
CHAPTER 6
Numerical Schemes for Pricing Options

In previous chapters, closed form price formulas for a variety of option mod-
els have been obtained. However, option models which lend themselves to
a closed form price formula are limited. Frequently, option valuation must
be resorted to numerical procedures. The common numerical methods em-
ployed in option valuation include the lattice tree methods, finite difference
algorithms and Monte Carlo simulation.

The binomial schemes are most widely used in the finance community
for numerical valuation of a wide variety of option models, due primarily to
its ease of implementation and pedagogical appeal. The primary essence of
the binomial model is the simulation of the continuous asset price movement
by a discrete random walk model. Interestingly, the concept of risk neutral
valuation is imbedded naturally in the binomial model. In Sec. 6.1, we revisit
the binomial model and illustrate how to apply the binomial scheme for
valuation of options on discrete-dividend paying asset and options with early
exercise right and callable right. The asymptotic limit of the discrete binomial
model to the continuous Black-Scholes model is examined. We also consider
the extension of the binomial lattice to the trinomial lattice. The trinomial
tree simulates the underlying asset price process using a discrete three-jump
process. The forward shooting grid approach allows us to keep track of path
dependent state variables in a lattice tree. We examine how to use such
technique to price options with Parisian variant of knock-out feature and
Asian options.

The finite difference approach seeks the discretization of the differential
operators in the continuous Black-Scholes model. The numerical schemes aris-
ing from the discretization procedure can be broadly classified as either im-
plicit or explicit schemes. Each class of schemes have their merits and limita-
tions. The lattice tree schemes can be considered as explicit finite difference
schemes, though they are derived using quite different approaches. In Sec. 6.2,
various versions of finite difference schemes for option valuation are presented.
In particular, we discuss the projected successive-over-relaxation scheme and
the front-fixing method for numerical valuation of American options.

Nowadays, it is quite common to demand the computation of thousands of
option values within a short duration of time, thus providing the impetus for
developing numerical algorithms that compete favorably in terms of accuracy,
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efficiency and reliability. The theoretical concepts of order of accuracy and
numerical stability in the analysis of a numerical scheme are discussed. We
analyze the intricacies associated with the smoothing of the “kink” or “jump”
in the terminal payoff function and the avoidance of spurious oscillations.
Also, the issues of implementing the boundary conditions in barrier option
and lookback option are discussed.

The Monte Carlo method simulates the random movement of the asset
prices and provides a probabilistic solution to the option pricing models.
Since most derivative pricing problems can be formulated as computation of
the discounted expectation of the terminal payoff function, the Monte Carlo
simulation provides a direct numerical tool for pricing derivative securities,
even without a deep understanding of the nature of the pricing model. When
faced with pricing of a new derivative with complex payoffs, a market practi-
tioner can always rely on the Monte Carlo simulation procedure to generate
an estimate of the price of the new derivative, though other more efficient
numerical methods may be available when the analytic properties of the
derivative model are better explored.

One main advantage of the Monte Carlo simulation is that it can accom-
modate without much additional effort complex payoff functions. Also, the
computational cost for Monte Carlo simulation increases linearly with the
number of underlying state variables, so the method becomes more compet-
itive for multi-state option models with a large number of risky assets. The
most undesirable nature of Monte Carlo simulation is that a large number
of simulation runs are generally required in order to achieve a desired level
of accuracy. This is because the standard error of the estimate is inversely
proportional to the square root of the number of simulation runs. To reduce
the standard deviation of the estimate, there exist several effective variance
reduction techniques, like the control variate technique and the antithetic
variables technique. In Sec. 6.3, we examine how to apply these variance
reduction techniques in the context of option pricing.

It had been commonly believed that Monte Carlo simulation cannot be
used to handle the early exercise decision of an American option since one
cannot predict whether the early exercise decision is optimal when the asset
price reaches certain level at a particular instant. Recently, several effective
Monte Carlo simulation techniques have been proposed for the valuation
of American options. These include the bundling and sorting algorithm, the
method of parameterization of the optimal exercise boundary, stochastic mesh
method and least squares regression method. An account of each of these
techniques is presented at the end of Sec. 6.3.
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6.1 Lattice tree methods

We start this section by revisiting the binomial model and consider its con-
tinuous limits. We then examine how to modify the binomial schemes so as
to incorporate the discrete dividend feature, early exercise and call features.
Also, we illustrate how to construct the trinomial schemes by equating the
mean and variance of the continuous asset price process and its discrete tri-
nomial approximation. At the end of this section, we consider the forward
shooting grid approach of pricing path dependent options.

6.1.1 Binomial model revisited

In the discrete binomial pricing model, we simulate the asset price movement
by the discrete binomial process. In Sec. 2.1.4, we derive the risk neutral

probability p =
R − d

u − d
of upward move in the discrete binomial process. Here,

R = er∆t is the growth factor over one period. However, the proportional
upward jump u and downward jump d have not yet been determined. We
expect u and d to be directly related to the volatility of the continuous
diffusion process of the asset price. Such issues are explored as follows.

Let St and St+4t denote, respectively, the asset prices at the current time
t and one period 4t later. In the Black-Scholes continuous model, the asset
price dynamics is assumed to follow the Geometric Brownian motion where
St+4t

St
is lognormally distributed. Under the risk neutral measure, ln

St+4t

St

becomes normally distributed with mean
(

r − σ2

2

)
4t and variance σ24t

[see Eqs. (2.4.18a,b)],where r is the riskless interest rate and σ2 is the variance

rate. The mean and variance of
St+4t

St
are R and R2(eσ24t −1), respectively

[see Eqs. (2.3.23a,b)]. On the other hand, for the one-period binomial option
model under the risk neutral measure, the mean and variance of the asset

price ratio
St+4t

S
are

pu + (1 − p)d and pu2 + (1 − p)d2 − [pu + (1 − p)d]2,

respectively. By equating the mean and variance of the asset price ratio in
both continuous and discrete models, we obtain

pu + (1 − p)d = R (6.1.1a)

pu2 + (1 − p)d2 − R2 = R2(eσ24t − 1). (6.1.1b)

Equation (6.1.1a) leads to p =
R − d

u − d
, the same risk neutral probability which

has been determined in Sec. 2.1.4. Equations (6.1.1a,b) provide only two
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equations for the three unknowns: u, d and p. The third condition can be
chosen arbitrarily. A convenient choice is the tree-symmetry condition

u =
1
d
, (6.1.1c)

so that the lattice nodes associated with the binomial tree are symmetrical.
Writing σ̃2 = R2eσ24t, the solution to Eqs. (6.1.1a,b,c) is found to be

u =
1
d

=
σ̃2 + 1 +

√
(σ̃2 + 1)2 − 4R2

2R
, p =

R − d

u − d
. (6.1.2)

The expression for u in the above formula appears to be quite cumbersome.
It is tempting to seek a simpler formula for u, while not sacrificing the order
of accuracy. By expanding u in Taylor series in powers of

√
4t, we obtain

u = 1 + σ
√

4t +
σ2

2
4t +

4r2 + 4σ2r + 3σ4

8σ
4t

3
2 + O(4t2). (6.1.3)

Observe that the first three terms in the above Taylor series agree with those
of eσ

√
4t up to O(4t) term. This suggests the judicious choice of the following

set of parameter values (Cox et al., 1979; Chap. 2)

u = eσ
√

4t, d = e−σ
√

4t, p =
R − d

u − d
. (6.1.4)

This set of parameters appear to be simpler compared to those in formula

(6.1.2). With this new set of parameters, the variance of the price ratio
St+4t

St

in the continuous and discrete models agree up to O(4t)2. More precisely,
Eq. (6.1.1b) is now satisfied up to O(4t2) since

pu2 + (1 − p)d2 − R2eσ24t = −5σ4 + 12rσ2 + 12r2

12
4t2 + O(4t3). (6.1.5)

Other choices of parameter values have been proposed in the literature
(see Problem 6.1). They all share the same order of accuracy in approximat-
ing Eq. (6.1.1b), but their analytic expressions are more cumbersome. This
explains why the parameter values in Eq (6.1.4) are most commonly used in
binomial models.

6.1.2 Continuous limits of the binomial model

Given the parameter values for u, d and p in Eq. (6.1.4), we consider the
asymptotic limit 4t → 0 of the binomial formula

c = [pc∆t
u + (1 − p)c∆t

d ] e−r4t, (6.1.6)
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We would like to show that the Black-Scholes equation for the continuous
model is obtained as a result. First, it is necessary to perform continuation
of the grid function to continuous function such that the two functions agree
with each other at the node points. In the continuous analog, the binomial
formula can be written as

c(S, t −4t) = [pc(uS, t) + (1 − p)c(dS, t)] e−r4t. (6.1.7)

Here, for the convenience of presentation, we take the current time to be t−
∆t. Assuming sufficient continuity of c(S, t), we perform the Taylor expansion
of the binomial scheme at (S, t) as follows:

− c(S, t −4t) + [pc(uS, t) + (1 − p)c(dS, t)]e−r4t

=
∂c

∂t
(S, t)4t − 1

2
∂2c

∂t2
(S, t)4t2 + · · · − (1 − e−r4t)c(S, t)

+ e−r4t

{
[p(u− 1) + (1 − p)(d − 1)]S

∂c

∂S
(S, t)

+
1
2
[p(u − 1)2 + (1 − p)(d − 1)2]S2 ∂2c

∂S2
(S, t)

+
1
6
[p(u− 1)3 + (1 − p)(d − 1)3]S3 ∂3c

∂S3
(S, t) + · · ·

}
.

(6.1.8)

By observing that
1 − e−r4t = r4t + O(4t2), (6.1.9a)

it can be shown that

e−r4t [p(u − 1) + (1 − p)(d − 1)] = r4t + O(4t2), (6.1.9b)
e−r4t [p(u − 1)2 + (1 − p)(d − 1)2] = σ24t + O(4t2), (6.1.9c)
e−r4t [p(u − 1)3 + (1 − p)(d − 1)3] = O(4t2). (6.1.9d)

Substituting the above results into Eq. (6.1.8), we obtain

− c(S, t −4t) + [pc(uS, t) + (1 − p)c(dS, t)] e−r4t

=
[
∂c

∂t
(S, t) + rS

∂c

∂S
(S, t) +

σ2

2
S2 ∂2c

∂S2
(S, t) − rc(S, t)

]
4t + O(4t2).

(6.1.10)
Since c(S, t) satisfies the binomial formula (6.1.7), so we obtain

0 =
∂c

∂t
(S, t) + rS

∂c

∂S
(S, t) +

σ2

2
S2 ∂2c

∂S2
(S, t) − rc(S, t) + O(4t). (6.1.11)

In the limit ∆t → 0, the binomial call value c(S, t) satisfies the Black-
Scholes equation. More precisely, the binomial formula approximates the
Black-Scholes equation to first order accuracy in time.
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Asymptotic limit to the Black-Scholes price formula
We have seen that the continuous limit of the binomial formula tends to the
Black-Scholes equation. One would expect that the call price formula for the
n-period binomial model [see Eq. (2.2.35)] also tends to the Black-Scholes
call price formula in the limit n → ∞, or equivalently 4t → 0 (since n4t is
finite). Mathematically, we would like to show

lim
n→∞

[SΦ(n, k, p′) − XR−nΦ(n, k, p)] = SN (d1) − Xe−rτ N (d2), (6.1.12)

where

d1 =
ln S

X +
(
r + σ2

2

)
τ

σ
√

τ
, d2 = d1 − σ

√
τ . (6.1.13)

The proof of the above asymptotic result relies on the following well-known
result about normal approximation to binomial distribution. Let Y be a bi-
nomial random variable with parameters n and p, where n is the number of
binomial trials and p is the probability of success. For large n, Y is approxi-
mately normal with mean np and variance np(1 − p).

To prove formula (6.1.12), it suffices to show

lim
n→∞

Φ(n, k, p) = N

(
ln S

X + (r − σ2

2 )τ
σ
√

τ

)
(6.1.14a)

and

lim
n→∞

Φ(n, k, p′) = N

(
ln S

X + (r + σ2

2 )τ
σ
√

τ

)
, τ = T − t. (6.1.14b)

The proof of Eq. (6.1.14a) will be presented below while that of Eq. (6.1.14b)
is relegated to Problem 6.3.

Recall that Φ(n, k, p) is the probability that the number of upward moves
in the asset price is greater than or equal to k in the n-period binomial
model, where p is the probability of an upward move. Let j denote the random
integer variable that gives the number of upward moves during the n periods.
Consider

1 − Φ(n, k, p) = P [j < k − 1] = P

[
j − np√
np(1 − p)

<
k − 1 − np√

np(1 − p)

]
, (6.1.15)

where
j − np√
np(1 − p)

is the normalized binomial variable. Let S and S∗ denote

the asset price at the current time and n periods later, respectively. Since S
and S∗ are related by S∗ = ujdn−jS, we then have

ln
S∗

S
= j ln

u

d
+ n lnd. (6.1.16)
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For the binomial random variable j, its mean and variance are known to be

E(j) = np and var(j) = np(1−p), respectively. Since ln
S∗

S
and j are linearly

related, the mean and variance of ln
S∗

S
are given by

E

[
ln

S∗

S

]
= E[j] ln

u

d
+ n ln d = n

(
p ln

u

d
+ ln d

)
(6.1.17a)

var
(

ln
S∗

S

)
= var(j)

(
ln

u

d

)2

= np(1 − p)
(
ln

u

d

)2

. (6.1.17b)

In the limit n → ∞, the mean and variance of the logarithm of the price
ratio of the discrete binomial model and the continuous Black-Scholes model
should agree with each other, that is,

lim
n→∞

n
(
p ln

u

d
+ lnd

)
=
(

r − σ2

2

)
(T − t) (6.1.18a)

lim
n→∞

np(1 − p)
(
ln

u

d

)2

= σ2(T − t), T = t + n∆t. (6.1.18b).

