of the optimal exercise price infers that the American put is never
exercised. In this case, the value of the American put is the same as that of
its European counterpart. The same conclusion has been reached by another
argument presented earlier in Sec. 5.1.4.

Integral equations for the optimal exercise boundary
If we apply the boundary condition: P (S∗(τ ), τ ) = X−S∗(τ ) to the put price
formula (5.2.17a), we obtain the following integral equation for S∗(τ ):

X − S∗(τ ) = Xe−rτN (−d̂2) − S∗(τ )e−qτN (−d̂1)

+
∫ τ

0

[rXe−rξN (−d̂ξ,2) − qS∗(τ )e−qξN (−d̂ξ,1)] dξ
, (5.2.19)

where

d̂1 =
ln S∗(τ)

X +
(
r − q + σ2

2

)
τ

σ
√
τ

, d̂2 = d̂1 − σ
√
τ

d̂ξ,1 =
ln S∗(τ)

S∗(τ−ξ) +
(
r − q + σ2

2

)
ξ

σ
√
ξ

, d̂ξ,2 = d̂ξ,1 − σ
√
ξ.

(5.2.20)

The solution for S∗(τ ) requires the knowledge of S∗(τ − ξ), 0 < ξ ≤ τ. The
solution procedure starts with S∗(0) and integrates backward in calendar
time (that is, increasing τ ).

Alternatively, we may use the smooth pasting condition:
∂P

∂S
(S∗(τ ), τ ) =

−1 along S∗(τ ) to derive another integral equation for S∗(τ ). Taking the
partial derivative with respect to S of the terms in Eq. (5.2.19) and setting
S = S∗(τ ), we have

0 = 1 +
∂P

∂S
(S∗(τ ), τ )

= 1 +
∂p

∂S
(S∗(τ ), τ )

+
∫ τ

0


rXe−rξ ∂

∂S
N (−dξ,2)

∣∣∣∣∣
S=S∗(τ)

− qe−qξN (−dξ,1)

∣∣∣∣∣
S=S∗(τ)

− qSe−qξ ∂

∂S
N (−dξ,1)

∣∣∣∣∣
S=S∗(τ)


 dξ

= N (d̂1) −
∫ τ

0

[
(r − q)e−qξ

σ
√

2πξ
e−

d̂2
ξ,1
2 + qe−qξN (−d̂ξ,1)

]
dξ. (5.2.21)

Various versions of integral equation for the optimal exercise price can
also be derived (Little and Pant, 2000), some of these alternative forms may
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provide easier analysis of the properties of the optimal exercise boundary.
The direct analytic solution to any one of these integral equations is definitely
intractable. In Sec. 5.3, we will discuss the recursive integration method for
solving the above integral equations.

The integral equation defined in Eq. (5.2.19) may be used to find the
optimal exercise price at the limiting case τ → ∞ [see Eq. (5.1.33a)]. Let
S∗

P (∞) denote lim
τ→∞

S∗
P (τ ), which corresponds to the optimal exercise price

for the perpetual American put. Taking the limit τ → ∞ in Eq. (5.2.19), and
observing that the value of the perpetual European put is zero, we obtain

X − S∗
P (∞) =

∫ ∞

0

[
rXe−rξN

(
−
r − q − σ2

2

σ

√
ξ

)

− qS∗
P (∞)e−qξN

(
−
r − q + σ2

2

σ

√
ξ

)]
dξ.

(5.2.22)

The first and second terms in the above integral can be simplifed as follows:
∫ ∞

0

e−rξN (−ρ
√
ξ) dξ = −e

−rξ

r
N (−ρ

√
ξ)
∣∣∣∣
∞

0

− ρ

2r
1√
2π

∫ ∞

0

e−ρ2ξ/2e−rξ

√
ξ

dξ

=
1
2r

[
1 −

ρ√
ρ2 + 2r

]
, ρ =

r − q − σ2

2

σ
;

∫ ∞

0

e−qξN (−ρ′
√
ξ) dξ =

1
2q

[
1 − ρ′√

ρ′
2 + 2q

]
, ρ′ =

r − q + σ2

2

σ
. (5.2.23)

Substituting the above results into Eq. (5.2.22), we obtain

X − S∗
P (∞) =

X

2

[
1 − ρ√

ρ2 + 2r

]
− S∗

P (∞)
2

[
1 − ρ′√

ρ′
2 + 2q

]
. (5.2.24)

Rearranging the terms, we have

S∗
P (∞) =

1 + ρ√
ρ2+2r

1 + ρ′√
ρ′2+2q

X =
µ−

µ− − 1
X, (5.2.25)

where µ− is defined by Eq. (5.1.33b).

Analytic representation of the American call price function
Similar to the American put price as given in Eq. (5.2.17a), the analytic
representation of the American call counterpart is given by

C(S, τ ) = Se−qτN (d1) −Xe−rτN (d2)

+
∫ τ

0

[
qSe−qξN (dξ,1) − rXe−rξN (dξ,2)

]
dξ.

(5.2.26)
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The corresponding integral equation for the early exercise boundary S∗(τ )
can be deduced similarly by setting C(S∗(τ ), τ ) = S∗(τ ) −X. This gives

S∗(τ ) −X = S∗(τ )e−qτN (d̂1) −Xe−rτN (d̂2)

+
∫ τ

0

[qS∗(τ )e−qξN (d̂ξ,1) − rXe−rξN (d̂ξ,2)] dξ.

(5.2.27)
Similarly, by taking the limit τ → ∞ in Eq. (5.2.27), one can also deduce the
corresponding asymptotic upper bound of the early exercise boundary of the
American call option (see Problem 5.22).

5.2.4 American barrier options

An American barrier option is a barrier option embedded with the early
exercise right. For example, an American down-and-out call becomes nul-
lified when the down-barrier is breached by the asset price or prematurely
terminated due to the optimal exericse decision of the holder. Like usual
American option, the option value of an American out-barrier option can be
decomposed into the sum of the value of the European barrier option and the
early exercise premium. In this subsection, we derive the price formula of an
American down-and-out call and examine some of its pricing behaviors. As
a remark, the pricing of an American in-barrier option is much more com-
plicated. This is because the in-trigger region associated with the knock-in
feature may intersect with the stopping region of the underlying American
option. The pricing models of the American in-barrier options are discussed
in Dai and Kwok’s paper (2004b). Some interesting results in their paper are
presented in Problem 5.26.

In our American down-and-out call option model, we assume that the
underlying asset pays a constant dividend yield q and the constant down-
barrier B satisfies the condition B < X. For simplicity, we assume zero rebate
paid upon nullification of the option. The price function CB(S, τ ;X,B) of the
American down-and-out call option is given by

CB(S, τ ;X,B) = e−rτEt

[
max(ST −X, 0)1{mT

t >B}

]

+
∫ T

t

e−ruEu

[
(qSu − rX)1{mu

t >B,(Su,u)∈S}
]
du (5.2.28)

where Et denotes the expectation conditional on the filtration Ft, mu
t is

the realized minimum value of the asset price over the time period [t, u].
τ = T − t and S denotes the stopping region. The first term gives the value
of the European down-and-out barrier option. The second term represents
the early exercise premium of the American down-and-out call. The delay
exercise compensation is received only when (Su, u) lies inside the stopping
region S and the barrier option has not been knocked out. To effect the
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expectation calculations, it is necessary to use the transition density function
of the restricted (with down absorbing barrier B) asset price process. After
performing the integration procedure, the early exercise premium eC(S, τ ;B)
can be expressed as

eC (S, τ ;B) =
∫ τ

0

{KC (S, τ ;S∗(τ − ω), ω)

−
(
S

B

)δ+1

KC

(
B2

S
, τ ;S∗(τ − ω), ω

)}
dω,

(5.2.29)

where δ = 2(q − r)/σ2 and S∗(τ ) is the optimal exercise price above which
the American call option should be exercised. The analytic expression for KC

is given by

KC(S, τ ;S∗(τ − ω), ω) = qSe−qωN (dω,1) − rXe−rωN (dω,2), (5.2.30)

where

dω,1 =
ln S

S∗(τ−ω) +
(
r − q + σ2

2

)
ω

σ
√
ω

, dω,2 = dω,1 − σ
√
ω. (5.2.31)

It can be shown mathematically that

KC(S, τ ;S∗(τ − ω), ω) >
(
S

B

)δ+1

KC

(
B2

S
, τ ;S∗(τ − ω), ω

)
> 0. (5.2.32)

This agrees with the intuition that the early exercise premium is reduced by
the presence of the barrier and it always remains positive. Though eC(S, τ )
apparently becomes negative when q = 0, the premium term in fact becomes
zero since the early exercise premium must be non-negative. This is made
possible by choosing S∗(τ − ω) → ∞ for 0 ≤ ω ≤ τ . Even with embedded
barrier feature, an American call is never exercised when the underlying asset
is non-dividend paying.

Next, we explore the effects of the barrier level and rebate on the early ex-
ercise policies. Additional pricing properties of the American barrier options
can be found in Gao et al.’s paper (2000).

Effects of barrier level on early exercise policies
From intuition, it is expected that the optimal exercise price S∗(τ ;B) for
an American down-and-out call option decreases with an increasing barrier
level B. For an in-the-money American down-and-out call option, the holder
should consider to exercise the call at a lower optimal exercise price when
the barrier level is higher since the adverse chance of asset price dropping to
a level below the barrier is higher.

A semi-rigorous explanation of the above intuition can be argued as fol-
lows. Since the price curve of the American barrier call option with a lower
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barrier level is always above that with higher barrier level, it then intersects
tangentially the intrinsic value line C = S −X at a higher optimal exercise
price (see Fig. 5.7). Therefore, S∗(τ ;B) is a decreasing function of B.

C
B
(S,τ; B)

S
X S*(τ; B

high
) S*(τ; B

low 
)

V = S−X

B
high

B
low

Fig. 5.7 The price curve for an American down-and-out
call option with a lower barrier level Blow is always above
that with a higher barrier level Bhigh.