Since k is the smallest non-negative integer greater than or equal to
ln X

Sdn

ln u
d

,

we have

k − 1 =
ln X

Sdn

ln u
d

− α, where 0 < α ≤ 1, (6.1.19)

so that Eq. (6.1.15) can be rewritten as

1 − Φ(n, k, p) = P [j < k − 1]

= P

[
j − np√
np(1 − p)

<
ln X

S − n(p ln u
d + ln d) − α ln u

d√
np(1 − p) ln u

d

]
.

(6.1.20)
In the limit n → ∞, or equivalently ∆t → 0, the quantities

√
np(1 − p) ln

u

d
and n

(
p ln

u

d
+ lnd

)
are finite [see Eqs. (6.1.18a,b)] while α ln

u

d
is O(

√
∆t).

By virtue of the property of normal approximation to the binomial distribu-
tion and the asymptotic results in Eqs. (6.1.18a,b), we obtain

lim
n→∞

Φ(n, k, p) = 1 − N

(
ln X

S − (r − σ2

2 )τ
σ
√

τ

)
= N




ln S
X

+
(
r − σ2

2

)
τ

σ
√

τ


 ,

(6.1.21)
where τ = T − t.
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6.1.3 Discrete dividend models

The binomial model can easily incorporate the effect of dividend yield paid by
the underlying asset (see Problem 6.2). With some simplifying but reasonable
assumptions, we can also incorporate discrete dividends into the discrete
binomial model quite effectively.

First, we consider the naive construction of the binomial tree. Let S be
the asset price at the current time which is n4t from expiry, and suppose
a discrete dividend of amount D is paid at time between one time step and
two time steps from the current time. The nodes in the binomial tree at two
time steps from the current time would correspond to asset prices

u2S − D, S − D and d2S − D,

since the asset price drops by the same amount as the dividend right after
the dividend payment (see Fig. 6.1). Extending one time step further, there
will be six nodes

(u2S − D)u, (u2S − D)d, (S − D)u, (S − D)d, (d2S − D)u, (d2S − D)d

instead of four nodes as in the usual binomial tree without discrete dividend.
This is because (u2S − D)d 6= (S − D)u and (S − D)d 6= (d2S − D)u, so
the interior nodes do not recombine. Extending one time step further, the
number of nodes will grow to nine instead of five as in the usual binomial
tree. In general, suppose a discrete dividend is paid in the future between k
and k + 1 time steps from the current time, then at k + m time steps later
from the current time, the number of nodes would be m(k + 1) rather than
k + m + 1 as in the usual reconnecting binomial tree.

Fig. 6.1 Binomial tree with single discrete dividend.

The above difficulty of nodes exploding can be circumvented by splitting
the asset price St into two parts: the risky component S̃t that is stochastic and



6.1 Lattice tree methods 307

the remaining part that will be used to pay the discrete dividend (assumed
to be deterministic) in the future. Suppose the dividend date is t∗, then at
the current time t, the risky component S̃t is given by [see Eq. (3.4.17)]

S̃t =
{

St − De−r(t∗−t), t < t∗

St, t > t∗.
(6.1.22)

Let σ̃ denote the volatility of S̃t and assume σ̃ to be constant rather than
the volatility of St itself to be constant. Now, σ̃ will be used instead of σ in
the calculation of the binomial parameters: p, u and d, and a binomial tree is
built to model the jump process for S̃t. Such assumption is similar in spirit as
the common practice of using the Black-Scholes price formula with the asset
price reduced by the present value of the dividends. Now, the nodes in the
tree for S̃t become reconnected and adding the present value of the dividend
at nodes before the dividend date will give the reconnecting tree for St.

Let S and S̃ denote the asset price and its risky component at the tip of
the binomial tree for St, respectively, and let N denote the total number of
time steps in the tree. Assume that a discrete dividend D is paid at time t∗,
which lies between the kth and (k +1)th time step. At the tip of the binomial
tree, the risky component S̃ is related to the asset price S by

S̃ = S − De−kr∆t. (6.1.23)

The risky component of the asset price at the (n, j)th node, which corresponds
to n time steps from the tip and j upward jumps, is given by

Sujdn−j − De−(k−n)r∆t1{n≤k},

n = 1, 2, · · · , N and j = 0, 1, · · · , n.

Fig. 6.2 Construction of a reconnecting binomial tree
with single discrete dividend D. Here, N = 4 and k = 2,
and let S̃ denote the risky component of the asset value at
the tip of the bonomial tree. The asset value at nodes P, Q
and R are S̃+De−2r∆t, S̃ u+De−r∆t and S̃d, respectively.
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Once the reconnecting tree for S is available, the option values at the
nodes can be found using the binomial formula using backward induction. It
is quite straightforward to generalize the above splitting approach to option
models with several discrete dividends.

6.1.4 Early exercise feature and callable feature

Recall that an American option can be terminated prematurely due to pos-
sibility of early exercise by the holder. Without the early exercise privilege,
risk neutral valuation leads to the usual binomial formula

Vcont =
pV ∆t

u + (1 − p)V ∆t
d

R
. (6.1.24)

Here, we use Vcont to represent the state of continuation value where the
option is kept alive. To incorporate the early exercise possibility embedded
in an American option, we compare at each binomial node the continuation
value Vcont with the option’s intrinsic value, which is the payoff function upon
exercise. The following simple dynamic programming procedure is applied at
each binomial node

V = max(Vcont, h(S)), (6.1.25)

where h(S) is the exercise payoff when the asset price assumes the value S.
As an example, we consider the valuation of an American vanilla put

option. First, we build the usual binomial tree which gives a discrete rep-
resentation of the stochastic movement of the asset price (with or without
dividend). Here, N denotes the number of time steps from the current time
to expiry. Let Sn

j and P n
j denote the asset price and put value at the (n, j)th

node, respectively. The intrinsic value of a vanilla put option is X−Sn
j at the

(n, j) node, where X is the strike price. Hence, the dynamic programming
procedure applied at each node is given by

P n
j = max

(
pP n+1

j+1 + (1 − p)P n+1
j

R
, X − Sn

j

)
, (6.1.26)

where n = N − 1, · · ·0, and j = 0, 1, · · · , n.
Many enhanced numerical schemes for valuation of American options have

been proposed in the literature (Dempster and Hutton, 1999). A good survey
of comparison of their numerical performance can be found in Broadie and
Detemple’s paper (1996).

Also, the binomial scheme can be easily modified to incorporate additional
embedded features in an American option contract. For example, the callable
feature entitles the issuer to buy back the American option at any time
at a predetermined call price. Upon call, the holder can choose either to
exercise the call or receive the call price as cash. Consider a callable American
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call option with call price K. To price such call, the dynamic programming
procedure applied at each node is modified as follows (Kwok and Wu, 2000;
Chap. 5)

Cn
j = min

(
max

(
pcn+1

j+1 + (1 − p)cn+1
j

R
, Sn

j − X

)
,

max(K, Sn
j − X)

)
. (6.1.27)

The first term max

(
pcn+1

n+1 + (1 − p)cn+1
j

R
, Sn

j − X

)
represents the optimal

strategy of the holder, given no call of the option by the issuer. Upon call
by the issuer, the payoff is given by the second term max(K, Sn

j − X) since
the holder can either receive cash amount K or exercise the option. From
the perspective of the issuer, he chooses to call or restrain from calling so
as to minimize the option value with reference to the possible actions of the
holder. Hence, the value of the callable call is given by taking the minimum
value of the above two terms.

There are several other alternative forms of the binomial schemes to price
the callable American call option. For details, see Problems 6.6 and 6.7.

6.1.5 Trinomial schemes

In binomial models, we assume a two-jump process for the asset price over
each discrete time step. One may query whether accuracy and reliability of
option valuation can be improved by allowing a three-jump process for the
stochastic asset price. In a trinomial model, the asset price S is assumed to
jump to either uS, mS or dS after one time period 4t, where u > m > d.
We consider a trinomial formula of option valuation of the form

V =
p1V

∆t
u + p2V

∆t
m + p3V

∆t
d

R
, R = er4t. (6.1.28)

Here, V ∆t
u denotes the option price when the asset price takes the value

uS one period later, and similar interpretation for V ∆t
m and V ∆t

d . The new
trinomial model may allow greater freedom in the selection of parameters to
achieve some desirable properties, like avoiding negative probabilities, attain-
ing a faster rate of convergence, etc. The tradeoff is lowering of computational
efficiency in general since a trinomial scheme requires more computational
steps compared to that of a binomial scheme (see Problem 6.8). Cox et al.
(1979) caution that the trinomial model (unlike the binomial model) will not
lead to an option pricing formula based solely on arbitrage considerations.
However, a direct link between the approximating process of the asset price
movement and the arbitrage strategy is not essential. In fact, any contingent
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claim can be valued by computing conditional expectation under an appro-
priate measure. If such conditional expectation is difficult to evaluate, one
may use an approximating discrete process to approximate the underlying as-
set price movement. The different approximating procedures lead to different
numerical schemes.

Recall that under the risk neutral measure, ln
St+4t

St
is normally dis-

tributed with mean
(

r − σ2

2

)
4t and variance σ24t. Alternatively, we may

write
ln St+4t = lnSt + ζ, (6.1.29)

where ζ is a normal random variable with mean
(

r − σ2

2

)
4t and variance

σ24t. Kamrad and Ritchken (1991) propose to approximate ζ by an approx-
imate discrete random variable ζa with the following distribution

ζa =

{
v with probability p1

0 with probability p2

−v with probability p3

(6.1.30)

where v = λσ
√
4t and λ ≥ 1. The corresponding values for u, m and d in

the trinomial scheme are: u = ev , m = 1 and d = e−v. To find the probability
values p1, p2 and p3, the mean and variance of ζa are chosen to be equal to
those of ζ. These lead to

E[ζa] = v(p1 − p3) =
(

r − σ2

2

)
4t (6.1.31a)

var(ζa) = v2(p1 + p3) − v2(p1 − p3)2 = σ24t. (6.1.31b)

From Eq. (6.1.31a), we see that v2(p1 − p3)2 = O(∆t2). We may drop this
term from Eq. (6.1.31b) so that

v2(p1 + p3) = σ24t, (6.1.31c)

while still maintaining O(∆t) accuracy. Without this simplication, the final
expressions for p1, p2 and p3 would become more cumbersome. Lastly, the
probabilities must be summed to one so that

p1 + p2 + p3 = 1. (6.1.32)

We then solve Eqs. (6.1.31a,c) and (6.1.32) together to obtain

p1 =
1

2λ2
+

(r − σ2

2 )
√
4t

2λσ
(6.1.33a)

p2 = 1 − 1
λ2

(6.1.33b)

p3 =
1

2λ2
−

(r − σ2

2 )
√
4t

2λσ
. (6.1.33c)
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The expressions for the probabilities appear to be much simpler than that
of Boyle’s trinomial model (see Problem 6.10). By choosing different values
for the free parameter λ, a range of probability values can be obtained. In
particular, when λ = 1, we obtain p2 = 0. In this case, the trinomial scheme
reduces to a binomial scheme.

Numerical experiments have revealed that when λ is chosen such that
the horizontal jump probability is about one-third, the errors in the approx-
imation are minimized. Though a trinomial scheme is seen to require more
computational work than that of a binomial scheme, one can show easily that
a trinomial scheme with n steps requires less computational work (measured
in terms of number of multiplications and additions) than a binomial scheme
with 2n steps (see Problem 6.8). The numerical tests performed by Kamrad
and Ritchken (1991) reveal that the trinomial scheme with n steps invariably
performs better in accuracy than the binomial scheme with 2n steps. In terms
of order of accuracy, both the binomial scheme and trinomial scheme satisfy
the Black-Scholes equation to first-order accuracy (see Problem 6.11).

Multi-state options
The extension of the above approach to two-state options is quite straightfor-
ward. First, we assume the joint density of the prices of the two underlying
assets S1 and S2 to be bivariate lognormal. Let σi be the volatility of asset
price Si, i = 1, 2 and ρ be the correlation coefficient between the two log-
normal diffusion processes. Let Si and S4t

i denote, respectively, the price of
asset i at the current time and one period 4t later. Under the risk neutral
measure, we have

ln
S4t

i

Si
= ζi, i = 1, 2, (6.1.34)

where ζi is a normal random variable with mean
(

r − σ2
i

2

)
4t and variance

σ2
i 4t. The instantaneous correlation coefficient between ζ1 and ζ2 is ρ. The

joint bivariate normal process {ζ1, ζ2} is approximated by a pair of joint
discrete random variables {ζa

1 , ζa
2} with the following distribution

ζa
1 ζa

2 probability
v1 v2 p1

v1 −v2 p2

−v1 −v2 p3

−v1 v2 p4

0 0 p5

where vi = λiσi

√
4t, i = 1, 2. There are five probability values to be deter-

mined. In our approximation procedures, we set the first two moments of the
approximating distribution (including the covariance) to the corresponding
moments of the continuous distribution. Equating the corresponding means
gives
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E[ζa
1 ] = v1(p1 + p2 − p3 − p4) =

(
r − σ2

1

2

)
4t (6.1.35a)

E[ζa
2 ] = v2(p1 − p2 − p3 + p4) =

(
r − σ2

2

2

)
4t. (6.1.35b)

By equating the variances and covariance to O(4t) accuracy, we have

var(ζa
1 ) = v2

1(p1 + p2 + p3 + p4) = σ2
14t (6.1.35c)

var(ζa
2 ) = v2

2(p1 + p2 + p3 + p4) = σ2
24t (6.1.35d)

E[ζa
1ζa

2 ] = v1v2(p1 − p2 + p3 − p4) = σ1σ2ρ4t. (6.1.35e)

In order that Eqs. (6.1.35c,d) are consistent, we must set λ1 = λ2. Writing
λ = λ1 = λ2, we have the following four independent equations for the five
probability values

p1 + p2 − p3 − p4 =
(r − σ2

1
2 )

√
4t

λσ1
(6.1.36a)

p1 − p2 − p3 + p4 =
(r − σ2

2
2 )

√
4t

λσ2
(6.1.36b)

p1 + p2 + p3 + p4 =
1
λ2

(6.1.36c)

p1 − p2 + p3 − p4 =
ρ

λ2
. (6.1.36d)

Since the probabilities must be summed to one, this gives the remaining
condition as

p1 + p2 + p3 + p4 + p5 = 1. (6.1.36e)

The solution of the above linear algebraic system of equations gives

p1 =
1
4

[
1
λ2

+
√
4t

λ

(
r − σ2

1
2

σ1
+

r − σ2
2
2

σ2

)
+

ρ

λ2

]
(6.1.37a)

p2 =
1
4

[
1
λ2

+
√
4t

λ

(
r − σ2

1
2

σ1
−

r − σ2
2
2

σ2

)
− ρ

λ2

]
(6.1.37b)

p3 =
1
4

[
1
λ2

+
√
4t

λ

(
−

r − σ2
1
2

σ1
−

r − σ2
2
2

σ2

)
+

ρ

λ2

]
(6.1.37c)

p4 =
1
4

[
1
λ2

+
√
4t

λ

(
−

r − σ2
1
2

σ1
+

r − σ2
2
2

σ2

)
− ρ

λ2

]
(6.1.37d)

p5 = 1 − 1
λ2

, λ ≥ 1 is a free parameter. (6.1.37e)
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For convenience, we write ui = evi , di = e−vi , i = 1, 2. Let V denote the
price of a two-state option with underlying asset prices S1 and S2. Also,
let V ∆t

u1u2
denote the option price at one time period later with asset prices

u1S1 and u2S2, and similar meaning for V ∆t
u1d2

, V ∆t
d1u2

and V ∆t
d1d2

. We let
V ∆t

0,0 denote the option price one period later with no jumps in asset prices.
The corresponding 5-point formula for the two-state trinomial model can be
expressed as (Kamrad and Ritchken, 1991)

V = (p1V
4t
u1u2

+ p2V
4t

u1d2
+ p3V

4t
d1d2

+ p4V
4t

d1u2
+ p5V

4t
0,0)/R. (6.1.38)

In particular, when λ = 1, we have p5 = 0 and the above 5-point formula
reduces to the 4-point formula.

The presence of the free parameter λ in the 5-point formula provides
the flexibility to explore better convergence behavior of the discrete pric-
ing formula. With proper choice of λ, Kamrad and Ritchken (1991) observe
from their numerical experiments that convergence of the numerical values
obtained from the 5-point formula to the continuous solution is invariably
smoother and more rapid than those obtained from the 4-point formula. The
extension of the present approach to three-state option models can be derived
in a similar manner (see Problem 6.14).

6.1.6 Forward shooting grid methods

For path dependent options, the option value also depends on the path func-
tion Ft = F (S, t) defined specifically for the given nature of path dependence.
For example, the path dependence may be defined by the minimum asset price
realized along a specific asset price path. Since option value depends also on
Ft, we find the value of the path dependent option at each node in the lattice
tree for all alternative values of Ft that can occur. In order that the numeri-
cal scheme competes well in terms of efficiency, it is desirable that the value
Ft+∆t can be computed easily from Ft and St+4t (that is, the path function
is Markovian) and the number of alternative values for F (S, t) cannot grow
too large with increasing number of binomial steps. The approach of append-
ing an auxiliary state vector at each node in the lattice tree to model the
correlated evolution of Ft with St is commonly called the forward shooting
grid (FSG) method .

The FSG approach is pioneered by Hull and White (1993) for pricing
American and European Asian and lookback options. A systematic frame-
work of constructing FSG schemes for pricing path dependent options is
presented by Barraquand and Pudet (1996). Forsyth et al . (2002) show that
convergence of the numerical solutions of the FSG schemes for pricing Asian
options depend on the method of interpolation of the average asset values be-
tween neighboring lattice nodes. The methods of interpolation include nearest
node interpolation, linear and quadratic interpolation. Jiang and Dai (2004)
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use the notion of viscosity solution to show uniform convergence of the FSG
schemes for pricing American and European arithmetic Asian options.

For some exotic path dependent options, like the window Parisian option
(see Problem 6.16), the governing option pricing equation cannot be derived.
However, by relating the correlated evolution of the augmented path depen-
dent state variable with the asset price, it is still possible to devise the FSG
schemes for pricing these exotic options.

Consider a trinomial tree whose probabilities of upward, zero and down-
ward jump of the asset price are denoted by pu, p0 and pd, respectively. Let
V n

j,k denote the numerical option value of the exotic path dependent option
at the nth-time level (n time steps from the tip of the tree). Also, j denotes
the j upward jumps from the initial asset value and k denotes the numbering
index for the various possible values of the augmented state variable Ft at
the (n, j)th node. Let G denote the function that describes the correlated
evolution of Ft with St over the time interval ∆t, that is,

Ft+∆t = G(Ft, St+∆t). (6.1.39)

Let g(k, j) denote the grid function which is considered as the discrete analog
of the evolution function G. The trinomial version of the FSG scheme can be
represented as follows

V n
j,k =

[
puV n+1

j+1,g(k,j+1)
+ p0V

n+1
j,g(k,j)

+ pdV
n+1

j−1,g(k,j−1)

]
e−r∆t, (6.1.40)

where e−r∆t is the discount factor over time interval ∆t. To price a specific
path dependent option, the design of the FSG algorithm requires the specifi-
cation of the grid function g(k, j). We illustrate how to find g(k, j) for various
types of path dependent options, which include options with Parisian variant
of knock-out feature and Asian options.

Options with Parisian variant of knock-out
The one-touch breaching of barrier in barrier options has the undesirable
effect of knocking out the option when the asset price spikes, no matter how
briefly the spiking occurs. Hedging barrier options may become difficult when
the asset price is very close to the barrier. In the foreign exchange markets,
market volatility may increase around popular barrier levels due to plausible
price manipulation aimed at activating knock-out.

To circumvent the spiking effect and short-period price manipulation,
various forms of Parisian knock-out provision have been proposed in the
literature. Here, knock-out is activated only when the underlying asset price
breaches the barrier for a prespecified period of time. The breaching can be
counted consecutively or cumulatively. In actual market practice, breaching is
monitored at discrete time instants rather than continuously, so the number
of breaching occurrences at monitoring instants is counted. Here, we derive
the FSG scheme for pricing option with cumulative Parisian feature. The
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construction of FSG schemes for the consecutive Parisian feature and window
Parisian feature are relegated to Problems 6.15 and 6.16. The application of
the FSG approach to price convertible bonds with Parisian variant of soft
call requirement can be found in Lau-Kwok’s paper (2004).

Cumulative Parisian feature
Let M denote the prespecified number of cumulative breaching occurrences
that is required to activate knock-out, and let k be the integer variable that
counts the number of breaching so far. Let B denote the down barrier associ-
ated with the knock-out feature. Now, the augmented path dependent state
variable at each node is the integer k. The value of k is not changed except
at time step which corresponds to a monitoring instant. Let V n

j,k denote the
value of the option with the cumulative Parisian feature at the (n, j)th node
in a trinomial tree. Let xj denote the value of x = ln S that corresponds to j
upward moves in the trinomial tree. When n∆t happens to be a monitoring
instant, the index k increases its value by 1 if the asset price S falls on or be-
low the barrier B, that is, xj ≤ ln B. To incorporate the cumulative Parisian
feature, the appropriate choice of the grid function gcum(k, j) is defined by

gcum(k, j) = k + 1{xj≤ln B}. (6.1.41)

The schematic diagram that illustrates the construction of gcum(k, j) is shown
in Fig. 6.3.

Fig. 6.3 Schematic diagram that illustrates the construc-
tion of the grid function gcum(k, j) that models the cumu-
lative Parisian feature. The down barrier lnB is placed
mid-way between two horizontal rows of trinomial nodes.
Here, the nth-time level is a monitoring instant.

When n∆t is not a monitoring instant, the trinomial tree calculations
proceed like those for usual options. Now, the FSG algorithm for pricing an
option with the cumulative Parisian feature can be represented by
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V n−1
j,k =





puV n
j+1,k + p0V

n
j,k + pdV

n
j−1,k

if n∆t is not a monitoring instant
puV n

j+1,gcum(k,j+1) + p0V
n

j,gcum(k,j) + pdV
n

j−1,gcum(k,j−1)

if n∆t is a monitoring instant

. (6.1.42)

In typical FSG calculations, it is necessary to start with V n
j,M−1, then

V n
j,M−2, · · ·, and proceed down until the index k hits 0. We compute V n

j,M−1

by setting k = M − 1 in Eq. (6.1.42) and observe that V n
j,M = 0 for all n and

j. Actually, V n
j,M−1 is the option value of the one-touch down-and-out option

at the same node.

Remarks
1. The pricing of options with continuously monitored cumulative Parisian

feature is obtained by setting all time steps to be monitoring instant.
2. The computational time required for pricing an option with cumulative

Parisian feature requring M breaching occurrences to knock out is about
M times that of an one-touch knock-out barrier option.

Floating strike arithmetic averaging Asian call
To price an Asian option, we find the option value at each node for all alter-
native values of the path function F (S, t) that can occur at that node. Now,
the number of possible values for the averaging value F at a binomial node
for arithmetic averaging options grows exponentially at 2n. Therefore, the bi-
nomial schemes that place no constraint on the number of possible F values
at a node become infeasible for arithmetic averaging options. A possible rem-
edy is to restrict the possible values for F to a certain set of predetermined
values. The option value V (S, F, t) for other values of F is obtained from the
known values of V at predetermined F values by interpolation (Barraquand
and Pudet, 1996; Forsyth et al ., 2002).

We illustrate the interpolation technique through valuation of the floating
strike arithmetic averaging call option. Here, we define

At =
1
t

∫ t

0

Su du. (6.1.43)

The terminal payoff of the Asian option is given by max(S(T ) − A(T ), 0),
where AT is the arithmetic average of S over period [0, T ]. For a given time
step ∆t, we fix

∆W = σ
√

∆t and ∆Y = ρ∆W, ρ < 1, (6.1.44a)

and define the possible values for St and At at the nth time step by

Sn
j = S0e

j∆W and An
k = S0e

k∆Y , (6.1.44b)

where j and k are integers, and S0 is the asset price at the tip of the binomial
tree. By differentiating Eq. (6.1.43) with respect to t, we obtain
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d(tAt) = St dt, (6.1.45a)

and from which we deduce the following discrete analog

At+∆t =
(t + ∆t)At + ∆t St+∆t

t + 2∆t
. (6.1.45b)

Consider the binomial procedure at node (n, j), suppose we have an upward
move in asset price from Sn

j to Sn+1
j+1 and let An+1

k+ be the corresponding
new value of At moving from An

k . Setting A0
0 = S0, the equivalence of Eq.

(6.1.45b) is given by

An+1
k+ =

(n + 1)An
k + Sn+1

j+1

n + 2
. (6.1.46a)

Similarly, for a downward move in asset price from Sn
j to Sn+1

j−1 , An
k changes

to An+1
k− where

An+1
k− =

(n + 1)An
k + Sn+1

j−1

n + 2
. (6.1.46b)

Note that An+1
k± in general does not coincide with An+1

k′ = Sek′∆Y , for some
integer k′. Suppose we define the integers k±

floor such that An+1

k±
floor

are the

largest possible An+1
k′ values less than or equal to An+1

k±
, then the integers

k+
floor and k−

floor are found to be

k±
floor = floor(k±) = floor


 ln (n+1)ek∆Y +e(j±1)∆W

n+2

∆Y


 , (6.1.47)

where floor(x) denotes the largest integer less than or equal to x.
What would be the possible range of k at the nth time step? We observe

that the average At must lie between the maximum asset value Sn
n and the

minimum asset value Sn
−n, and so k must lie between −n

ρ
≤ k ≤ n

ρ
. Except

with very small value for ρ, the number of predetermined values for At is in
general manageable.