Effects of rebate on early exercise policies
With the presence of rebate, the holder of an American down-and-out call
option will choose to exercise optimally at a higher asset price level since
the penalty of adverse movement of asset price dropping below the barrier
is lessened. Mathematically, we argue that the price curve of the American
down-and-out call option with rebate should be above that without rebate, so
it intersects tangentially the intrinsic value line C = S−X at a higher optimal
exercise price. Hence, the optimal exercise price is an increasing function of
rebate.

5.2.5 American lookback options

The studies of the optimal exercise policies for various types of finite-lived
American lookback option remain to be challenging problems. Some of the
theoretical results on this topic can be found in a series of papers by Dai
and Kwok (2004c, 2005b and 2005c). In this subsection, we consider a special
type of a perpetual American option with lookback payoff, coined with the
name “Russian option”.

The Russian option contract on an asset guarantees the holder of the
option to receive the historical maximum value of the asset price path upon
exercising the option. Premature exercise of the Russian option can occur at
any time chosen by the holder. Let M denote the historical realized maximum
of the asset price (the starting date of the lookback period is immaterial) and
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S be the asset price, both quantities are taken at the same time. Since it is a
perpetual option, the option value is independent of time. Let V = V (S,M )
denote the option value and let S∗ denote the optimal exercise price at which
the Russian option should be exercised. At a sufficiently low asset price, it
becomes more attractive to exercise the Russian option and receive the dollar
amount M rather than to hold and wait. Therefore, the Russian option is
alive when S∗ < S ≤ M and will be exercised when S ≤ S∗. The payoff
function of the Russian option upon exercising is

V (S∗,M ) = M, (5.2.35)

and the option value stays above M when the option is alive.
Assume that the asset pays a continuous dividend yield q. It will be shown

later that the solution to the option model becomes undefined if the underly-
ing asset is non-dividend paying. By dropping the temporal derivative term
in the Black-Scholes equation, the governing equation for the Russian option
model is given by

σ2

2
S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, S∗ < S < M. (5.2.36)

The boundary condition at S = S∗ has been given by Eq. (5.2.35). It has
been explained in Sec. 4.2 that lookback option value is insensitive to M
when S = M . Therefore, the other boundary condition at S = M is given by
[see Eq. (4.2.20)]

∂V

∂M
= 0 at S = M. (5.2.37)

The optimal exercise price S∗ is chosen such that the option value is maxi-
mized among all possible values of S∗. The governing equation and boundary
conditions can be recast in a more succinct form when the following similarity
variables:

W = V/M and ξ = S/M (5.2.38)

are employed. In terms of the new similarity variables, the value of the Rus-
sian option is governed by

σ2

2
ξ2
d2W

dξ2
+ (r − q)ξ

dW

dξ
− rW = 0, ξ∗ < ξ < 1, (5.2.39)

where W = W (ξ) and ξ∗ = S∗/M . The boundary conditions become

dW

dξ
= W at ξ = 1, (5.2.40a)

W = 1 at ξ = ξ∗. (5.2.40b)

First, we solve for the option value in terms of ξ∗, then determine ξ∗ such
that the option value is maximized. By substituting the assumed form of the
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solution Aξλ into Eq. (5.2.39), we observe that λ should satisfy the following
quadratic equation

σ2

2
λ(λ− 1) + (r − q)λ − r = 0. (5.2.41)

The two roots of the above quadratic equation are

λ± =
1
σ2


−(r − q) +

σ2

2
±

√(
(r − q − σ2

2

)2

+ 2σ2r


 , (5.2.42)

where λ+ > 0 and λ− < 0. The general solution to Eq. (5.2.39) can be
expressed as

W (ξ) = A+ξ
λ+ + A−ξ

λ− , ξ∗ < ξ < 1, (5.2.43)

where A+ and A− are arbitrary constants. Applying the boundary conditions
(5.2.40a,b), the solution for W (ξ) is found to be

W (ξ) =
(1 − λ−)ξλ+ − (1 − λ+)ξλ−

(1 − λ−)ξ∗λ+ − (1 − λ+)ξ∗λ−
, ξ∗ ≤ ξ ≤ 1. (5.2.44)

The use of calculus reveals that W (ξ) is maximized when ξ∗ is chosen to be

ξ∗ =
[
λ+(1 − λ−)
λ−(1 − λ+)

]1/(λ−−λ+)

. (5.2.45)

Besides the above differential equation approach, one may apply the mar-
tingale pricing approach to derive the price formula for the Russian option.
Interested readers may read the papers by Shepp and Shiryaev (1993) and
Gerber and Shiu (1994) for details.

Non-dividend paying underlying asset
How does the price function of the Russian option behave when q = 0? The

two roots then become λ+ = 1 and λ− = − 2r
σ2

. The solution for W (ξ) is
reduced to

W (ξ) =
ξ

ξ∗
, ξ∗ ≤ ξ ≤ 1, (5.2.46)

which is maximized when ξ∗ is chosen to be zero. The Russian option value
becomes infinite when the underlying asset is non-dividend paying. Can you
provide a financial argument for the result?
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5.3 Analytic approximation methods

Except for a few special cases like the American call on an asset with no
dividend or discrete dividends and the perpetual American options, analytic
price formulas do not exist for most types of finite-lived American options.
In this section, we present three effective analytic approximation methods
for finding the American option values and the associated optimal exercise
boundaries.

The compound option approximation method treats an American option as
a compound option by limiting the opportunity set of optimal exercises to be
only at a few discrete times rather than at any time during the life of the op-
tion. The compound option approach requires the valuation of multi-variate
normal integrals in the corresponding approximation formulas, where the di-
mension of the multi-variate integrals is the same as the number of exercise
opportunities allowed. We have seen that one may express the early exercise
premium in terms of the optimal exercise boundary in an integral representa-
tion, and this naturally leads to an integral equation for the optimal exercise
boundary. The recursive integration method considers the direct solution of
the integral equation for the early exercise boundary by recursive iterations.
The iterative algorithm only involves computation of one-dimensional inte-
grals. Even when we take only a few points on the optimal exercise boundary,
the numerical accuracy of both compound option method and recursive inte-
gration method can be improved quite effectively by extrapolation procedure.
The quadratic approximation method employs an ingenious transformation of
the Black-Scholes equation so that the temporal derivative term can be con-
sidered as a quadratic small term and then dropped as an approximation.
Once the approximate ordinary differential equation is derived, we only need
to determine one optimal exercise point rather than the solution of the whole
optimal exercise curve as in the original partial differential equation formu-
lation.

It is commonly observed that most American option values are not too
sensitive to the location of the optimal exercise boundary. This may explain
why the above analytic approximation methods are quite accurate in calcu-
lating the American option values even when only a few points on the optimal
exercise boundary are estimated. Evaluation of these analytic approximation
formulas normally requires the use of a computer, some of them even require
further numerical procedures, like numerical approximation of integrals, iter-
ation and extrapolation. However, they do distinguish from direct numerical
methods like the binomial method, finite difference method and Monte Carlo
simulation (these numerical methods are discussed in full details in Chapter
6). In analytic approximation methods, the analytic behaviors of the for-
mulation of the American option model are explored to the full extent and
ingenious approximations are subsequently applied to reduce the complexity
of the problems.
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5.3.1 Compound option approximation method

An American option contract normally allows for early exercise at any time
prior to expiration. However, by limiting the early exercise privilege to com-
mence only at a few predetermined instants between now and expiration, the
American option then resembles a compound option. It then becomes plau-
sible to derive the corresponding analytic price formulas. The approximate
price formula will converge to the price formula of the American option in
the limit when the number of exercisable instants grows to infinity, since the
continuously exercisable property of the American option is then recovered.

First, we derive the formula for a limited exercisable American put option
on a non-dividend paying asset where early exercise can only occur at single
instant which is halfway to expiration. Let the current time be zero and T be
the expiration time. Let ST/2 and ST denote the asset price at times T/2 and
T , respectively. Between time T/2 to the expiration date, the option behaves
like an ordinary European option since there is no early exercise privilege.
We determine the critical asset price S∗

T/2 at T/2 such that it is indifferent
between exercising the put or not at the asset price S∗

T/2. Accordingly, S∗
T/2

is obtained by solving the following non-linear algebraic equation

p(S∗
T/2, T/2;X) = X − S∗

T/2, (5.3.1)

where X is the strike price of the put. Here, p(S∗
T/2, T/2;X) is the Black-

Scholes price formula for a European put, where the value assumed by τ is
T/2.

When ST/2 ≤ S∗
T/2, the put option will be exercised with payoffX−ST/2.

The discounted expectation ofX−ST/2, conditional on ST/2 ≤ S∗
T/2, is found

to be

e−rT/2

∫ S∗
T/2

0

(X − ST/2)ψ(ST/2;S) dST/2

= Xe−rT/2N (−d2(S, S∗
T/2;T/2))− SN (−d1(S, S∗

T/2;T/2)),
(5.3.2a)

where

d1(S1, S2;T ) =
ln S1

S2
+
(
r + σ2

2

)
T

σ
√
T

, d2(S1, S2;T ) = d1(S1, S2;T ) − σ
√
T ,

(5.3.2b)
and ψ(ST/2;S) is the transition density function. On the other hand, when
ST/2 > S∗

T/2, the put option survives until expiry. At expiry, it will be exer-
cised only when ST < X. The discounted expectation of X −ST , conditional
on ST/2 > S∗

T/2 and ST < X, is given by
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[
e−rT

∫ X

0

(X − ST )ψ(ST ;ST/2) dST

]
N (d2(S, S∗

T/2;T/2))

= e−rT

∫ ∞

S∗
T/2

∫ X

0

(X − ST )ψ(ST ;ST/2)ψ(ST/2;S) dSTdST/2

= Xe−rTN2

(
d2(S, S∗

T/2;T/2),−d2(S,X;T );−1/
√

2
)

− SN2

(
d1(S, S∗

T/2;T/2),−d1(S,X;T );−1/
√

2
)
.