Write `floor = floor(`) and let `ceil = `floor + 1, then An
` lies between

An
`floor

and An
`ceil

. Here, ` is a real number in general, while `floor and `ceil are
integers. We approximate cn

j,` in terms of cn
j,`floor

and cn
j,`ceil

by the following
linear interpolation formula

cn
j,` = εcn

j,`floor
+ (1 − ε)cn

j,`ceil
, (6.1.48a)

where

ε =
lnAn

` − lnAn
`floor

∆Y
. (6.1.48b)
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Following the usual risk neutral valuation approach and applying the
above linear interpolation formula (taking ` to be k+ and k−, successively),
the FSG formula for the floating strike arithmetic averaging call option is
given by

cn
j,k = e−r∆t

[
pcn+1

j+1,k+ + (1 − p)cn+1
j−1,k−

]

= e−r∆t

{
p

[
ε+cn+1

j+1,k+
ceil

+ (1 − ε+)cn+1

j+1,k+
floor

]

+ (1 − p)
[
ε−cn+1

j−1,k−
ceil

+ (1 − ε−)cn+1

j−1,k−
floor

]}
, (6.1.49)

n = N − 1, · · · , 0, j = −n, · · · , n, k is an integer between −n

ρ
and

n

ρ
, k± and

k±
floor are given by Eq. (6.1.47), and

ε± =
ln An+1

k±
− ln An+1

k±
floor

∆Y
. (6.1.50)

The final condition is

cN
j,k = SN

j − AN
k = S0e

j∆W − S0e
k∆Y , j = −N, · · · , N, (6.1.51)

k is an integer between −N

ρ
and

N

ρ
.

As a cautious remark, Forsyth et al . (2002) prove that the FSG algorithm
with nearest lattice point interpolation may exhibit large errors as the number
of time steps becomes large. They also show that when linear interpolation is
used, the FSG scheme converges to the correct solution plus a constant error
term which cannot be reduced by decreasing the size of time step.

6.2 Finite difference algorithms

Finite difference methods are popular numerical techniques for solving sci-
ence and engineering problems modeled by differential equations. The earliest
application of the finite difference methods to option valuation is performed
by Brennan and Schwartz (1978). Tavella and Randall’s text (2000) contains
a comprehensive survey of finite difference methods applied to numerical pric-
ing of financial instruments. In the construction of finite difference schemes,
we approximate the differential operators in the governing differential equa-
tion of the option model by appropriate finite difference operators, hence the
name of this approach.

In this section, we first show how to develop the family of explicit fi-
nite difference schemes for option valuation. Interestingly, the binomial and
trinomial schemes can be shown to be members in the family of explicit
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schemes. In explicit schemes, option values at nodes along the new time level
can be calculated explicitly from known option values at nodes along the old
time level. However, if the discretization of the spatial differential operators
involves option values at nodes along the new time level, then the finite dif-
ference calculations involve solution of a system of linear equations at every
time step. We discuss how implicit finite difference schemes are constructed
and the method of their solution using the effective Thomas algorithm. We
also consider how to apply finite difference methods for solving American
style option models. In the front fixing method, we apply a transformation of
variable so that the front or free boundary associated with the optimal exer-
cise price is transformed to a fixed boundary of the solution domain. Unlike
binomial and trinomial schemes, the construction procedure of finite differ-
ence scheme allows for direct incorporation of boundary conditions associated
with the option models. We illustrate the methods of implementation of the
Dirichlet condition in barrier options and Neumann condition in lookback
options. To resolve computational nuisance arising from non-differentiability
of the “initial” condition, we introduce several effective smoothing techniques
that lessen deterioration in accuracy due to non-smooth terminal payoff.

6.2.1 Construction of explicit schemes

Suppose we use the transformed variable: x = ln S, the Black-Scholes equa-
tion for the price of a European option becomes

∂V

∂τ
=

σ2

2
∂2V

∂x2
+
(

r − σ2

2

)
∂V

∂x
− rV, −∞ < x < ∞, (6.2.1a)

where V = V (x, τ ) is the option value. Here, we adopt time to expiry τ as
the temporal variable. Suppose we define W (x, τ ) = erτ U (x, τ ), then

∂W

∂τ
=

σ2

2
∂2W

∂x2
+
(

r − σ2

2

)
∂W

∂x
, −∞ < x < ∞. (6.2.1b)

To derive the finite difference algorithm, we first transform the domain
of the continuous problem: {(x, τ ) : −∞ < x < ∞, τ ≥ 0} into a discretized
domain. The infinite extent of x = ln S in the continuous problem is ap-
proximated by a finite truncated interval [−M1, M2], where M1 and M2

are sufficiently large positive constants so that the boundary conditions at
the two ends of the infinite interval can be applied with sufficient accuracy.
The discretized domain is overlaid with a uniform system of meshes or node
points (j4x, n4τ ), j = 0, 1, · · ·, N + 1, where (N + 1)4x = M1 + M2 and
n = 0, 1, 2, · · · (see Fig. 6.4). The stepwidth 4x and time step 4τ are in gen-
eral independent. In the discretized finite difference formulation, the option
values are computed only at the node points.
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x
n = 0

n = 1

n = 2

-M1

j = 0

),( τ∆∆ nxj

∆x ∆τ

M2

j = N + 1

τ

Fig. 6.4 Finite difference mesh with uniform stepwidth
∆x and time step ∆τ . Numerical option values are com-
puted at the node points (j∆x, n∆τ ), j = 1, 2, · · · , N ,
n = 1, 2, · · ·. Option values along the boundaries: j = 0
and j = N +1 are prescribed by the boundary conditions
of the option model. The “initial” values V 0

j along the
zeroth time level, n = 0, are given by the terminal payoff
function.

Let V n
j denote the numerical approximation of V (j4x, n4τ ). The con-

tinuous temporal and spatial derivatives in Eq. (6.2.1a) are approximated by
the following finite difference operators

∂V

∂τ
(j4x, n4τ ) ≈

V n+1
j − V n

j

4τ
(forward difference) (6.2.2a)

∂V

∂x
(j4x, n4τ ) ≈

V n
j+1 − V n

j−1

24x
(centered difference) (6.2.2b)

∂2V

∂x2
(j4x, n4τ ) ≈

V n
j+1 − 2V n

j + V n
j−1

4x2
(centered difference). (6.2.2c)

As an intermediate step in the discretization procedure, we also write down
the finite difference scheme that discretizes Eq. (6.2.1b) using the above dif-
ference approximations. Similarly, we let W n

j denote the numerical approxi-
mation of W (j∆x, n∆τ ). Next, by observing

W n+1
j = er(n+1)∆τ V n+1

j and W n
j = ern∆τ V n

j , (6.2.2d)

then canceling ern∆τ , we obtain the following explicit Forward-Time-Centered-
Space (FTCS) finite difference scheme
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V n+1
j =

[
V n

j +
σ2

2
4τ

4x2

(
V n

j+1 − 2V n
j + V n

j−1

)

+
(

r − σ2

2

)
4τ

24x

(
V n

j+1 − V n
j−1

)]
e−r4τ . (6.2.3)

Since V n+1
j is expressed explicitly in terms of option values at the nth time

level, one can compute V n+1
j directly from known values of V n

j−1, V n
j and

V n
j+1. Suppose we are given “initial” values V 0

j , j = 0, 1, · · · , N + 1 along the
zeroth time level, we can use scheme (6.2.3) to find values V 1

j , j = 1, 2, · · · , N
along the first time level τ = 4τ . The values at the two ends V 1

0 and V 1
N+1 are

given by the numerical boundary conditions specified for the option model. In
this sense, the boundary conditions are naturally incorporated into the finite
difference calculations. For example, the Dirichlet boundary conditions in
barrier options and Neumann boundary conditions in lookback options can be
embedded into the finite difference algorithms (see Sec. 6.2.6 for details). The
computational procedure then proceeds in a similar manner to successive time
levels τ = 24τ, 34τ, · · ·, through forward marching along the τ -direction.
This is similar to the backward (in the sense of calendar time) valuation in
the lattice tree method.

We consider the class of two-level four-point explicit schemes of the form

V n+1
j = b1V

n
j+1+b0V

n
j +b−1V

n
j−1, j = 1, 2, · · · , N, n = 0, 1, 2, · · · (6.2.4)

where b1, b0 and b−1 are coefficients specified for each individual scheme. For
example, the above FTCS scheme corresponds to

b1 =
[
σ2

2
4τ

4x2
+
(

r − σ2

2

)
4τ

24x

]
e−r∆τ ,

b0 =
[
1 − σ2 4τ

4x2

]
e−r∆τ ,

b−1 =
[
σ2

2
4τ

4x2
−
(

r − σ2

2

)
4τ

24x

]
er∆τ . (6.2.5)

An important observation is that both the binomial and trinomial schemes
are members of the family specified in Eq. (6.2.4), when the reconnecting
condition ud = 1 holds. Suppose we write 4x = ln u, then ln d = −4x; the
binomial scheme can be expressed as

V n+1(x) =
pV n(x + 4x) + (1 − p)V n(x −4x)

R
, x = ln S, and R = er4τ ,

(6.2.6)
where V n+1(x), V n(x+4x) and V n(x−4x) are analogous to c, c∆t

u and c∆t
d ,

respectively. The above representation of the binomial scheme corresponds
to the following specification of coefficients

b1 = p/R, b0 = 0 and b−1 = (1 − p)/R (6.2.7)
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in Eq. (6.2.4). Similarly, suppose we choose 4x = ln u = − ln d and m = 1,
the trinomial scheme can be expressed as

V n+1(x) =
p1V

n(x + 4x) + p2V
n(x) + p3V

n(x −4x)
R

, (6.2.8)

which also belongs to the family of explicit schemes defined in Eq. (6.2.4).
While the usual finite difference calculations give option values at all

node points along a given time level τ = n4τ , we compute the option
value at single asset value S at τ = n4τ in typical binomial/trinomial
calculations. For illustration, we consider the computational procedure for
the trinomial scheme. Suppose we write xj = ln S and n time steps are
taken to reach expiry τ = 0 from the current time. The trinomial scheme
computes V n(xj) from known values of V n−1(xj−1), V n−1(xj), V n−1(xj+1).
Down one time level, the computation of V n(xj) requires the five values
V n−2(xj−2), V n−2(xj−1), · · · , V n−2(xj+2). Deductively, the 2n + 1 values
V 0(xj−n), V 0(xj−n+1), · · · , V 0(xj+n) along τ = 0 will be involved to find
V n(xj). The triangular region in the computational domain with vertices
(xj, n4τ ), (xj−n, 0) and (xj+n, 0) is called the domain of dependence for
the computation of V n(xj) (see Fig. 6.5) since the option values at all node
points inside the domain of dependence are required for finding V n(xj). The
practice of confining computation of option values within a triangular domain
of dependence is indeed more efficient when only the option value at given S
and τ is required.

n∆τ

(xj, n∆τ)

(xj-n, 0) (xj, 0) (xj+n, 0)

Fig. 6.5 The domain of dependence of a trinomial scheme
with n time steps to expiry.

Suppose boundary nodes are not included in the domain of dependence,
then the boundary conditions of the option model do not have any effect on
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the numerical solution of the discrete model. This neglect of boundary condi-
tions does not reduce the accuracy of calculations when the boundary points
are at infinity, as in vanilla option models where the domain of definition for
x = ln S is infinite. This is no longer true when the domain of definition for
x is truncated, as in barrier option models. To achieve high level of numer-
ical accuracy, it is important that the numerical scheme takes into account
the effect of boundary conditions. We will examine the issues of numerical
approximation of auxiliary conditions in Sec. 6.2.6.

Note that the stepwidth ∆x and time step ∆τ in the binomial scheme
are dependent. In the Cox-Ross-Rubinstein scheme, they are related by
∆x = lnu = σ

√
∆τ or σ2∆τ = ∆x2. However, in the trinomial scheme,

their relation is given by λ2σ2∆τ = ∆x2, where the free parameter λ can be
chosen arbitrarily.

The explicit schemes seem to be easily implementable. However, compared
to the implicit schemes discussed in the next subsection, they exhibit lower
order of accuracy. Also, the time step in explicit schemes cannot be chosen to
be too large due to numerical stability considerations. The concepts of order
of accuracy and stability will be explored later in Sec. 6.2.5.

6.2.2 Implicit schemes and their implementation issues

Suppose the discount term −rV and the spatial derivatives are approximated
by the average of the centered difference operators at the nth and (n + 1)th

time levels

−rV

(
j4x,

(
n +

1
2

)
4τ

)
≈ − r

2
(
V n

j + V n+1
j

)

∂V

∂x

(
j4x,

(
n +

1
2

)
4τ

)
≈ 1

2

(
V n

j+1 − V n
j−1

24x
+

V n+1
j+1 − V n+1

j−1

24x

)

∂2V

∂x2

(
j4x,

(
n +

1
2

)
4τ

)
≈ 1

2

(
V n

j+1 − 2V n
j + V n

j−1

4x2

+
V n+1

j+1 − 2V n+1
j + V n+1

j−1

4x2

)
, (6.2.9a)

and the temporal derivative by

∂V

∂τ

(
j4x,

(
n +

1
2

)
4τ

)
≈

V n+1
j − V n

j

∆τ
, (6.2.9b)

we then obtain the following two-level implicit finite difference scheme
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V n+1
j = V n

j +
σ2

2
4τ

4x2

(
V n

j+1 − 2V n
j + V n

j−1 + V n+1
j+1 − 2V n+1

j + V n+1
j−1

2

)

+
(

r − σ2

2

)
4τ

24x

(
V n

j+1 − V n
j−1 + V n+1

j+1 − V n+1
j−1

2

)

− r4τ

(
V n

j + V n+1
j

2

)
,

(6.2.10)
which is commonly known as the Crank-Nicolson scheme.