(5.3.3)

Note that the correlation coefficient between overlapping Brownian incre-
ments over the time intervals [0, T/2] and [0, T ] is found to be 1/

√
2. The

price of the put option with two exercisable instants T/2 and T is given by
the sum of the above two expectation values. We then have

P2(S,X;T ) = Xe−rT/2N (−d2(S, S∗
T/2;T/2)) − SN (−d1(S, S∗

T/2;T/2))

+Xe−rTN2

(
d2(S, S∗

T/2;T/2),−d2(S,X;T );−1/
√

2
)

− SN2

(
d1(S, S∗

T/2;T/2),−d1(S,X;T );−1/
√

2
)
.

(5.3.4)
The extension to the general case with N exercisable instants (not necessarily
equally spaced) can also be derived in a similar manner (see Problem 5.30).

Let Pn denote the value of the put option with n exercisable instants. We
expect that the limit of the sequence P1, P2, · · · , Pn, · · · tends to the American
put value. One may apply the acceleration technique to extrapolate the limit
based on the first few members of the sequence. Geske and Johnson (1984)
propose the following Richardson extrapolation scheme when n = 3

P ≈ 9P3 − 8P2 + P1

2
. (5.3.5)

Judging from their numerical experiments, reasonable accuracy is achieved
for most cases based on extrapolation formula (5.3.5). Improved accuracy can
be achieved by relaxing the requirement of equally spaced exercisable instants
and seeking for appropriate exercisable instants such that the approximate
put value is maximized (Bunch and Johnson, 1992).

5.3.2 Numerical solution of the integral equation

Recall that Eq. (5.2.19) provides an integral equation for the optimal exercise
boundary for an American put option. In the integral equation, the variable τ
appears both in the integrand and the upper limit of the integral. A recursive
scheme can be derived to solve the integral equation for a given value of τ . In
the numerical procedure, all integrals are approximated by the trapezoidal
rule. First, we divide τ into n equally spaced subintervals with end points
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τi, i = 0, 1, · · · , n where τ0 = 0, τn = τ and ∆τ = τ/n. For convenience, we
denote the integrand function by

f(S∗(τ ), S∗(τ−ξ); τ, ξ) = rXe−rξN (−d̂ξ,2)−qS∗(τ )e−qξN (−d̂ξ,1), (5.3.6a)

where

d̂ξ,1 =
ln S∗(τ)

S∗(τ−ξ) +
(
r − q + σ2

2

)
ξ

σ
√
ξ

, d̂ξ,2 = d̂ξ,1 − σ
√
ξ. (5.3.6b)

Let S∗
i denote the numerical approximation to S∗(τi), i = 0, 1, · · · , n. Setting

τ = τ1 in the integral equation and approximating the integral by
∫ τ1

0

[
rXe−rξN (−d̂ξ,2) − qS∗(τ )e−qξN (−d̂ξ,1)

]
dξ

≈ ∆τ

2
[f(S∗

1 , S
∗
1; τ1, τ0) + f(S∗

1, S
∗
0; τ1, τ1)] ,

(5.3.7)

we obtain the following non-linear algebraic equation for S∗
1:

X − S∗
1 = p(S∗

1, τ1) +
∆τ

2
[f(S∗

1 , S
∗
1; τ1, τ0) + f(S∗

1 , S
∗
0; τ1, τ1)] . (5.3.8)

Since S∗
0 is known to be min

(
X,

r

q
X

)
, one can solve for S∗

1 by any root-

finding method. Once S∗
1 is known, we proceed to set τ = τ2 and approximate

the integral over the two subintervals: (τ0, τ1) and (τ1, τ2). The corresponding
non-linear algebraic equation for S∗

2 is then given by

X − S∗
2 = p(S∗

2, τ2) +
∆τ

2
[f(S∗

2, S
∗
2; τ2, τ0) + 2f(S∗

2 , S
∗
1; τ2, τ1)

+ f(S∗
2, S

∗
0; τ2, τ2)].

(5.3.9)

Recursively, the general algebraic equation for S∗
k, k = 2, 3, · · · , n can be

deduced to be (Huang et al ., 1996)

X − S∗
k = p(S∗

k, τk) +
∆τ

2

[
f (S∗

k , S
∗
k; τk, τ0) + f(S∗

k , S
∗
0; τk, τk)

+ 2
k−1∑

i=1

f(S∗
k , S

∗
k−i; τk, τi)

]
, k = 2, 3, · · · , n,

(5.3.10)
where S∗

k, k = 1, 2, · · · , n are solved sequentially. By choosing n to be suffi-
ciently large, the optimal exercise boundary S∗(τ ) can be approximated to
sufficient accuracy as desired.

Once S∗
k, k = 1, 2, · · · , n, are known, the American put value can be ap-

proximated by
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P (S, τ ) ≈ Pn = p(S, τ ) +
∆τ

2

[
f (S, S∗

n; τn, τ0) + f(S, S∗
0 ; τn, τn)

+ 2
n−1∑

i=1

f(S, S∗
n−i; τn, τi)

]
,

(5.3.11)

where τ = τn. Obviously, the limit of Pn tends to P (S, τ ) as n tends to
infinity. Similar to the compound option approximation method, one may
apply the following extrapolation scheme

P (S, τ ) ≈ 9P3 − 8P2 + P1

2
, (5.3.12)

where Pn is defined in Eq. (5.3.11). The numerical procedure of the recursive
integration method is seen to be much less tedious compared to the com-
pound option approximation method since only one-dimensional integrals
are involved. Various versions of numerical schemes for more effective numer-
ical valuation of American option values have been reported in the literature.
For example, Ju (1998) proposes to price an American option by approxi-
mating its optimal exercise boundary as a multi-piece exponential function.
The method is claimed to have the advantage of easy implementation since
closed form formulas can be obtained in terms of the bases and exponents of
the multi-piece exponential function.

One advantage of the recursive integration method is that the greeks
of the American option values can also be found effectively without much
additional efforts. For example, from the following formula for the delta of
the American option price (see Problem 5.20):

∆ =
∂P

∂S
= −N (−d1) −

∫ τ

0

[
(r − q)e−qξ

σ
√

2πξ
e−

d2
ξ,1
2 + qe−qξN (−dξ,1)

]
dξ,

(5.3.13)
one can easily deduce the numerical approximation to the delta ∆ by approx-
imating the above integral using the trapezoidal rule as follows:

∆ ≈ ∆n = −N (−d1) −
∆τ

2

[
g(S, S∗

n;τn, τ0) + g(S, S∗
0; τn, τn)

+ 2
n−1∑

i=1

g(S, S∗
n−i; τn, τi)

]
,

(5.3.14)

where

g(S, S∗(τ − ξ); τ, ξ) =
(r − q)e−qξ

σ
√

2πξ
e−

d2
ξ,1
2 + qe−qξN (−dξ,1)

dξ,1 =
ln S

S∗(τ−ξ)
+
(
r − q + σ2

2

)
ξ

σ
√
ξ

.

(5.3.15)
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5.3.3 Quadratic approximation method

The quadratic approximation method is first proposed by MacMillan (1986)
for non-dividend paying stock options and later extended to commodity op-
tions by Barone-Adesi and Whaley (1987). This method has been proven to
be quite efficient with reasonably good accuracy for valuation of American
options, particularly for shorter lived options.

Recall that the governing equation for the price of a commodity option
with a constant cost of carry b and riskless interest rate r is given by

∂V

∂τ
=
σ2

2
S2 ∂

2V

∂S2
+ bS

∂V

∂S
− rV, (5.3.16)

where σ is the constant volatility of the asset price. We consider an American
call option written on a commodity and define the early exercise premium by

e(S, τ ) = C(S, τ ) − c(S, τ ). (5.3.17)

Inside the continuation region, Eq. (5.3.16) holds for both C(S, τ ) and c(S, τ ).
Since the differential equation is linear, the same equation holds for e(S, τ ).
By writing k1 = 2r/σ2 and k2 = 2b/σ2, and defining

e(S, τ ) = K(τ )f(S,K), (5.3.18)

where K(τ ) will be determined. Now, Eq. (5.3.16) can be transformed into
the form

S2 ∂
2f

∂S2
+ k2S

∂f

∂S
− k1f

[
1 +

dK
dτ

rK

(
1 +

K ∂f
∂K

f

)]
= 0. (5.3.19)

A judicious choice for K(τ ) is

K(τ ) = 1 − e−rτ , (5.3.20)

so that Eq. (5.3.19) becomes

S2 ∂
2f

∂S2
+ k2S

∂f

∂S
− k1

K

[
f + (1 −K)K

∂f

∂K

]
= 0. (5.3.21)

Note that the last term in the above equation contains the factor (1−K)K,
and it becomes zero at τ = 0 and in the limit τ → ∞. Further, it has a
maximum value of 1/4 at K = 1/2. Suppose we drop the quadratic term

(1 −K)K
∂f

∂K
, Eq. (5.3.21) is then reduced to an ordinary differential equa-

tion with the error being controlled by the magnitude of the quadratic term
(1 − K)K. This is how the name of this approximation method is derived.
The approximate equation for f now becomes

S2 ∂
2f

∂S2
+ k2S

∂f

∂S
− k1

K
f = 0, (5.3.22)
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where K is assumed to be non-zero. The special case where K = 0 can be
considered separately (see Problem 5.31).