The above Crank-Nicolson scheme is seen to be a member of the general
class of two-level six-point schemes of the form

a1V
n+1
j+1 + a0V

n+1
j + a−1V

n+1
j−1 = b1V

n
j+1 + b0V

n
j + b−1V

n
j−1,

j = 1, 2, · · · , N, n = 0, 1, · · · (6.2.11)

One can observe easily that the Crank-Nicolson scheme corresponds to

a1 = − σ2

4
∆τ

∆x2
−
(

r − σ2

2

)
∆τ

4∆x
,

a0 = 1 +
σ2

2
∆τ

∆x2
+

r

2
∆τ,

a−1 = − σ2

4
∆τ

∆x2
+
(

r − σ2

2

)
∆τ

4∆x
, (6.2.12a)

and

b1 =
σ2

4
∆τ

∆x2
+
(

r − σ2

2

)
∆τ

4∆x
,

b0 = 1 − σ2

2
∆τ

∆x2
− r

2
∆τ,

b−1 =
σ2

4
∆τ

∆x2
−
(

r − σ2

2

)
∆τ

4∆x
. (6.2.12b)

A wide variety of implicit finite difference schemes of the class depicted in
Eq. (6.2.11) can be derived in a systematic manner (Kwok and Lau, 2001b).

Suppose values for V n
j are all known along the nth time level, the solution

for V n+1
j requires the inversion of a tridiagonal system of equations. This

explains the use of the term implicit for this class of schemes. In matrix
form, the two-level six-point scheme can be represented as




a0 a1 0 · · · · · · 0
a−1 a0 a1 0 · · · 0

· · ·
· · ·

· · ·
0 · · · · · · 0 a−1 a0







V n+1
1

V n+1
2

·
·
·

V n+1
N




=




c1

c2

·
·
·

cN




, (6.2.13)
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where

c1 = b1V
n
2 + b0V

n
1 + b−1V

n
0 − a−1V

n+1
0 ,

cN = b1V
n
N+1 + b0V

n
N + b−1V

n
N−1 − a1V

n+1
N+1,

cj = b1V
n
j+1 + b0V

n
j + b−1V

n
j−1, j = 2, · · · , N − 1. (6.2.14)

The solution of the above tridiagonal system can be effected by the well
known Thomas algorithm. The algorithm is an efficient implementation of the
Gaussian elimination procedure, the details of which are outlined as follows.

Thomas algorithm
Consider the solution of the following tridiagonal system of the form

−ajVj−1 + bjVj − cjVj+1 = dj, j = 1, 2, · · ·N, (6.2.15)

with V0 = VN+1 = 0. This form is more general in the sense that the coeffi-
cients can differ among equations. In the first step of elimination, we reduce
the system to the upper triangular form by eliminating Vj−1 in each of the
equations. Starting from the first equation, we can express V1 in terms of V2

and other known quantities. This relation is then substituted into the second
equation giving a new equation involving V2 and V3 only. Again, we express
V2 in terms of V3 and some known quantities. We then substitute into the
third equation, . . ., and so on.

Suppose the first k equations have been reduced to the form

Vj − ejVj+1 = fj , j = 1, 2, · · · , k. (6.2.16a)

We use the kth reduced equation to transform the original (k + 1)th equation
to the same form, namely

Vk+1 − ek+1Vk+2 = fk+1. (6.2.16b)

Now, we consider

Vk − ekVk+1 = fk (6.2.17a)

and

−ak+1Vk + bk+1Vk+1 − ck+1Vk+2 = dk+1, (6.2.17b)

the elimination of Vk from these two equations gives a new equation involving
Vk+1 and Vk+2, namely,

Vk+1 −
ck+1

bk+1 − ak+1ek
Vk+2 =

dk+1 + ak+1fk

bk+1 − ak+1ek
. (6.2.18)

Comparing Eqs. (6.2.16b) and (6.2.18), and replacing the dummy variable
k + 1 by j, we can deduce the following recurrence relations for ej and fj:



326 6 Numerical Schemes for Pricing Options

ej =
cj

bj − ajej−1
, fj =

dj + ajfj−1

bj − ajej−1
, j = 1, 2, · · ·N. (6.2.19)

Corresponding to the boundary value V0 = 0, we must have

e0 = f0 = 0. (6.2.20)

Starting from the above initial values, the recurrence relations (6.2.19) can
be used to find all values ej and fk, k = 1, 2, · · ·, N . Once the system is in
an upper triangular form, we can solve for VN , VN−1, · · ·V1, successively by
backward substitution, starting from VN+1 = 0.

The Thomas algorithm is a very efficient algorithm where the tridiagonal
system (6.2.13) can be solved with 4 (add/subtract) and 6 (multiply/divide)
operations per node point. Compared to the explicit schemes, it takes about
twice the number of operations per time step. The solution of a tridiagonal
system required by an implicit scheme does not add much computational
complexity.

On the control of growth of roundoff errors, we observe that the calcu-
lations would be numerically stable provided that |ej| < 1 so that error in
Vj+1 will not be magnified and propagated to Vj [see Eq. (6.2.17a)]. A set of
sufficient conditions to guarantee |ej| < 1 is given by

aj > 0, bj > 0, cj > 0 and bj > aj + cj. (6.2.21)

Fortunately, the above conditions can be satisfied easily by the tridiagonal
system (6.2.13) by the appropriate choices of ∆τ and ∆x in the Crank-
Nicolson scheme.

6.2.3 Front fixing method and point relaxation method

In this subsection, we consider several numerical approaches for solving Amer-
ican option models using finite difference methods. The difficulties in the con-
struction of numerical algorithms for solving American style option models
arise from the unknown optimal exercise prices. First, we discuss the front
fixing method, where a transformation of the independent variable is applied
so that the free boundary associated with the optimal exercise prices is con-
verted into a fixed boundary. The extension of the front fixing method to
pricing of convertible bonds is reported by Zhu and Sun (1999). Recall that
in the binomial/trinomial algorithm for pricing an American option, a dy-
namic programming procedure is applied at each node to determine whether
the continuation value is less than the intrinsic value. If this is so, the intrin-
sic value is taken as the option value. We have difficulty in implementing the
above dynamic programming procedure when an implicit scheme is employed
since option values are obtained implicitly. We examine how the difficulty can
be resolved by a point relaxation scheme. The third approach is called the
penalty method, where we append an extra penalty term into the govern-
ing equation. In the limit, the resulting solution is guaranteed to satisfy the
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constraint that its value cannot be below the exercise payoff (see Problem
6.28).

Front fixing method
We consider the construction of the front fixing algorithm for finding the op-
tion value and the associated optimal exercise boundary S∗(τ ) of an American
put. For simplicity, we take the strike price to be unity. This is equivalent
to normalize the underlying asset price and option value by the strike price.
In the continuation region, the put value P (S, τ ) satisfies the Black-Scholes
equation

∂P

∂τ
− σ2

2
S2 ∂2P

∂S2
− rS

∂P

∂S
+ rP = 0, τ > 0, S∗(τ ) < S < ∞,(6.2.22)

subject to the boundary conditions

P (S∗(τ ), τ ) = 1 − S∗(τ ),
∂P

∂S
(S∗(τ ), τ ) = −1, lim

S→∞
P (S, τ ) = 0, (6.2.23a)

and initial condition

P (S, 0) = 0 for S∗(0) < S < ∞, (6.2.23b)

with S∗(0) = 1. We apply the transformation of the state variable: y =

ln
S

S∗(τ )
so that y = 0 at S = S∗(τ ). Now, the free boundary S = S∗(τ )

becomes the fixed boundary y = 0, hence the name of this method. In terms
of the new independent variable y, the above governing equation becomes

∂P

∂τ
− σ2

2
∂2P

∂y2
−
(

r − σ2

2

)
∂P

∂y
+ rP =

S∗′
(τ )

S∗(τ )
∂P

∂y
, (6.2.24)

subject to the new set of auxiliary conditions

P (0, τ ) = 1 − S∗(τ ),
∂P

∂y
(0, τ ) = −S∗(τ ), P (∞, τ ) = 0, (6.2.25a)

P (y, 0) = 0 for 0 < y < ∞. (6.2.25b)

The non-linearity in the American put model is revealed by the non-linear

term
S∗′

(τ )
S∗(τ )

∂P

∂y
. Along the boundary y = 0, we have the continuity of P ,

∂P

∂y
and

∂P

∂τ
so that

∂2P

∂y2
(0+, τ ) observes the relation

σ2

2
∂2P

∂y2
(0+, τ ) =

∂

∂τ
[1 − S∗(τ )] −

(
r − σ2

2

)
[−S∗(τ )]

+ r[1− S∗(τ )] − S∗′
(τ )

S∗(τ )
[−S∗(τ )]

= r − σ2

2
S∗(τ ). (6.2.26)



328 6 Numerical Schemes for Pricing Options

This derived relation is used to determine S∗(τ ) once we have obtained
∂2P

∂y2
(0+, τ ).

The direct Crank-Nicolson discretization of Eq. (6.2.24) would result in a
non-linear algebraic system of equations for the determination of V n+1

j due to

the presence of the non-linear term
S∗′

(τ )
S∗(τ )

∂P

∂y
. To circumvent the difficulties

while maintaining the same order of accuracy as that of the Crank-Nicholson
scheme, we adopt a three-level scheme of the form

P n+1
j − P n−1

j

2∆τ
−
[
σ2

2
D+D− +

(
r − σ2

2

)
D0 − r

]
P n+1

j + P n−1
j

2

=
S∗

n+1 − S∗
n−1

2∆τS∗
n

D0P
n
j , (6.2.27)

where S∗
n denotes the numerical approximation to S∗(n∆τ ), while D+, D−

and D0 are discrete difference operators defined by

D+ =
1

∆y
(E1 − I), D− =

1
∆y

(I − E−1),

D0 =
1

2∆y
(E1 − E−1). (6.2.28)

Here, I denotes the identity operator and Ei, i = −1, 1, denotes the spatial
shifting operator on a discrete function Pj, where EiPj = Pj+i.

The discretization of the value matching condition, smooth pasting con-
dition and the boundary equation (6.2.26) lead to the following system of
equations that relate P n

−1, P
n
0 , P n

1 and S∗
n:

P n
0 = 1 − S∗

n (6.2.29a)
P n

1 − P n
−1

2∆y
= −S∗

n (6.2.29b)

σ2

2

[
P n

1 − 2P n
0 + P n

−1

∆y2

]
+

σ2

2
S∗

n − r = 0. (6.2.29c)

Here, P n
−1 is a fictitious value outside the computational domain. By elimi-

nating P n
−1, we obtain

P n
1 = α − βS∗

n, n ≥ 1, (6.2.30a)

where

α = 1 +
∆y2

σ2r
and β =

1 + (1 + ∆y)2

2
. (6.2.30b)

Once P n
1 is known, we can find S∗

n using (6.2.30a) and P n
0 using (6.2.29a).

For the boundary condition at the right end of the computational domain, we
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observe that the American put value tends to zero when S is sufficiently high.
Therefore, we choose M to be sufficiently large such that we set P n

M+1 = 0
with sufficient accuracy.

Let Pn = (P n
1 P n

2 · · · P n
M)T and e1 = (1 0 · · · 0)T . By putting

all the auxiliary conditions into the finite difference scheme (6.2.27), we would
like to show how to calculate Pn+1 from known values of Pn and Pn−1. First,
we define the following parameters

a = µσ2 + r∆τ, b =
µ

2

[
σ2 − ∆y

(
r − σ2

2

)]
,

c =
µ

2

[
σ2 + ∆y

(
r − σ2

2

)]
, (6.2.31)

where µ =
∆τ

∆y2
. Also, we define the tridiagonal matrix

A =




a −c 0 · · · · · · 0
−b a −c 0 · · · 0
0 −b a −c 0 · · ·
...

. . . . . . . . . . . .
...

0 · · · · · · −b a −c
0 0 · · · 0 −b a




. (6.2.32)

In terms of A, the finite difference scheme (6.2.27) can be expressed as

(I + A)Pn+1 = (I − A)Pn−1 + bP n−1
0 e1

+ bP n+1
0 e1 + gnD0Pn, n > 1, (6.2.33)

where gn =
S∗

n+1 − S∗
n−1

S∗
n

. By inverting the matrix (I + A), Eq. (6.2.33) can

be expressed as

Pn+1 = f1 + bP n+1
0 f2 + gnf3 (6.2.34)

where

f1 = (I + A)−1[(I − A)Pn−1 + bP n−1
0 e1],

f2 = (I + A)−1e1,

f3 = (I + A)−1D0Pn. (6.2.35)

Note that P n+1
0 and S∗

n+1 can be expressed in terms of P n+1
1 using Eqs.

(6.2.29a) and (6.2.30a).
Since Eq. (6.2.34) is a three-level scheme, we need P1 in addition to P0

to initialize the computation. To maintain overall second order accuracy, we
employ the following two-step predictor-corrector technique to obtain P1:
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(
I +

A

2

)
P̃ =

(
I − A

2

)
P0 +

b

2
P̃0e1 + g̃D0P0,

(
I +

A

2

)
P1 =

(
I − A

2

)
P0 +

b

2
P 1

0 e1 + g1D0

(
P̃ + P0

2

)
, (6.2.36)

where the provisional values and g1 are given by

P̃0 = 1 − S̃∗
0 , S̃∗

0 =
α − P̃1

β
,

g̃ =
S̃∗

0 − S∗
0

S∗
0

and g1 =
S∗

1 − S∗
0

S̃∗
0 +S∗

0
2

. (6.2.37)

Projected successive-over-relaxation method
Consider an implicit finite difference scheme in the form

a−1Vj−1 + a0Vj + a1Vj+1 = dj, j = 1, 2, · · · , N, (6.2.38)

where the superscript “n + 1” is omitted for brevity, and dj represents the
known quantities. Instead of solving the tridiagonal system by direct elimina-
tion (Thomas algorithm), one may choose to use the iterative method. The
Gauss-Seidel iterative procedure produces the kth iterate of Vj by

V
(k)
j =

1
a0

(
dj − a−1V

(k)
j−1 − a1V

(k−1)
j+1

)

= V
(k−1)
j +

1
a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
,(6.2.39)

where the last term in the above equation represents the correction made
on the (k − 1)th iterate of Vj . To accelerate the rate of convergence of the
iteration, we multiply the correction term by a relaxation parameter ω. The
corresponding iterative procedure becomes

V
(k)
j = V

(k−1)
j +

ω

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
,

0 < ω < 2. (6.2.40)

This procedure is called the successive-over-relaxation. As a necessary con-
dition for convergence, the relaxation parameter ω must be chosen between
0 and 2.

Let hj denote the intrinsic value of the American option at the jth node.
To incorporate the constraint that the option value must be above the in-
trinsic value, the dynamic programming procedure in combination with the
above relaxation procedure is then designed to be
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V
(k)
j

= max
(

V
(k−1)
j +

ω

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
, hj

)
.(6.2.41)

We perform a sufficient number of iterations until the following termination
criterion is met:

√√√√
N∑

j=1

(
V

(k)
j − V

(k−1)
j

)2

< ε, ε is some small tolerance value.

The convergent value V
(k)
j is then taken to be the numerical solution for Vj.

The above iterative scheme is called the projected successive-over-relaxation
method .

6.2.4 Truncation errors and order of convergence

The local truncation error of a given numerical scheme is obtained by sub-
stituting the exact solution of the continuous problem into the numerical
scheme. Let V (j∆x, n∆τ ) denote the exact solution of the continuous Black-
Scholes equation. We illustrate the procedure of finding the local truncation
error of the explicit FTCS scheme by substituting the exact solution into the
explicit scheme. The local truncation error at the node point (j∆x, n∆τ ) is
given by

T (j∆x, n∆τ )

=
V (j∆x, (n + 1)∆τ ) − V (j∆x, n∆τ )

∆τ

− σ2

2
V ((j + 1)∆x, n∆τ )− 2V (j∆x, n∆τ ) + V ((j − 1)∆x, n∆τ )

∆x2

−
(

r − σ2

2

)
V ((j + 1)∆x, n∆τ )− V ((j − 1)∆x, n∆τ )

2∆x

+ rV (j∆x, n∆τ ). (6.2.42)

We then expand each term by peforming the Taylor expansion at the node
point (j∆x, n∆τ ). After some cancellation of terms, we obtain

T (j∆x, n∆τ )

=
∂V

∂τ
(j∆x, n∆τ ) +

∆τ

2
∂2V

∂τ2
(j∆x, n∆τ ) + O

(
∆τ2

)

− σ2

2

[
∂2V

∂x2
(j∆x, n∆τ ) +

∆x2

12
∂4V

∂x4
(j∆x, n∆τ ) + O(∆x4)

]

−
(

r − σ2

2

)[
∂V

∂x
(j∆x, n∆τ ) +

∆x2

3
∂3V

∂x3
(j∆x, n∆τ ) + O(∆x4)

]

+ rV (j∆x, n∆τ ). (6.2.43)
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Since V (j∆x, n∆τ ) satisfies the Black-Scholes equation, this leads to

T (j∆x, n∆τ ) =
∆τ

2
∂2V

∂τ2
(j∆x, n∆τ )− σ2

24
∆x2∂4V

∂x4
(j∆x, n∆τ )

−
(

r − σ2

2

)
∆x2

3
∂3V

∂x3
(j∆x, n∆τ ) + O(∆τ2)

+ O(∆x4). (6.2.44)

The local truncation error measures the discrepancy that the continuous so-
lution does not satisfy the numerical scheme at the node point.

A necessary condition for the convergence of the numerical solution to the
continuous solution is that the local truncation error of the numerical scheme
must tend to zero for vanishing stepwidth and time step. In this case, the
numerical scheme is said to be consistent . The order of accuracy of a scheme
is defined to be the order in powers of ∆x and ∆τ in the leading truncation
error terms. Suppose the leading truncation terms are O(∆τk, ∆xm), then the
numerical scheme is said to be kth order time accurate and mth order space
accurate. From Eq. (6.2.44), we observe that the explicit FTCS scheme is first
order time accurate and second order space accurate. Suppose we choose ∆τ
to be the same order as ∆x2, that is, ∆τ = λ∆x2 for some finite constant λ
(recall that the same relation between ∆τ and ∆x has been adopted by the
trinomial scheme), then the leading truncation error terms in Eq. (6.2.44)
become O(∆τ ).

Using a similar technique of performing Taylor expansion, one can show
that all versions of the binomial scheme are first order time accurate (recall
that ∆τ and ∆x are dependent in binomial schemes). This is not surprising
since we have done similar error analysis in Sec. 6.1, though the converse
argument has been used. In the earlier analysis, we find to what extent the
numerical solution from the binomial scheme satisfies the continuous Black-
Scholes equation. Either approach gives the same conclusion on the order of
accuracy.

For the implicit Crank-Nicolson scheme, it can be shown that it is second
order time accurate and second order space accurate (see Problem 6.21). The
highest order of accuracy that can be achieved for a two-level six-point scheme
is known to be O(∆τ2, ∆x4) (see the compact scheme given in Problem 6.22).
With regard to accuracy consideration, higher order schemes should be pre-
ferred over lower order schemes.

Suppose the leading truncation error terms of a numerical scheme are
O(∆τm), m is some positive integer, one can show from more advanced the-
oretical analysis that the numerical solution V n

j (∆τ ) using time step ∆τ has
the asymptotic expansion of the form

V n
j (∆τ ) = V n

j (0) + K∆τm + O(∆τm+1), (6.2.45a)

where V n
j (0) is visualized as the exact continuous solution obtained in the

limit ∆τ → 0, and K is some constant independent of ∆τ . Suppose we
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perform two numerical calculations using time step ∆τ and
∆τ

2
successively,

it is easily seen that

V n
j (0) − V n

j (∆τ ) ≈ 2m

[
V n

j (0) − V n
j

(
∆τ

2

)]
. (6.2.45b)

That is, the error in the numerical solution of a mth-order time accurate

scheme is reduced by a factor of
1

2m
when we reduce the time step by a

factor of
1
2
.

6.2.5 Numerical stability and oscillation phenomena

A numerical scheme must be consistent in order that the numerical solution
converges to the exact solution of the underlying differential equation. How-
ever, consistency is only a necessary but not sufficient condition for conver-
gence. The roundoff errors incurred during numerical calculations may lead
to the blow up of the solution and erode the whole computation. Besides
the analysis of the truncation error, it is necessary to analyze the stability
properties of a numerical scheme. Loosely speaking, a scheme is said to be
stable if roundoff errors are not amplified in numerical computation. For a
linear evolutionary differential equation, like the Black-Scholes equation, the
Lax Equivalence Theorem states that stability is the necessary and sufficient
condition for the convergence of a consistent difference scheme.

Fig. 6.6 Spurious oscillations in numerical solution of
option price.

Another undersirable feature in the behaviors of the finite difference so-
lution is the occurrence of spurious oscillations. It is possible to generate
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negative option values even if the scheme is stable (see Fig. 6.6). The oscil-
lation phenomena in the numerical calculations of barrier and Asian option
models are discussed in the papers by Zvan et al . (1998, 2000).

Fourier method of stability analysis
There exists a huge body of literature on stability analysis of numerical
schemes, and different notions of stability have also been defined. Here, we
only discuss the Fourier method of stability analysis. The Fourier method is
based on the assumption that the numerical scheme admits a solution of the
form

V n
j = An(k)eikj∆x, (6.2.46)

where k is the wavenumber and i =
√
−1. The von Neumann stability crite-

rion examines the growth of the above Fourier component. Substituting Eq.
(6.2.46) into the two-level six-point scheme (6.2.11), we obtain

G(k) =
An+1(k)
An(k)

=
b1e

ik∆x + b0 + b1e
−ik∆x

a1eik∆x + a0 + a−1e−ik∆x
, (6.2.47)

where G(k) is the amplification factor which governs the growth of the Fourier
component over one time period. The strict von Neumann stability condition
is given by

|G(k)| ≤ 1, (6.2.48)

for 0 ≤ k∆x ≤ π. Henceforth, we write β = k∆x.
We now apply the Fourier stability analysis to study the stability prop-

erties of the Cox-Ross-Rubinstein binomial scheme and the implicit Crank-
Nicolson scheme.

Cox-Ross-Rubinstein binomial scheme
The corresponding amplification factor of the Cox-Ross-Rubinstein binomial
scheme is

G(β) = (cos β + iq sin β)e−r∆τ , q = 2p − 1. (6.2.49)

The von Neumann stability condition requires

|G(β)|2 =
[
1 + (q2 − 1) sin2β

]
e−2r∆τ ≤ 1, 0 ≤ β ≤ π. (6.2.50)

When 0 ≤ p ≤ 1, we have |q| ≤ 1 so that |G(β)| ≤ 1 for all β. Under this
condition, the scheme is guaranteed to be stable in the von Neumann sense.
However, suppose we choose p > 1, the binomial scheme becomes unstable
when

p =
er∆τ − e−σ

√
∆τ

eσ
√

∆τ − e−σ
√

∆τ
>

er∆τ + 1
2

. (6.2.51)
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It seems intractable to solve for ∆τ explicitly in terms of r and σ for deducing
a constraint on ∆τ as a stability condition. However, at least we have deduced
a sufficient condition for von Neumann stability: non-occurrence of negative
probability values in the binomial scheme.

Crank-Nicolson scheme
The corresponding amplification factor of the Crank-Nicolson scheme is found
to be

G(β) =
1 − σ2 ∆τ

∆x2 sin2 β
2

+
(
r − σ2

2

)
∆τ
2∆x

i sin β − r
2
∆τ

1 + σ2 ∆τ
∆x2 sin2 β

2 −
(
r − σ2

2

)
∆τ
2∆xi sin β + r

2∆τ
. (6.2.52)

The von Neumann stability condition requires

|G(β)|2 =

(
1 − σ2 ∆τ

∆x2 sin2 β
2
− r

2
∆τ
)2

+
(
r − σ2

2

)2
∆τ2

4∆x2 sin2 β
(
1 + σ2 ∆τ

∆x2 sin2 β
2 + r

2∆τ
)2

+
(
r − σ2

2

)2 ∆τ2

4∆x2 sin2 β

≤ 1,

0 ≤ β ≤ π. (6.2.53)

It is easily seen that the above condition is satisfied for any choices of ∆τ
and ∆x. Hence, the Crank-Nicolson scheme is unconditionally stable. In other
words, numerical stability (in von Neumann sense) is ensured without any
constraint on the choice of ∆τ .

The implicit Crank-Nicolson scheme is observed to have second order
temporal accuracy and unconditional stability. Also, the implementation of
the numerical computation can be quite efficient with the use of the Thomas
algorithm. Apparently, practitioners should favor the Crank-Nicolson scheme
over other conditionally stable and first order time accurate explicit schemes.
Unfortunately, the numerical accuracy of the finite difference solution can
be much deteriorated due to non-smooth property of the terminal payoff
function in most option models. The issues of implementation of the auxiliary
conditions in option pricing using finite difference schemes are discussed in
Sec. 6.2.6.

Spurious oscillations of numerical solution
It is relatively easy to find the sufficient conditions for non-appearance of
spurious oscillations in the numerical solution of a two-level explicit scheme.
The following theorem reveals the relation between the signs of the coefficients
in the explicit scheme and spurious oscillations of the computed solution
(Kwok and Lau, 2001b).