When K is treated as a parameter, Eq. (5.3.22) becomes an equi-
dimensional differential equation. The general solution for f(S) is given by

f(S) = c1S
q1 + c2S

q2 , (5.3.23)

where c1 and c2 are arbitrary constants, q1 and q2 are roots of the auxiliary
equation

q2 + (k2 − 1)q − k1

K
= 0. (5.3.24)

Solving the above quadratic equation, we obtain

q1 = −
1
2

[
(k2 − 1) +

√
(k2 − 1)2 + 4

k1

K

]
< 0, (5.3.25a)

q2 =
1
2

[
−(k2 − 1) +

√
(k2 − 1)2 + 4

k1

K

]
> 0. (5.3.25b)

The term c1S
q1 in Eq. (5.3.23) should be discarded since f(S) tends to zero as

S approaches 0. The approximate value C̃(S, τ ) of the American call option
is then given by

C(S, τ ) ≈ C̃(S, τ ) = c(S, τ ) + c2KS
q2 . (5.3.26)

Lastly, the arbitrary constant c2 is determined by applying the value matching
condition at the critical asset value S∗, namely, C̃(S∗ , τ ) = S∗−X. However,
S∗ itself is not yet known. The additional equation required to determine S∗ is

provided by the smooth pasting condition:
∂C̃

∂S
(S∗, τ ) = 1 along the optimal

exercise boundary. These two conditions together lead to the following pair
of equations for c2 and S∗

S∗ −X = c(S∗, τ ) + c2KS
∗q2 (5.3.27a)

1 = e(b−r)τN (d1(S∗)) + c2Kq2S
∗q2−1 (5.3.27b)

where

d1(S∗) =
ln S∗

X +
(
b+ σ2

2

)
τ

σ
√
τ

. (5.3.28)

By eliminating c2 in Eqs. (5.3.27a,b), we obtain the following non-linear al-
gebraic equation for S∗(τ ):

S∗ −X = c(S∗, τ ) +
[
1 − e(b−r)τN (d1(S∗))

] S∗

q2
. (5.3.29)

In summary, for b < r, the approximate value of the American commodity
call option can be expressed as
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C̃(S, τ ) = c(S, τ )+
S∗

q2

[
1 − e(b−r)τN (d1(S∗))

]( S

S∗

)q2

, S < S∗, (5.3.30)

where S∗ is obtained by solving Eq. (5.3.29). The last term in Eq. (5.3.30)
gives an approximate value for the early exercise premium, which can be
shown to be positive for b < r. When b ≥ r, the American call will never
be exercised prematurely (see Problem 5.2) so that the American call option
value is the same as that of its European counterpart.

5.4 Options with voluntary reset rights

The reset right embedded in a financial derivative refers to the privilege
given to the derivative holder to reset certain terms in the contract according
to some specified rules. The reset may be done on the strike price or the
maturity date of the derivative or both. The number of resets allowed within
the life of the contract may be more than once. Usually there are some pre-
determined conditions that have to be met in order to activate a reset. The
reset may be automatic upon the fulfilment of certain conditions or activated
voluntarily by the holder. In this section, we confine our discussion to options
with strike reset right, the holder of which can choose optimally the reset
moment. We would like to analyze the optimal reset strategies adopted by
the option holder.

We consider the reset-strike put option, where the strike price can be reset
to the prevailing asset price at the reset moment. Let X denote the original
strike price set at initiation of the option, St∗ and ST denote the asset price
at the reset date t∗ and expiration date T , respectively. Suppose there is only
one reset right allowed, the terminal payoff of the reset put option is given by
max(X − ST , 0) if no reset occurs throughout the option’s life, and modified
to max(St∗ −ST , 0) if reset occurs at time t∗ < T . Upon reset, the reset-strike
put option effectively becomes an at-the-money put option.

The shout options are closely related to the reset-strike put options. Con-
sider the shout option with the call payoff with only one shout right. Suppose
the holder has chosen to shout at time t∗, then the terminal payoff is guar-
anteed to have the floor value St∗ − X. More precisely, the terminal payoff
is given by max(ST − X,St∗ − X) if the holder has shouted at t∗ prior to
maturity, but stays at the usual call payoff max(ST −X, 0) if no shout occurs
throughout the option’s life. It will be shown later that the shout call can
be replicated by a reset-strike put and a forward so that the reset-strike put
option and its shout call counterpart follow the same optimal stopping policy
[see Eq. (5.4.11)].

Another example of reset right is the shout floor feature in an index fund
with a protective floor. Essentially, the shout floor feature gives the holder the
right to shout at any time during the life of the contract to receive an at-the-
money put option. In Sec. 5.4.1, we show how to obtain the closed form price
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formula of the shout floor feature (Dai et al ., 2004a). A similar feature of
fund value protection can be found in equity-linked annuities. For example,
the dynamic fund protection embedded in an investment fund provides a
floor level of protection against a reference stock index, where the investor
has the right to reset the fund value to that of the reference stock index. The
protected fund may allow a finite number of resets throughout the life of the
fund, and the reset instants can be chosen optimally by the investor. The
fund holder also has the right to withdraw the fund prematurely. Details of
pricing of the reset and withdrawal rights in dynamic fund protection can be
found in Chu and Kwok’s paper (2004).

There exist a wide variety of derivative instruments in the financial mar-
kets with embedded reset features. For example, Macquarie Bank in Australia
offers a Geared Equity Investment . Basically, it is a collateralized loan with
a reset put (Gray and Whaley, 1999). Macquarie Bank provides an investor
with a loan, the proceeds of which are used to buy some Australian shares.
The investor owns the shares and receives the dividends, but the shares are
held by MacQuarie Bank as collateral for the loan. In addition, Macquarie
Bank insures the investor against any share price decline by providing an op-
tional reset feature that the strike price is automatically reset to the prevailing
share price on a specified reset date (chosen by the investor at origination)
should the share price exceed the original strike price. As another example,
the Canadian segregated funds are mutual fund investments embedded with
a long term maturity guarantee. These fund contracts contain multiple reset
options that allow the holder to reset the guarantee level and the maturity
date during the life of the contract. The optimal reset policies of options with
combined reset rights on strike and maturity are analyzed in details by Dai
and Kwok (2005b).

5.4.1 Valuation of the shout floor

The shout floor feature in an index fund gives the holder the right to shout
at any time during the life of the contract to install a floor on the return of
the fund, where the floor value is set at the prevailing index value St∗ at the
shouting time t∗. This shout floor feature gives the fund holder the upside
potential of the index fund, while provides a guarantee on the return of the
index at the floor value. In essence, the holder receives an at-the-money put
option at the shout moment. By virtue of the guarantee on the return, the
holder has the right to sell the index fund for the floor value at maturity of
the contract. If no shout occurs throughout the life of the contract, then the
fund value becomes zero. In summary, the terminal payoff of the shout floor
is {

max(St∗ − ST , 0) if shout has occurred
0 if no shout has occurred,

where St∗ and ST are the index value at the shout moment t∗ and maturity
date T , respectively.
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Formulation as a free boundary value problem
Interestingly, closed form price formula for the shout floor feature under the
usual Black-Scholes pricing framework can be obtained. As usual, the stochas-
tic process for the index value S under the risk neutral measure is assumed
to follow the lognormal diffusion process

dS

S
= (r − q)dt+ σ dZ, (5.4.1)

where r and q are the constant riskless interest rate and dividend yield,
respectively, and σ is the constant volatility.

Let V (S, τ ) denote the value of the shout floor feature. At the shout
moment, the shout floor right is transformed into the ownership of an at-
the-money European put option. The price function of an at-the-money put
option is seen to be linearly homogeneous in S, which we write it as Sp∗(τ ).
By setting the strike price be the current asset price in the Black-Scholes put
option price formula, we obtain

p∗(τ ) = e−rτN (−d∗2) − e−qτN (−d∗1), (5.4.2a)

where

d∗1 =
r − q + σ2

2

σ

√
τ and d∗2 = d∗1 − σ

√
τ . (5.4.2b)

The linear complementarity formulation of the free boundary value problem
for the shout floor feature takes a similar form as that of an American option.
Recalling that the exercise payoff is Sp∗(τ ) and the terminal payoff is zero,
we obtain the following linear complementarity formulation for V (S, τ )

∂V

∂τ
− σ2

2
S2 ∂

2V

∂S2
− (r − q)S

∂V

∂S
+ rV ≥ 0, V ≥ Sp∗(τ ),

[
∂V

∂τ
− σ2

2
S2 ∂

2V

∂S2
− (r − q)S

∂V

∂S
+ rV

]
[V − Sp∗(τ )] = 0,

V (S, 0) = 0.

(5.4.3)

Since there is no strike price X appearing in the shout payoff, the pricing
function V (S, τ ) then becomes linearly homogeneous in S. We may write
V (S, τ ) = Sg(τ ), where g(τ ) is to be determined. By substituting this as-
sumed form of V (S, τ ) into Eq. (5.4.3), we obtain the following set of varia-
tional inequalities for g(τ ):

d

dτ
[eqτg(τ )] ≥ 0, g(τ ) ≥ p∗(τ ),

d

dτ
[eqτg(τ )] [g(τ ) − p∗(τ )] = 0,

g(0) = 0.

(5.4.4)
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The form of solution for g(τ ) depends on the analytic properties of the func-
tion eqτp∗(τ ). The derivative of eqτp∗(τ ) observes the following properties
(see Fig. 5.8).
(i) If r ≤ q, then

d

dτ
[eqτp∗(τ )] > 0 for τ ∈ (0,∞). (5.4.5)

(ii) If r > q, then there exists a unique critical value τ∗ ∈ (0,∞) such that

d

dτ
[eqτ p∗(τ )]

∣∣∣∣
τ=τ∗

= 0, (5.4.6a)

and

d

dτ
[eqτp∗(τ )] > 0 for τ ∈ (0, τ∗), (5.4.6b)

d

dτ
[eqτp∗(τ )] < 0 for τ ∈ (τ∗,∞). (5.4.6c)

The hints for the proof of these properties are given in Problem 5.34 [also
see Dai et al . (2004a)].

Fig. 5.8 Properties of the function eqτ p∗(τ ) under
(i) r ≤ q, (ii) r > q.

The price function V (S, τ ) of the shout floor takes different forms, de-
pending on whether r ≤ q or r > q.
(i) r ≤ q

By Eq. (5.4.5), we observe that
d

dτ
[eqτp∗(τ )] is strictly positive for all

τ > 0 and p∗(0) = 0. One then deduces that pricing formulation (5.4.4)
can be satisfied by

g(τ ) = p∗(τ ), τ ∈ (0,∞). (5.4.7)

(ii) r > q
By Eqs. (5.4.6b,c), we obtain in a similar manner that
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g(τ ) = p∗(τ ) for τ ∈ (0, τ∗]. (5.4.8)

However, when τ > τ∗, we cannot have g(τ ) = p∗(τ ) since this would

lead to
d

dτ
[eqτ g(τ )] =

d

dτ
[eqτp∗(τ )] ≥ 0, contradicting the result in Eq.

(5.4.6c). By Eq. (5.4.4), we must have
d

dτ
[eqτg(τ )] = 0 for τ ∈ (τ∗,∞).

Together with the auxiliary condition: g(τ∗) = p∗(τ∗), the solution is
given by

g(τ ) = e−q(τ−τ∗ )p∗(τ∗) for τ ∈ (τ∗,∞). (5.4.9)

In summary, the optimal shouting policy adopted by the holder of the
shout floor depends on the relative magnitude of r and q. When r ≤ q, the
holder should shout at once at any time and at any index value level to
install the protective floor. When r > q, there exists a critical time earlier
than which it is never optimal for the holder to shout. However, the holder
should shout at once at any index value level once τ falls to the critical value
τ∗.

5.4.2 Reset-strike put options

The reset feature embedded in the reset-strike put option allows the holder
to reset the original strike price to the prevailing asset price at the reset
moment chosen by the holder. The reset-strike put is very similar to the
shout floor since the holder receives an at-the-money put option upon reset,
except that the reset-strike put has an initial strike price X even reset does
not occur throughout the life of the contract. Similar to Eq. (5.4.3), the linear
complementarity formulation for the price function U (S, τ ) of the reset-strike
put option is given by

∂U

∂τ
− σ2

2
S2 ∂

2U

∂S2
− (r − q)S

∂U

∂S
+ rU ≥ 0 U ≥ Sp∗(τ ),

[
∂U

∂τ
− σ2

2
S2 ∂

2U

∂S2
− (r − q)S

∂U

∂S
+ rU

]
[U − Sp∗(τ )] = 0,

U (S, 0) = max(X − S, 0).

(5.4.10)

Unlike the shout floor, the terminal payoff of the reset-strike put option con-
tains the initial strike price X. Now, U (S, τ ) is no longer linear homogeneous
in S. From financial intuition, the holder should shout only when the as-
set price reaches some sufficiently high critical level S∗(τ ) to install a new
strike. Obviously, S∗(τ ) must be greater than X. Similar to the American
option models, the optimal reset boundary is not known a prior but has to
be solved in the solution procedure of the above free boundary value problem.
A schematic plot of U (S, τ ) against S is shown in Fig. 5.9.
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Fig. 5.9 The price curve of the reset-strike put touches
tangentially the line representing the at-the-money put
value at S = S∗(τ ).

Parity relation between reset-strike put and shout call
Consider the portfolio of holding a reset-strike put and a forward contract.
Both derivatives have the same maturity date, and the forward price is taken
to be the same as the strike price. The terminal payoff of this portfolio is
given by
{

max(X − ST , 0) + ST −X = max(ST −X, 0) if no reset occurs
max(St∗ − ST , 0) + ST −X = max(ST −X,St∗ −X) if reset occurs .

Here, St∗ is the prevailing asset price at the reset moment t∗. The above
payoff structure is identical to that of a shout call. Hence, the shout call
can be replicated by a combination of a reset-strike put and a forward. As
a consequence, the reset-strike put and shout call should share the same
optimal reset/shout policy. Let W (S, τ ) denote the price of the shout call.
The parity relation between the prices of reset-strike put and shout call is
given by

W (S, τ ) = U (S, τ ) + Se−qτ −Xe−rτ . (5.4.11)

Characterization of the optimal reset policy
We examine the characterization of the optimal reset boundary S∗(τ ) of the
strike-reset put option, in particular, the asymptotic behaviors at τ → 0+

and τ → ∞. Since the new strike price upon reset should not be lower than
the original strike price, we should have

S∗(τ ) ≥ X. (5.4.12)

Similar to the American call, S∗(τ ) of the reset-strike put is monotonically
increasing with respect to τ . Unlike the American call, S∗(τ ) starts at X at
τ → 0+, independent of r and q. To show the claim, we define
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D(S, τ ) = U (S, τ ) − Sp∗(τ ) (5.4.13)

and note that D(S, τ ) ≥ 0 for all S and τ . In the continuation region, D(S, τ )
satisfies

∂D

∂τ
− σ2

2
S2 ∂

2D

∂S2
− (r − q)S

∂D

∂S
+ rD = −S[p∗′(τ ) + qp∗(τ )],

0 < S < S∗(τ ), τ > 0. (5.4.14)

As τ → 0+, we have −S[p∗′(τ ) + qp∗(τ )] → ∞. Supposing S∗(0+) > X and
considering S ∈ (X,S∗(0+)), we have D(S, 0+) = 0 so that

∂D

∂τ
(S, 0+) = −S[p∗′(0+) + qp(0+)] < 0. (5.4.15)

This would imply D(S, 0+) < 0, a contradiction to D(S, τ ) ≥ 0 for all τ .
Hence, we must have S∗(0+) ≤ X. Together with Eq. (5.4.12), we conclude
that S∗(0+) = X.

Next, we examine the asymptotic behavior of S∗(τ ) at τ → ∞. Let
W∞(S) = lim

τ→∞
erτU (S, τ ). The existence of W∞(S) requires the existence of

lim
τ→∞

erτp∗(τ ). It can be shown that when r ≤ q, we have

lim
τ→∞

erτp∗(τ ) = 1, (5.4.16)

and the limit diverges when r > q. The governing differential equation for-
mulation for W∞(S) is given by

σ2

2
S2 d

2W∞

dS2
+ (r − q)S

dW∞

dS
= 0, 0 < S < S∗

∞,

W∞(0) = X, W∞(S∗
∞) = S∗

∞ and
dW∞

dS
(S∗

∞) = 1. (5.4.17)

By following similar procedures as in Sec. 5.1.3, the solution to W∞(S) can
be found to be (see Problem 5.36)

W∞(S) = X +
αα

(1 + α)1+α

S1+α

Xα
, 0 < S < S∗

∞, (5.4.18)

where

S∗
∞ =

(
1 +

1
α

)
X and α =

2(q − r)
σ2

. (5.4.19)

When r < q, S∗(τ ) is defined for all τ > 0 with the asymptotic limit(
1 +

1
α

)
X at τ → ∞. In particular, S∗

∞ becomes infinite when r = q.

Now, we consider the case r > q. Recall that it is never optimal to exercise
the shout floor when τ > τ∗ [τ∗ can be obtained by solving Eq. (5.4.6a)]. Since
the reset-strike put is more expensive than the shout floor and their exercise
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payoffs are the same, so it is also never optimal to exercise the reset-strike put
when τ > τ∗. We write the optimal reset boundary of the reset-strike put as
S∗(τ ;X), with dependence on the strike price X. WhenX = 0, it corresponds
to the shout floor and S∗(τ ; 0) is known to be zero. When X → ∞, S∗(τ ;∞)
becomes infinite since it is never optimal to reset at any asset value when
the strike price is already at infinite value. One then argues that S∗(τ ;X) is
finite when X is finite, τ < τ∗. When τ → τ∗−, S(τ ;X) becomes infinite. In
Fig. 5.10, we illustrate the behaviors of S∗(τ ) under the two separate cases:
r < q and r > q. More detialed discussion of the pricing behaviors of the
reset-strike put options can be found in Dai et al .’s paper (2004a).

Fig. 5.10 Plot of the optimal reset boundary S∗(τ ) of the
reset-strike put against τ . When r < q, S∗(τ ) is defined
for all τ and there is a finite asymptotic limit S∗

∞. When
r > q, S∗(τ ) is defined only for τ ∈ (0, τ∗).

Multi-reset put options
We consider the pricing formulation of a put option with multiple rights to
reset the strike price throughout the option’s life. Let Un(S, τ ;X) denote
the price function of the n-reset put option. Upon the jth reset, the reset
put becomes an at-the-money (j− 1)-reset put, where the strike price equals
the prevailing asset price at the reset instant. Let tj denote the time of
the jth reset and S∗

j denote the critical asset value at the reset instant t∗j .
The strike price of the reset put with j reset rights remaining is denoted
by S∗

j+1. For notational convenience, we write S∗
n+1 = X. It is obvious that

S∗
j+1 < S∗

j , j = 1, 2, · · ·, n, and Uj+1(S, τ ;X) > Uj(S, τ ;X) for all S and τ .
The price function Uj(S, τ ;X) observes linear homogeneity in S and X

so that

Uj(S, τ ;X) = XUj

(
S

X
, τ ; 1

)
. (5.4.20)

When the reset put is at-the-money, S/X = 1 and this leads to
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Uj(S, τ ;S) = SUj (1, τ ; 1). (5.4.21)

We write pj(τ ) = Uj(1, τ ; 1), j = 0, 1, · · · , n− 1. The linear complementarity
formulation of the pricing model of the n-reset put option is given by

∂Un

∂τ
− σ2

2
S2 ∂

2Un

∂S2
− (r − q)S

∂Un

∂S
+ rUn ≥ 0, Un ≥ Spn−1(τ ),

[
∂Un

∂τ
− σ2

2
S2 ∂

2Un

∂S2
− (r − q)S

∂Un

∂S
+ rUn

]
[Un − Spn−1(τ )] = 0,

Un(S, 0) = max(X − S, 0). (5.4.22)

One has to solve step by step for Un, starting from U1, U2, · · ·. For the per-
petual n-reset strike put, it is possible to obtain the optimal reset price in
closed form when r < q. Let S∗

n,∞ denote lim
τ→∞

S∗
n(τ ). For r < q, we have

S∗
n,∞ =

(
1 +

1
α

)
X

βn
, (5.4.23a)

where α =
2(q − r)
σ2

, β1 = 1 and

βn = 1 +
αα

(1 + α)1+α
β1+α

n−1 . (5.4.23b)

The hints to derive S∗
n,∞ are outlined in Problem 5.36. Taking the limit

n→ ∞, we obtain

lim
n→∞

βn = 1 +
1
α
, (5.4.24b)

giving

lim
n→∞

S∗
n,∞ = X. (5.4.24c)

Since S∗
n(τ ) is an increasing function of τ and S∗

n(τ ) ≥ X, we then deduce
that

lim
n→∞

S∗
n(τ ) = X for all τ. (5.4.25)

How to interpret the above result? When r < q, the holder of an infinite-reset
put should exercise the reset right whenever the option becomes in-the-money.
More precisely, the holder always resets whenever a new maximum value of
the asset value is realized. The terminal payoff of the infinite-reset put then
becomes max(MT

0 − ST , X − ST ), a payoff involving the lookback variable
MT

0 , where MT
0 = max

0≤t≤T
St. The pricing model of the infinite-reset put is no

longer a free boundary value problem. Rather, it becomes a lookback option
model [see Dai et al .’s paper (2003)].
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5.5 Problems

5.1 Find the value of an American vanilla put option when (i) riskless
interest rate r = 0, (ii) volatility σ = 0, (iii) strike price X = 0, (iv)
asset price S = 0.