Theorem
Suppose the coefficients in the two-level explicit scheme (6.2.4) are all non-
negative, and the initial values are bounded, that is, max

j
|V 0

j | ≤ M for some

constant M ; then
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max
j

|V n
j | ≤ M for all n ≥ 1. (6.2.54)

The proof of the above theorem is quite straightforward. From the explicit
scheme, we deduce that

|V n+1
j | ≤ |b−1| |V n

j−1|+ |b0| |V n
j | + |b1| |V n

j+1|, (6.2.55a)

and so

max
j

|V n+1
j | ≤ b−1 max

j
|V n

j−1| + b0 max
j

|V n
j |+ b1 max

j
|V n

j+1|(6.2.55b)

since b−1, b0 and b1 are non-negative. Let En denote max
j

|V n
j |, Ineq. (6.2.55b)

can be expressed as

En+1 ≤ b−1E
n + b0E

n + b1E
n = En (6.2.56)

since b−1 + b0 + b1 = 1. Deductively, we obtain

En ≤ En−1 ≤ · · · ≤ E0 = max
j

|V 0
j | = M. (6.2.57)

What happens when one or more of the coefficients of the explicit scheme
become negative? For example, we take b0 < 0, b−1 > 0 and b1 > 0, and let
V 0

0 = ε > 0 and V 0
j = 0, j 6= 0. At the next time level, V 1

−1 = b1ε, V
1
0 = b0ε

and V 1
1 = b−1ε, where the sign of V 1

j alternates with j. This alternating
sign property can be shown to persist at all later time levels. In this way, we
deduce that

|V n+1
j | = b−1|V n

j−1| − b0|V n
j | + b1|V n

j+1|. (6.2.58)

We sum over all values of j of the above equation and let Sn =
∑

j

|V n
j |. As

a result, we obtain

Sn+1 = (b−1 − b0 + b1)Sn = (1 − 2b0)Sn. (6.2.59)

Note that 1 − 2b0 > 1 since b0 < 0. Deductively, we obtain

Sn = (1 − 2b0)nS0 = (1 − 2b0)nε, (6.2.60)

and as n → ∞, Sn → ∞. The solution values oscillate in signs at neighboring
nodes, and the oscillation amplitudes grow with increasing number of time
steps.
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6.2.6 Numerical approximations of auxiliary conditions

The errors observed in the finite difference solution may arise from various
sources. The major source is the truncation error, which stems from the dif-
ference approximation of the differential operators. Another source comes
from the numerical approximation of the auxiliary conditions, referring to
the terminal payoff in all types of options and boundary conditions in path
dependent options. It is commonly observed that numerical option values ob-
tained from trinomial or finite difference calculations exhibit wavy or erratic
pattern of convergence to the continuous solutions. Heston and Zhou (2000)
illustrate from their numerical experiments that the rate of convergence of
binomial calculations fluctuate between O(

√
∆t) and O(∆t). Due to lack

of smooth convergence, extrapolation technique for the enhancement of the
rate of convergence cannot be routinely applied to numerical option values.
In this subsection, we present several smoothness-enhancement techniques
for dealing with discontinuity and non-differentiability of the terminal payoff
function and proper treatment of numerical boundary conditions which are
associated with barrier and lookback features (the path dependent features
can be continuously or discretely monitored).

Smoothing of discontinuities in terminal payoff functions
Most terminal payoff function of options have some form of discontinuity (like
binary payoff) or non-differentiability (like call or put payoff). Quantization
error arises since the payoff function is sampled at discrete node points. Sev-
eral smoothing techniques have been proposed in the literature. Heston and
Zhou (2000) propose to set the payoff value at node in the computational
mesh by the average of the payoff function over the surrounding node cells
rather than sampled at the node point. Let VT (S) denote the terminal payoff
function. The payoff value at node Sj is given by

V 0
j =

1
∆S

∫ Sj+ ∆S
2

Sj−∆S
2

VT (S) dS (6.2.61)

instead of VT (Sj). Take the call payoff max(S − X, 0) as an example. If the
strike price X falls exactly on a node point, then VT (Sj) = 0 while the
cell-averaged value is ∆S/8. In their binomial calculations, Heston and Zhou
(2000) find that averaging the payoff for vanilla European and American
calls provide a more smooth convergence that subsequently allows for the
application of extrapolation for convergence enhancement. Another simple
technique is the method of node positioning. Tavella and Randall (2002)
propose to place the strike price halfway between node points. The third
technique is called Black-Scholes approximation, which is useful for pricing
American options and exotic options for which the Black-Scholes solution
is a good approximation at time close to expiry. The trick is to use the
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Black-Scholes values along the first time level and proceed with usual finite
difference calculations for subsequent time levels.

More advanced methods for minimizing the quantization errors in higher
order schemes have also been studied. Pooley et al . (2003) show that if discon-
tinuous terminal payoff is present, the expected second order convergence of
the Crank-Nicolson scheme cannot be realized. They manage to develop elab-
orate techniques that can be used to recover the quadratic rate of convergence.
Raahauge (2005) proposes some transformation technique to transform the
original ill-conditional pricing problem into a well behaved numerical problem
so that high order numerical methods can be implemented effectively.

Barrier options
The two major factors that lead to deterioration of numerical accuracy in
barrier option calculations are (i) positioning of the nodes relative to the
barrier, (ii) proximity of the initial asset price to the barrier.

Several papers have reported that better numerical accuracy can be
achieved if the barrier is placed to pass through a layer of nodes for the
continuously monitored barrier, and located halfway between two layers of
nodes for the discretely monitored barrier. Heuristic arguments that explain
why these choices of positioning achieve better numerical accuracy can be
found in Kwok and Lau’s paper (2001b). To remedy the proximity problem,
Figlewski and Gao (1999) suggest to construct fine meshes near the barrier to
improve the level of accuracy. However, Boyle and Tian (1998) show that the
application of spline interpolation of option values at three adjacent nodes is
a simple method to resolve the problem of dealing with the proximity issue.
For implicit schemes, “initial asset price close to the barrier” is not an issue
since the response to boundary conditions are felt almost instantaneously
across the entire solution in implicit scheme calculations (Zvan et al ., 2000).

Lookback options
It is relatively straightforward to price lookback options using forward shoot-
ing grid approach (see Problem 6.17). For floating strike lookback options,
by applying appropriate choices of similarity variables, the pricing formula-
tion reduces to the form similar to that of usual one-asset option models,
except that Neumann boundary condition appears at one end of the domain
of the lookback option model. Let c(S, m, t) denote the price of a continu-
ously monitored European floating strike lookback call option, where m is
the realized minimum asset price from T0 to t. The terminal payoff at time
T of the lookback call is given by

c(S, m, T ) = S − m. (6.2.62)

Recall that S ≥ m and the boundary condition at S = m is given by

∂c

∂m
= 0 at S = m. (6.2.63)
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We choose the following set of similarity variables:

x = ln
S

m
and V (x, τ ) =

c(S, m, t)
S

e−qτ , (6.2.63)

where τ = T − t, then the Black-Scholes equation for c is tranformed into the
following equation for V .

∂V

∂τ
=

σ2

2
∂2V

∂x2
+
(

r − q +
σ2

2

)
∂V

∂x
, x > 0, τ > 0. (6.2.64)

Note that S > m corresponds to x > 0. The terminal payoff condition be-
comes the following initial condition

V (x, 0) = 1 − e−x, x > 0. (6.2.65)

The boundary condition at S = m becomes the Neumann condition

∂V

∂x
(0, τ ) = 0. (6.2.66)

Suppose we discretize the governing equation using the FTCS scheme, we
obtain

V n+1
j =

[
α + µ

2
V n

j+1 + (1 − α)V n
j +

α − µ

2
V n

j−1

]
, j = 1, 2, · · ·(6.2.67)

where α =
(

r − q +
σ2

2

)
∆τ

∆x
and µ = σ2 ∆τ

∆x2
. For continuously monitored

lookback option mdoel, we place the reflecting boundary x = 0 (correspond-
ing to the Neumann boundary condition) along a layer of nodes, where the
node j = 0 corresponds to x = 0. To approximate the Neumann boundary
condition at x = 0, we use the centered difference

∂V

∂x

∣∣∣∣
x=0

≈
V n

1 − V n
−1

2∆x
, (6.2.68)

where V n
−1 is the option value at a fictitious node one cell to the left of node

j = 0. By setting j = 0 in Eq. (6.2.27) and applying the approximation of
the Neumann condition: V n

1 = V n
−1, we obtain

V n+1
0 = αV n

1 + (1 − α)V n
0 . (6.2.69)

Numerical results obtained from the above scheme demonstrate O(∆t) rate
of convergence (Kwok and Lau, 2001b). However, suppose forward difference

is used to approximate
∂V

∂x

∣∣∣∣
x=0

so that the Neumann boundary condition

is approximated by V n
0 = V n

−1 (Cheuk and Vorst, 1997), then the order of
convergence reduces to O(

√
∆t) only. Also, when the nodes are not chosen

to align along the reflecting boundary, erratic convergence behaviors of the
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numerical results are observed. Problem 6.25 illustrates the failure of a naive
treatment of the reflecting boundary condition of a lookback put option and
Problem 6.26 demonstrates another approach of constructing the numerical
boundary condition approximating the Neumann boundary condition.

It is quite tricky to price discretely sampled lookback options since the
Neumann condition is applied only on those time steps that correspond to
monitoring instants. Discussion of the construction of effective pricing algo-
rithms can be found in the papers by Andreasen (1998) and Kwok and Lau
(2001b),

6.3 Monte Carlo simulation

We have observed that a wide class of derivative pricing problems come down
to the evaluation of the following expectation functional

Ef [Z(T ; t, z)].

Here, Z denotes the stochastic process that describes the price evolution of
one or more underlying financial variables such as asset prices and interest
rates, under the respective risk neutral probability distributions. The process
Z has the initial value z at time t, and the function f specifies the value of
the derivative at the expiration time T .

As the third alternative other than the binomial and finite difference
methods for the numerical valuation of derivative pricing problems, the Monte
Carlo simulation has been proven to be a powerful and versatile technique.
The Monte Carlo method is basically a numerical procedure for estimating
the expected value of a random variable, and so it leads itself naturally to
derivative pricing problems represented as expectations. The simulation pro-
cedure involves generating random variables with a given probability density
and using the law of large numbers to take the average of these values as
an estimate of the expected value of the random variable. In the context of
derivative pricing, the Monte Carlo procedure involves the following steps.
(i) Simulate sample paths of the underlying state variables in the deriva-

tive model such as asset prices and interest rates over the life of the
derivative, according to the risk neutral probability distributions.

(ii) For each simulated sample path, evaluate the discounted cash flows of
the derivative.

(iii) Take the sample average of the discounted cash flows over all sample
paths.

As an example, we consider the valuation of a European vanilla call op-
tion to illustrate the Monte Carlo procedure. The numerical procedure re-
quires the computation of the expected payoff of the call option at expiry,
Et[max(ST − X, 0)], and discounted to the present value at time t, namely,
e−r(T−t)Et[max(ST − X, 0)]. Here, ST is the asset price at expiration time
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T and X is the strike price. Assuming lognormal distribution for the asset
price movement, the price dynamics under the risk neutral measure is given
by [see Eq. (2.4.5)]

St+4t

St
= e

(
r−σ2

2

)
4t+σε

√
4t

, (6.3.1)

where 4t is the time step, σ is the volatility and r is the riskless interest
rate. Here, ε denotes a normally distributed random variable with zero mean
and unit variance, and so σε

√
4t represents a discrete approximation to an

increment in the Wiener process of the asset price with volatility σ in time
increment 4t. The random number ε can be generated in most computer
programming languages, and because of its randomness, it assumes a different
value in each generation run. Suppose these are N time steps between the
current time t and expiration time T , where 4t = (T − t)/N . The numerical
procedure given in Eq. (6.3.1) is repeated N times to simulate the price path
from St to ST = St+N4t. The call price corresponding to this particular
simulated asset price path is then computed using the discounted formula

c = e−r(T−t) max(ST − X, 0). (6.3.2)

This completes one sample iteration of the Monte Carlo simulation for this
European call option model.

After repeating the above simulation for a sufficiently large number of
runs, the expected call value is obtained by computing the average of the
estimates of the call value found in the sample simulation. Also, the standard
deviation of the estimate of the call value can be found. Let ci denote the
estimate of the call value obtained in the ith simulation and M be the total
number of simulation runs. The expected call value is given by

ĉ =
1
M

M∑

i=1

ci, (6.3.3)

and the variance of the estimate is computed by

ŝ2 =
1

M − 1

M∑

i=1

(ci − ĉ)2. (6.3.4)

For a sufficiently large value of M , the distribution

ĉ − c√
ŝ2

M

, c is the true call value,

tends to the standard normal distribution. Note that the standard deviation
of ĉ is equal to ŝ/

√
M and so the confidence limits of estimation can be

reduced by increasing the number of simulation runs M . The appearance of
M as the factor 1/

√
M implies that the reduction of the standard deviation
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by a factor of 10 will require an increase of the number of simulation runs by
100 times.