5.2 Find the lower and upper bounds on the difference of the values of the
American put and call options on a commodity with cost of carry b.

5.3 Consider an American call option whose underlying asset price follows
a Geometric Brownian process. Show that

C(λS, τ ) −C(S, τ ) ≤ (λ − 1)S, λ ≥ 1.

5.4 Explain why an American call (put) futures option is worth more (less)
than the corresponding American call (put) option on the underlying
asset, when the cost of carry of the underlying asset is positive. Also,
why the difference in prices widens when the maturity date of the fu-
tures goes beyond the expiration date of the option.

5.5 We would like to show by heuristic arguments that the American price
function P (S, τ ) satisfies the smooth pasting condition

∂P

∂S

∣∣∣∣∣
S=S∗(τ)

= −1

at the optimal exercise price S∗(τ ). Consider the behaviors of the Amer-
ican price curve near S∗(τ ) under the following two scenarios:

(i)
∂P

∂S

∣∣∣∣∣
S=S∗(τ)

< −1 and (ii)
∂P

∂S

∣∣∣∣∣
S=S∗(τ)

> −1.

(a) When
∂P

∂S

∣∣∣∣∣
S=S∗(τ)

< −1, the price curve P (S, τ ) at value of S

close to but greater than S∗(τ ) falls below the intrinsic value line
(see the top left figure).
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(b) When
∂P

∂S

∣∣∣∣∣
S=S∗(τ)

> −1, argue why the value of the American

put option at asset price level close to S∗(τ ) can be increased by
choosing a smaller value for S∗(τ ) (see the top right figure).

Explain why both cases do not correspond to the optimal exercise strat-
egy of an American put. Hence, the slope of the American put price
curve at S∗(τ ) must satisfy the smooth pasting condition.

5.6 Explain why, when q ≥ r, an American call on a continuous dividend
paying asset which is optimally held to expiration will have zero value
at expiration (Kim, 1990).

5.7 Let P (S, τ ;X, r, q) denote the price function of an American put. Show
that P (X, τ ;S, q, r) also satisfies the Black-Scholes equation:

∂P

∂τ
=
σ2

2
S2 ∂

2P

∂S2
+ (r − q)S

∂P

∂S
− rP

together with the auxiliary conditions:

P (X, 0;S, q, r) = max(S −X, 0)
P (X, τ ;S, q, r) ≥ max(S −X, 0) for τ > 0.

Note that the auxiliary conditions are identical to those of the price
function of the American call. Hence, we can conclude that

C(S, τ ;X, r, q) = P (X, τ ;S, q, r).

Hint: Write P (S′, τ ) = P

(
1
S
, τ ;

1
X
, q, r

)
=

1
SX

P (X, τ ;S, q, r), show

that
∂

∂τ
[SXP (S′ , τ )]− σ2

2
S2 ∂2

∂S2
[SXP (S′, τ )]

− (r − q)S
∂

∂S
[SXP (S′, τ )] + rSXP (S′, τ )

= SX

[
∂P

∂τ
(S′, τ ) − σ2

2
S′2 ∂

2P

∂S′2 (S′, τ )

−(q − r)S′ ∂P

∂S′ (S
′, τ ) + qP (S′, τ )

]
.

5.8 From the put-call symmetry relation for the prices of American call
and put options derived in Problem 5.7, show that

∂C

∂S
(S, τ ;X, r, q) =

∂P

∂X
(X, τ ;S, q, r)

∂C

∂q
(S, τ ;X, r, q) =

∂P

∂r
(X, τ ;S, q, r).
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Give financial interpretation of the results.

5.9 Consider the pair of American call and put options with the same time
to expiry τ and on the same underlying asset. Assume the volatility
of the asset price to be at most time dependent. Let SC and SP be
the spot asset price corresponding to the call and put, respectively (SC

and SP need not be the same since the calendar times at which we are
comparing values need not be the same). Suppose the two options have
the same moneyness, that is,

SC

XC
=
XP

SP
,

where XC and XP are the strike price corresponding to the call and
put, respectively. Let C(SC , τ ;XC, r, q) and P (SP , τ ;XP , r, q) denote
the price function of the American call and put, respectively. Derive
the generalized put-call symmetry relation (Carr and Chesney, 1996)

C(SC , τ ;XC, r, q)√
SCXC

=
P (SP , τ ;XP , q, r)√

SPXP

.

Furthermore, let S∗
C(τ ;XC , r, q) and S∗

P (τ ;XP ,r, q) denote the optimal
exercise price of the American call and put, respectively. Show that

S∗
C (τ ;XC , r, q)S∗

P (τ ;XP , q, r) = XCXP .

This relation is a generalization of the result given in Eq. (5.1.23).

5.10 Let H denote the barrier of a perpetual American down-and-out call
option. The governing equation for the price of the perpetual American
barrier option C∞(S; r, q) is given by

σ2

2
S2 d

2C∞

dS2
+ (r − q)S

dC∞

dS
− rC∞ = 0, H < S < S∗

∞,

where S∗
∞ is the optimal exercise price. Determine S∗

∞ and find the
option price C∞(S; r, q).
Hint: The optimal exercise price is determined by maximizing the so-

lution for the perpetual American call price among all possible
exercise prices, that is,

C∞(S; r, q)

= max
S∗

∞

{
S∗
∞ −X

Hλ+S∗
∞

λ− − S∗
∞

λ+Hλ−
(Hλ+Sλ− −Hλ−Sλ+ )

}
,

where λ+ and λ− are roots of the quadratic equation:

σ2

2
λ(λ − 1) + (r − q)λ− r = 0.
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5.11 Suppose the continuous dividend paid by an asset is at the constant rate
d but not proportional to the asset price S. Show that the American call
option on the above asset would not be exercised prematurely if d < rX
where r is the riskless interest rate and X is the strike price. Under the
above condition, show that the price of the perpetual American call
option is given by (Merton, 1973, Chap. 1)

C(S,∞;X) = S − d

r

[
1 −

( 2d
σ2S

)
2r

σ2

Γ
(
2 + 2r

σ2

) M
(

2r
σ2
, 2 +

2r
σ2
,− 2d

σ2S

)]
,

where Γ and M denote the Gamma function and the confluent hyper-
geometric function, respectively.

5.12 Consider an American call option with a continuously changing strike

price X(τ ) where
dX(τ )
dτ

< 0. The auxiliary conditions for the Ameri-
can call option model are given by

C(S, τ ;X(τ )) ≥ max(S −X(τ ), 0)

and
C(S, τ ;X(0)) = max(S −X(0), 0).

Define the following new set of variables:

ξ =
S

X(τ )
and F (ξ, τ ) =

C(S, τ ;X(τ ))
X(τ )

.

Show that the governing equation for the price of the above American
call is given by

∂F

∂τ
=
σ2

2
ξ2

∂2F

∂ξ2
+ η(τ ) ξ

∂F

∂ξ
− η(τ )F,

where η(τ ) = r +
1
X

∂X

∂τ
and r is the riskless interest rate. The aux-

iliary conditions become

F (ξ, 0) = max(ξ − 1, 0) and F (ξ, τ ) ≥ max(ξ − 1, 0).

Show that if X(τ ) ≥ X(0)e−rτ , then it is never optimal to exercise
the American call prematurely. In such a case, show that the value of
the above American call is the same as that of a European call with a
fixed strike price X(0) (Merton, 1973, Chap. 1).

Hint: Show that when the time dependent function η(τ ) satisfies the

condition
∫ τ

0

η(s) ds ≥ 0, it is then never optimal to exercise the

American call prematurely.
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5.13 Consider the one-dividend American call option model. Explain why
the exercise price S∗

d , which is obtained by solving Eq. (5.1.37), de-
creases when the dividend amount D increases. Also, show that S∗

d

tends to infinity when D falls to the value X[1 − e−r(T−td)].

5.14 Give a mathematical proof to the following inequality

Cd(S̃, T − t;X) ≥ max{c(S̃, T − t;X), c(S, td − t;X)}, t < td,

which arises from the Black approximation formula for the one-dividend
American call (see Sec. 5.1.5). Here, td and T are the ex-dividend and
expiration dates, respectively; S and S̃ are the market asset price and
the asset price net of the present value of the escrowed dividend, re-
spectively.

5.15 Suppose discrete dividends of amount D1, D2, · · · , Dn are paid at the
respective ex-dividend dates t1, t2, · · · , tn and let tn+1 denote the date
of expiration T . Show that the risky component is given by

S̃ = S −
n∑

k=j+1

Dke
−r(tk−t) for t+j ≤ t ≤ t−j+1, j = 0, 1, · · · , n,

and t0 = 0.
Hint: Extend the result in Eq. (5.1.39).

5.16 Consider an American call option on an asset which pays discrete div-
idends at anticipated dates t1 < t2 < · · · < tn. Let the size of the
dividends be, respectively, D1, D2, · · · , Dn, and T = tn+1 be the time
of expiration. Show that it is never optimal to exercise the American
call at any time prior to expiration if all the discrete dividends are not
sufficiently deep, as indicated by the following inequality

Di ≤ X[1 − e−r(ti+1−ti)], i = 1, 2, · · ·, n.

5.17 In the two-dividend American call option model, we assume discrete
dividends of amount D1 and D2 are paid out by the underlying asset
at times t1 and t2, respectively. Let S̃t denote the asset price at time t,
net of the present value of escrowed dividends and S̃∗

t1 (S̃∗
t2) denote the

optimal exercise price at time t1 (t2) above which the American call
should be exercised prematurely. Let r, σ,X and T denote the riskless
interest rate, volatility of S̃, strike price and expiration time, respec-
tively. Let C(S̃t, t) denote the value of the American call at time t. Show
that S̃∗

t1 and S̃∗
t2 are given by the solution of the following non-linear

algebraic equations

C(S̃∗
t1, t1) = S̃∗

t1 [1 −N2(−a1,−b1; ρ)] +D2e
−r(t2−t1)N (a2)

−X[e−r(t2−t1)N (a2) + e−r(T−t1)N2(−a2, b2;−ρ)]

C(S̃∗
t2
, t2) = S̃∗

t2
N (v1) −Xe−r(T−t2)N (v2),



290 5 American Options

where

a2 =
ln

S̃∗
t1

S̃∗
t2

+
(
r − σ2

2

)
(t2 − t1)

σ
√
t2 − t1

, a1 = a2 + σ
√
t2 − t1,

b2 =
ln

S̃∗
t1

X
+
(
r − σ2

2

)
(T − t1)

σ
√
T − t1

, b1 = b2 + σ
√
T − t1,

v2 =
ln

S̃∗
t2

X +
(
r − σ2

2

)
(T − t2)

σ
√
T − t2

, v1 = v2 + σ
√
T − t2.

The American call price is given by (Welch and Chen, 1988)

C(S̃t, t) = S̃t [1− N3(−f1,−g1,−h1; ρ12, ρ13, ρ23)]

−X[e−r(t1−t)N (f2) + e−r(t2−t)N2(−f2, g2;−ρ12)

+ e−r(T−t)N3(−f2,−g2, h2; ρ12,−ρ13,−ρ23)]

+D1e
−r(t1−t)N (f2)

+D2e
−r(t2−t)[N (f2) +N2(−f2, g2;−ρ12)],

where

ρ12 =
√
t1 − t

t2 − t
, ρ13 =

√
t1 − t

T − t
, ρ23 =

√
t2 − t

T − t
,

f2 =
ln S̃t

S̃∗
t1

+
(
r − σ2

2

)
(t1 − t)

σ
√
t1 − t

, f1 = f2 + σ
√
t1 − t,

g2 =
ln S̃t

S̃∗
t2

+
(
r − σ2

2

)
(t2 − t)

σ
√
t2 − t

, g1 = g2 + σ
√
t2 − t,

h2 =
ln S̃t

X +
(
r − σ2

2

)
(T − t)

σ
√
T − t

, h1 = h2 + σ
√
T − t.

5.18 Consider the one-dividend American put option model where the dis-
crete dividend at time td is paid at the known rate λ, that is, the
dividend payment is λStd . Show that the slope of the optimal exer-
cise boundary of the American put at time right before td is given by
(Meyer, 2001)

lim
t→t−

d

dS∗(t)
dt

=
r

λ
X,

where r is the riskless interest rate.
Hint: Consider the balance of the gain in interest income from the

strike price and the loss in dividend over the differential time
interval 4t right before td.
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5.19 Bunch and Johnson (2000) give the following three different definitions
of the optimal exercise price of an American put.
1. It is the value of the stock price at which one is indifferent between

exercising and not exercising the put.
2. It is the highest value of the stock price for which the value of the

put is equal to the exercise price less the stock price.
3. It is the highest value of the stock price at which the put value does

not depend on time to maturity.
Give financial interpretation to the above three definitions.

5.20 Show that the delta of the price of an American put option on an asset
which pays a continuous dividend yield at the rate q is given by

∂P

∂S
= −N (−d1) −

∫ τ

0

[
(r − q)e−qξ

σ
√

2πξ
e−

d2
ξ,1
2 + qe−qξN (−dξ,1)

]
dξ,

where

d1 =
ln S

X +
(
r − q + σ2

2

)
τ

σ
√
τ

,

dξ,1 =
ln S

S∗(τ−ξ) +
(
r − q + σ2

2

)
ξ

σ
√
ξ

, dξ,2 = dξ,1 − σ
√
ξ.

Examine the sign of the delta of the early exercise premium when r ≥ q
and r < q. Give financial interpretation of the sign behaviors of the
above delta. Furthermore, show that

∂2P

∂S2
=

1
Sσ

√
2πτ

e−d2
1/2

+
∫ τ

0

[
(r − q)e−qξ

Sσ2ξ
√

2π
dξ,1e

−
d2

ξ,1
2 +

qe−qξ

Sσ
√

2πξ
e−

d2
ξ,1
2

]
dξ.

Find similar expressions for
∂P

∂σ
,
∂P

∂r
and

∂P

∂X
(Huang et al., 1996).

5.21 Consider an American put option on an asset which pays no dividend.
Show that the early exercise premium e(S, τ ;X) is bounded by

rX

∫ τ

0

e−rξN (−d̃ξ) dξ ≤ e(S, τ ;X) ≤ rX

∫ τ

0

e−rξN (−d̂ξ) dξ,

where

d̃ξ =
ln S∗(τ)

S∗(0)
+
(
r − σ2

2

)
ξ

σ
√
ξ

, d̂ξ =
ln S∗(τ)

S∗(∞)
+
(
r − σ2

2

)
ξ

σ
√
ξ

,

S∗(∞) =
X

1 + σ2

2r

, S∗(0) = X.
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5.22 Let S∗
C (∞) denote lim

τ→∞
S∗

C (τ ), where S∗
C (τ ) is the solution to the inte-

gral equation defined in Eq. (5.2.27). By taking the limit τ → ∞ of the
above integral equation, solve for S∗

C (∞). Compare the result given in
Eq. (5.1.19).

5.23 By considering the corresponding integral representation of the early
exercise premium of an American commodity option with cost of carry
b, show that
(a) when b ≥ r, r is the riskless interest rate, there is no advantage of

early exercise for the American commodity call option;
(b) advantage of early exercise always exists for the American commod-

ity put option for all values of b.

5.24 Let Cdo(S, τ ;X,H, r, q) and Puo(S, τ ;X,H, r, q) denote the price func-
tion of an American down-and-out barrier call and an American up-
and-out barrier put, respectively, both with constant barrier level H.
Show that the put-call symmetry relation for the prices of the American
barrier call and put options is given by (Gao et al ., 2000)

Cdo(S, τ ;X,H, r, q) = Puo(X, τ ;SX/H, q, r).

Let S∗
do,call (τ ;X,H, r, q) and S∗

uo,put(τ ;X,H, r, q) denote the optimal
exercise price of the American down-and-out call and American up-
and-out put, respectively. Show that

S∗
do,call (τ ;X,H, r, q) =

X2

S∗
uo,put(τ ;X,X2/H, q, r)

.

5.25 Consider an American up-and-out put option with barrier level B(τ ) =
B0e

−ατ and strike price X. Assuming that the underlying asset pays a
continuous dividend yield q, find the integral representation of the early
exercise premium. What would be the effect on the optimal exercise
price S∗(τ ;B(τ )) when B0 decreases?

5.26 Consider a down-and-in American call Cdi(S, τ ;X,B), where the down-
and-in trigger clause entitles the holder to receive an American call op-
tion with strike price X when the asset price S falls below the threshold
level B. The underlying asset pays dividend yield q and let r denote
the riskless interest rate. Let C(S, τ ;X) and c(S, τ ;X) denote the price
function of the American call and European call with strike price X,

respectively. Show that when B ≤ max
(
X,

r

q
X

)

Cdi(S, τ ;X,B)

=
(
S

B

)1−2(r−q)
σ2

[
C

(
B2

S
, τ ;X

)
− c

(
B2

S
, τ ;X

)]
+ cdi(S, τ ;X,B),
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where cdi(S, τ ;X,B) is the price function of the European down-and-
in call counterpart. Find the corresponding form of the price function
Cdi(S, τ ;X,B) when (i) B ≥ S∗(∞) and (ii) S∗(0+) < B < S∗(∞),
where S∗(τ ) is the optimal exercise boundary of the American non-
barrier call C(S, τ ;X) (Dai and Kwok, 2004b).

5.27 The exercise payoff of an American capped call with the cap L is given
by max(min(S, L ) −X, 0), L > X. Let S∗

cap(τ ) and S∗(τ ) denote the
early exercise boundary of the American capped call and its non-capped
counterpart, respectively. Show that (Broadie and Detemple, 1995)

S∗
cap(τ ) = min(S∗(τ ), L).

5.28 Consider an American call option with the callable feature, where the
issuer has the right to recall throughout the whole life of the option.
Upon recall by the issuer, the holder of the American option can choose
either to exercise his option or receive the constant cash amount K. Let
S∗

call(τ ) and S∗(τ ) denote the optimal exercise boundary of the callable
American call and its non-callable counterpart, respectively. Show that

S∗
call(τ ) = min(S∗(τ ),K +X),

where X is the strike price. Furthermore, suppose the holder is given
a notice period of length τn, where his decision to exercise the option
or receive the cash amount K is made at the end of the notice period.
Show that the optimal exercise boundary S∗

call(τ ) now becomes

S∗
call(τ ) = min(S∗(τ ), Ŝ∗(τn)),

where Ŝ∗(τn) is the solution to the algebraic equation

Ŝ∗(τn) −X −Ke−rτn = c(S, τn;K +X).

Here, c(S, τn;K +X) is the price of the European option with time to
expiry τn and strike price K+X (Kwok and Wu, 2000; Dai and Kwok,
2006a).

Hint: Note that S∗
call(τ ) cannot be greater than K +X. If otherwise,

at asset price level satisfying K+X < S < S∗
call(τ ), the intrinsic

value of the American call is above K. This represents a non-
optimal recall policy of the issuer.

5.29 Unlike usual option contracts, the holder of an installment option pays
the option premium throughout the life of the option. The installment
option is terminated if the holder chooses to discontinue the installment
payment. In normal cases, the installments are paid at predetermined
time instants within the option’s life. In this problem, we consider the
two separate cases: continuous payment stream and discrete payments.
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First, we let s denote the continuous rate of installment payment
so that the amount s∆t is paid over the interval ∆t. Let V (S, t) denote
the value of a European installment call option. Show that V (S, t) is
governed by

{
∂V
∂t + σ2

2 S
2 ∂2V

∂S2 + r ∂V
∂S − rV − s = 0 if S > S∗(t)

V = 0 if S ≤ S∗(t)
.

where S∗(t) is the critical asset price at which the holder discontinues
the installment payment optimally. Solve for the analytic price formula
when the installment option has infinite time to expiration (perpetual
installment option).

Next, suppose that installments of equal amount d are paid at
discrete instants tj, j = 1, · · · , n. Explain the validity of the following
jump condition across the payment date tj

V (S, t−j ) = max(V (S, t+j ) − d, 0).

Finally, give a sketch of the variation of the option value V (S, t)
as a function of the calendar time t at varying values of asset value S
under discrete installment payments.
Hint: There is an increase in the option value of amount d right af-

ter the installment payment. Also, it is optimal not to pay the
installment at time tj if V (S, t+j ) ≤ d.

5.30 Suppose an American put option is only allowed to be exercised
at N time instants between now and expiration. Let the current
time be zero and denote the exercisable instants by the time vector
ttt = (t1, t2, · · · , tN )T . Let Ni(dddi;Ri) denote the i-dimensional multi-
variate normal integral with upper limits of integration given by the
i-dimensional vector dddi and correlation matrix Ri. Define the diagonal
matrix Di = diag (1, · · ·1,−1), and let ddd∗i = Didddi and R∗

i = DiRiDi.
Show that the value of the above American put with N exercisable
instants is found to be (Bunch and Johnson, 1992)

P = X

N∑

i=1

e−rtiNi(ddd
∗
i2 ;R

∗
i ) − S

N∑

i=1

Ni(ddd
∗
i1 ;R

∗
i ),

where

dddi1 = (d11, d21, · · · , di1)T , ddd
∗
i1 = Didddi1 ,

dddi2 = dddi1 − σ(
√
t1,

√
t2, · · · ,

√
ti)T , ddd∗i2 = Didddi2 ,

dj1 =
ln S

S∗
tj

+
(
r + σ2

2

)
tj

σ
√
tj

, j = 1, · · · , i,
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and S∗
tj

is the optimal exercise price at tj. Also, find the expression for
the correlation matrix Ri.
Hint: When N = 3 and the exercisable instants are equally spaced, the

correlation matrix R3 is found to be

R3 =




1 1/
√

2 1/
√

3
1/

√
2 1

√
2/3

1/
√

3
√

2/3 1


 .

5.31 The approximate equation for f in the quadratic approximation method
becomes undefined when K(τ ) = 1 − e−rτ = 0, which corresponds to
r = 0. Following a similar derivation procedure as in the quadratic
approximation method, solve approximately the American option val-
uation problem for this special case of zero riskless interest rate.

5.32 Show that the approximate value of the American commodity put op-
tion based on the quadratic approximation method is given by

P̃ (S, τ ) = p(S, τ ) − S∗

q1

[
1 − e(b−r)N (−d1(S∗))

]( S

S∗

)q1

, S > S∗.

Explain why the formula holds for all values of b.
Hint: Show that

P̃ (S, τ ) = p(S, τ ) + c1KS
q1

and
∂p

∂S
(S∗, τ ) = e(b−r)τN (−d1(S∗)).

5.33 Consider the shout call option discussed in Sec. 5.4.2 (Dai et al ., 2004a).
Explain why the value of the shout call is bounded above by the fixed
strike lookback call option with the same strike X.

5.34 Show that

eqτp∗(τ ; r, q) = p∗(τ ; r − q, 0),

where p∗(τ ) is defined in Eq. (5.4.2a). To prove the results in Eqs.
(5.4.6a,b,c), it suffices to consider the sign behavior of

d

dτ
p∗(τ ; r, 0) = e−rτf(τ ),

where

f(τ ) = −rN (−d2) +
σ

2
√
τ
n(−d2),

d2 = α
√
τ , d1 = d2 + σ

√
τ and α =

r − σ2

2

σ
.
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Consider the following two cases (Dai et al ., 2004a).
(a) For r ≤ 0, show that

d

dτ
p∗(τ ; r, 0) > 0.

(b) For r > 0, show that

f ′(τ ) =
σn(−d2)

4
√
τ

[
α(α+ σ) −

1
τ

]
,

hence deduce the results in Eqs. (5.4.6b,c).

5.35 For the reset-strike put option, assuming r ≤ q, show that the early
reset premium is given by (Dai et al ., 2004a)

e(S, τ ) = Se−qτ

∫ τ

0

N (d1,τ−u)
d

du
[equp∗(u)] du,

where

d1,τ−u =
ln S

S∗(u)
+
(
r − q + σ2

2

)
(τ − u)

σ
√
τ − u

.

How to modify the formula when r > q?

5.36 Let W∞
n (S;X) = lim

τ→∞
erτUn(S, τ ;X), where Un(S, τ ;X) is the value

of the n-reset put option [see Eq. (5.4.22)]. For r < q, show that the
governing equation for W∞

n (S) is given by (Dai et al ., 2003)

σ2

2
S2 d

2W∞
n

dS2
+ (r − q)S

dW∞
n

dS
= 0, 0 < S < S∗

n,∞.

The auxiliary conditions are given by

W∞
n (S∗

n,∞) = βnS
∗
n,∞ and

dW∞
n

dS
(S∗

n,∞) = βn,

where βn = W∞
n−1(1; 1). Show that

W∞
n (S;X) = X +

αα

(1 + α)1+α

β1+α
n

Xα
S1+α

and

S∗
n,∞ =

(
1 +

1
α

)
X

βn
,

where α = 2(q− r)/σ2. The recurrence relation for βn is deduced to be

βn = 1 +
αα

(1 + α)1+α
β1+α

n−1 .
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Show that β1 = 1 and lim
n→∞

βn = 1 +
1
α

. Also, find the first few values
of S∗

n,∞.

5.37 The reload provision in an employee stock option entitles its holder

to receive
X

S∗ units of fresh “reloaded” at-the-money option from the
employer upon the exercise of the stock option. Here, X is the original
strike price and S∗ is the prevailing stock price at the exercise moment.
The “reloaded” option has the same date of expiration as the original

option. The exercise payoff is given by S∗ − X +
X

S
c(S∗, τ ;S∗, r, q).

By the linear homogeneity property of the call price function, we can
express the exercise payoff as S −X + Sĉ(τ ; r, q), where

ĉ(τ ; r, q) = e−qτN (d̂1) − e−rτN (d̂2)

and

d̂1 =
r − q + σ2

2

σ

√
τ and d̂2 =

r − q − σ2

2

σ

√
τ .

Let S∗(τ ; r, q) denote the optimal exercise boundary that separates the
stopping and continuation regions. The stopping region and the opti-
mal exercise boundary S∗(τ ) observe the following properties (Dai and
Kwok, 2006b).
1. The stopping region is contained inside the region defined by

{(S, τ ) : S ≥ X, 0 ≤ τ ≤ T}.

2. At time close to expiry, the optimal stock price is given by

S∗(0+; r, q) = X, q ≥ 0, r > 0.

3. When the stock pays dividend at constant yield q > 0, the optimal
stock price at infinite time to expiry is given by

S∗(∞; r, q) =
µ+

µ+ − 1
X,

where µ+ is the positive root of the equation:

σ2

2
µ2 +

(
r − q − σ2

2

)
µ − r = 0.

4. If the stock pays no dividend, then

(a) for r ≤ σ2

2
, S∗(τ ; r, 0) is defined for all τ > 0 and S∗(∞; r, 0) =

∞;

(b) for r >
σ2

2
, S∗(τ ; r, 0) is defined only for 0 < τ < τ∗, where τ∗

is the unique solution to the algebraic equation



298 5 American Options

σ

2
√
τ
n

(
−
r + σ2

2

σ

√
τ

)
− rN

(
r + σ2

2

σ

√
τ

)
= 0.

5.38 Consider a landowner holding a piece of land who has the right to build
a developed structure on the land or abandon the land. Let S be the
value of the developed structure and H be the constant rate of hold-
ing costs (which may consist of property taxes, property maintenance
costs, etc.). Assuming there is no fixed time horizon beyond which the
structure cannot be developed, so the value of the land can be modeled
as a perpetual American call, whose value is denoted by C(S). Let σS

denote the volatility of the lognormal process followed by S and r be the
riskless interest rate. Suppose the asset value of the developed struc-
ture can be hedged by other tradeable asset, use the riskless hedging
principle to show that the governing equation for C(S) is given by

σ2
S

2
S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC −H = 0.

Let Z denote the lower critical value of S below which it is optimal to
abandon the land. Let W be the higher critical value of S at which it is
optimal to build the structure. Let X be the amount of cash investment
required to build the structure. Explain why the auxiliary conditions
at S = Z and S = W are prescribed by

{
C(Z) = 0 and dC

dS
(Z) = 0

C(W ) = W −X and dC
dS

(W ) = 1
.

Show that the solution to the perpetual American call model is given
by

C(S) =

{ 0 if S < Z
α1S + α2S

λ − H
r if Z ≤ S ≤ W

S −X if S > W

,

where λ = − 2r
σ2

S

,W =
λ

λ− 1

(
X − H

r

)
1

1 − α1
,

Z =
λ

λ− 1
H

r

[
1 −

(
1 − rX

H

)(λ−1)/λ
]
,

α1 =
1

1 −
(
1 − rX

H

)(λ−1)/λ
, α2 = − α1

λZλ−1
.

This pricing model has two-sided free boundaries, one is associated with
the right to abandon the land and the other with the right to build the
structure.