One major advantage of the Monte Carolo method is that the error is
independent of the dimension of the option problem. Another advantage is
its ease to accommodate complicated payoff in an option model. For example,
the terminal payoff of an Asian option depends on the average of the asset
price over certain time interval while that of a lookback option depends on
the extremum value of the asset price over some period of time. It is quite
straightforward to obtain the average or extremum value in the simulated
price path in each simulated path. The main drawback of the Monte Carlo
simulation is the demand for a large number of simulation trials in order
to achieve a high level of accuracy. This makes the simulation method less
competitive compared to the binomial method and finite difference algorithms
when analytic properties of the corresponding pricing model of an option are
better known and formulated. However, viewing from another perspective,
practitioners dealing with a newly invented option may obtain an estimate of
its price using the Monte Carlo approach through routine simulation, rather
than risking themselves in the construction of an analytic pricing model for
the new option.

The efficiency of a Monte Carlo simulation can be greatly enhanced
through the use of various variance reduction techniques (Boyle et al., 1997),
some of which are presented as follows.

6.3.1 Variance reduction techniques

It seems greatly desirable to reduce the variance ŝ2 of the estimate so that
a significant reduction in the number of simulation trials M may result. The
two most common techniques of variance reduction are the antithetic variates
method and the control variate method .

First, we would like to describe how to assess the effectiveness of a variance
reduction technique from the perspective of computational efficiency. Suppose
WT is the total amount of computational work units available to generate an
estimate of the value of an option V . Assume that there are two methods
for generating the Monte Carlo estimates for the option value, requiring W1

and W2 units of computation work respectively for each simulation run. For
simplicity, assume WT is divisible by both W1 and W2. Let V

(1)
i and V

(2)
i

denote the estimator of V in the ith simulation using Methods 1 and 2,
respectively, and their respective standard deviations are σ1 and σ2. The
sample means for estimating V from the two methods using WT amount of
work are, respectively,

W1

WT

WT /W1∑

i=1

V
(1)
i and

W2

WT

WT /W2∑

i=1

V
(2)
i .
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By the law of large numbers, the above two estimators are approximately
normally distributed with mean V and their respective standard deviations
are

σ1

√
W1

WT
and σ2

√
W2

WT
.

Hence, the first method would be preferred over the second one provided that

σ2
1W1 < σ2

2W2. (6.3.5)

Alternatively speaking, a lower variance estimator is preferred only if the
variance ratio σ2

1/σ2
2 is less than the work ratio W2/W1, when the aspect of

computational efficiency is taken into account.

Antithetic variates method
Suppose {ε(i)} denotes the independent samples from the standard normal
distribution for the ith simulation run of the asset price path so that

S
(i)
T = St e

(
r−σ2

2

)
(T−t)+σ

√
4t

N∑
j=1

ε
(i)
j

, i = 1, 2, · · · , M, (6.3.6)

where 4t =
T − t

N
and M is the total number of simulation runs. Note that

ε
(i)
j is randomly sampled from the standard normal distribution. From Eqs.

(6.3.2–3), an unbiased estimator of the price of a European call option with
strike price X is given by

ĉ =
1
M

M∑

i=1

ci =
1
M

M∑

i=1

e−r(T−t) max(S(i)
T − X, 0). (6.3.7a)

We observe that if {ε(i)} has a standard normal distribution, so does {−ε(i)},
and the simulated price S̃T

(i) obtained from Eq. (6.3.6) using {−ε(i)} is also
a valid sample from the terminal asset price distribution. A new unbiased
estimator of the call price can be obtained from

c̃ =
1
M

M∑

i=1

c̃i =
1
M

M∑

i=1

e−r(T−t) max(S̃(i)
T − X, 0). (6.3.7b)

Normally we would expect ci and c̃i to be negatively correlated, that is, if one
estimate overshoots the true value, the other estimate downshoots the true
value. It seems sensible to take the average of these two estimates. Indeed,
we take the antithetic variates estimate to be

c̄AV =
ĉ + c̃

2
. (6.3.8)
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Considering the aspect of computational efficiency as governed by inequal-
ity (6.3.5), it can be shown that the antithetic variates method improves
efficiency provided that cov(ci, c̃i) ≤ 0 (see Problem 6.29).

Control variate method
The control variate method is applicable when there are two similar options,
A and B. Option A is the one whose price value is desired, while option B is
similar to option A in nature but its analytic price formula is available. Let
VA and VB denote the true value of option A and option B respectively, and
let V̂A and V̂B denote the respective estimated value of option A and option
B using the Monte Carlo simulation. How does the knowledge of VB and
V̂B help improve the estimate of the value of option A beyond the available
estimate V̂A?

The control variate method aims to provide a better estimate of the value
of option A using the formula

V̂ cv
A = V̂A + (VB − V̂B), (6.3.9)

where the error VB − V̂B is used as a control in the estimation of VA. To
justify the method, we consider the following relation between the variances
of the above quantities

var
(
V̂ cv

A

)
= var(V̂A) + var(V̂B) − 2 cov(V̂A, V̂B), (6.3.10)

so that

var(V̂ cv
A ) < var(V̂A) provided that var(V̂B) < 2 cov(V̂A, V̂B).(6.3.11)

Hence, the control variate technique reduces the variance of the estimator
of VA when the covariance between V̂A and V̂B is large. This is true when
the two options are strongly correlated. In terms of computational efforts,
we need to compute two estimates V̂A and V̂B . However, if the underlying
asset price paths of the two options are identical, then there is only slight
additional work to evaluate V̂B along with V̂A on the same set of simulated
price paths.

To facilitate the more optimal use of the control VB − V̂B , we define the
control variate estimate to be

V̂ β
A = V̂A + β(VB − V̂B), (6.3.12)

where β is a parameter with value other than 1. The new relation between
the variances is now given by

var
(
V̂ β

A

)
= var

(
V̂A

)
+ β2 var

(
V̂B

)
− 2β cov

(
V̂A, V̂B

)
. (6.3.13)

The particular choice of β which minimizes var (V̂ β
A) is found to be
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β∗ =
cov(V̂A, V̂B)

var(V̂B)
. (6.3.14)

Unlike the choice of β = 1 used in Eq. (6.3.9), the control variate estimate
based on β∗ is guaranteed to decrease variance. Unfortunately, the determi-
nation of β∗ requires the knowledge of cov(V̂A, V̂B), which is in general not
available. However, one may estimate β∗ using the regression technique from
the simulated option values V

(i)
A and V

(i)
B , i = 1, 2, · · · , M , obtained from the

simulation runs.

Valuation of Asian options
A nice example of applying the control variate method is the estimation of
the value of an arithmetic averaging Asian option based on the knowledge of
the exact analytic formula for the corresponding geometric averaging Asian
option. The two types of Asian options are very similar in nature except
that the terminal payoff function depends on either arithmetic averaging or
geometric averaging of the asset price function.

The averaging feature of Asian options does not pose any difficulty in
Monte Carlo simulation since the average of the asset prices at different
observational instants in a given simulated path can be computed easily. Since
option price formulas are readily available for the majority of geometrically
averaged Asian options, the knowledge of which may be used to include a
variance reduction procedure to reduce the confidence interval in the Monte
Carlo simulation performed for valuation of the corresponding arithmetically
averaged Asian options (Kemna and Vorst, 1990).

Let VA denote the price of an option whose payoff depends on the arith-
metic averaging of the underlying asset price and VG be the price of an option
similar to the above option except that geometric averaging is taken. How
does one improve the estimation of VA from a Monte Carlo simulation by
taking advantage of the knowledge of closed form formula of VG? Let V̂A and
V̂G denote the discounted option payoff for a single simulated path of the
asset price with respect to arithmetic and geometric averaging, respectively,
so that

VA = E[V̂A] and VG = E[V̂G]. (6.3.15)

We then have

VA = VG + E[V̂A − V̂G], (6.3.16a)

and so an unbiased estimator of VA is given by

V̂ cv
A = V̂A + (VG − V̂G). (6.3.16b)

One then follows the variance reduction procedure that the direct estimator
V̂A is adjusted by the difference between the exact value VG and the estimated
value V̂G. The error (VG − V̂G) is employed as a control to improve the
estimation of VA.
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6.3.2 Low discrepancy sequences

The crude Monte Carlo method uses random (more precisely pseudo-random)

points and the rate of convergence is known to be O

(
1√
M

)
, where M is the

number of simulation trials. The inverse square root order of convergence

implies that O

(
1
ε2

)
simulations are required to achieve O(ε) level of accu-

racy. Such a low rate of convergence is certainly not quite desirable. Also,
it is quite common to have the accuracy of simulation to be sensitive to the
initial seed.

It is commonly observed that the pseudo-random points may not be quite
uniformly dispersed throughout the domain of the problem. It seems reason-
able to postulate that convergence may be improved if these points are more
uniformly distributed. A notion in number theory called discrepancy mea-
sures the deviation of a set of points in d dimensions from uniformity. Lower
discrepancy means the points are more evenly dispersed. There have been a
few well tested sequences, called quasi-random sequences (though they are de-
terministic in nature), which demonstrate a low level of discrepancy. Some of
these examples are the Sobol points and Halton points (Paskov and Traub,
1995). These low discrepancy sequences have the nice property that when
successive points are added, the entire sequence of points still remain at a
similar level of discrepancy. The routines for generating these sequences are
readily available in many software texts (for example, Press et al., 1992).

The rate of convergence of simulation with respect to the use of different
sequences can be assessed through the numerical approximation of an integral
by a discrete average. If we use equally spaced points, which is simply the
trapezoidal rule of numerical integration, the error is O(M−2/d) where d is
the dimension of the integral. For the Sobol points or Halton points, the rate

of convergence is O

(
(lnM )d

M

)
. This is still in favor of O

(
1√
M

)
convergence

of the Monte Carlo method when d is modest.
Various numerical studies on the use of low discrepancy sequences in

finance applications reveal that the errors produced are substantially lower
than the corresponding errors using the crude random sequences. Paskov and
Traub (1995) employed both Sobol sequences and Halton sequences to eval-
uate mortgage-backed security prices, which involves the evaluation of inte-
grals with d up to 360. They showed that the Sobol sequences outperform the
Halton sequences which in turn performed better than the standard Monte
Carlo method. The reason for the better performance may be attributed to
the smoothness of the integrand functions. Strong research interests still per-
sist in the continual search for better low discrepancy sequences in finance
applications.
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6.3.3 Valuation of American options

There had been a general belief that the Monte Carlo approach can be used
only for European style derivatives. The apparent difficulties of using simu-
lation to price American options stem from the backward nature of the early
exercise feature since there is no way of knowing whether early exercise is op-
timal when a particular asset value is reached at a given time. The estimated
option value with respect to a given simulated path can be determined only
with a pre-specified exercise policy. A variety of simulation algorithms have
been proposed in the literature to tackle the above difficulties. The earliest
simulation algorithm is the “bundling and sorting” algorithm proposed by
Tilley (1993). The algorithm computes an estimate for the option’s continu-
ation value by using backward induction and a bundling technique. At each
time instant, simulation path with similar asset prices are grouped together to
obtain an estimate of the one-period-ahead option value. Another approach
[Grant et al . (1996)] attempts to approximate the exercise boundary at each
early exercise point using backward induction, then estimates the option price
in a forward simulation based on the exercise policies obtained. The other ap-
proach [Broadie and Glasserman, (1997)] attempts to find efficient upper and
lower bounds from simulated paths, one based on a non-recombining tree and
another based on a stochastic mesh. These two high and low estimates for the
option price converge asymptotically to the true option value. Rogers (2002)
proposes a direct simulation approach, which is based on a dual characteri-
zation of optimal exercise policy by the holder and hedging strategy of the
writer. The method involves the choice of an appropriate Lagrangian hedging
martingale so that the lookback value of the excess of option exercise value
over the chosen hedging strategy is minimized. The more recent and possibly
most popular approach is the linear regression method via basis functions.
Such algorithm involves two levels of approximation. First, the conditional
expectations in the dynamic programming procedure are approximated by
projections on a finite set of basis functions. Monte Carlo simulations and
least squares regression techniques are used to compute the above approx-
imated value function. Longstaff and Schwartz (2001) choose the Laguerre
polynomials as the basis functions. The guidelines on the choice of the basis
functions are discussed in the papers by Tsitsiklis and Van Roy (2001), Lai
and Wong (2004). Clément et al . (2002) prove the almost sure convergence
of the algorithm. Glasserman and Yu (2004) analyze the convergence of the
algorithm as both the number of basis functions and the number of simulated
paths increase.

Four classes of algorithms are presented below, namely, the “bundling
and sorting” algorithm, method of parameterization of the early exercise
boundary, stochastic mesh method and the linear regression method via basis
functions. A comparison of performance of various Monte Carlo simulation
approaches for pricing American style options is reported by Fu et al . (2001).
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A comprehensive review of Monte Carlo methods in financial engineering can
be found in Glasserman’s text (2004).

Tilley’s bundling and sorting algorithm
Tilley (1993) proposes a “bundling and sorting” algorithm which computes
an estimate for the American option’s continuation value using backward
induction. At each time step in the simulation procedure, simulated asset
price paths are ordered by asset price and bundled into groups. The method
rests on the belief that the price paths within a given bundle are sufficiently
alike so that they can be considered to have the same expected one-period-
ahead option value. The boundary between the exercise-or-hold decisions is
determined for each time step.

The options are assumed to be exercisable at specified instants t =
1, 2, · · · , N . Actually, this discretization assumption transforms the American
options with continuous early exercise right to the Bermudan options with
discrete exercise opportunities (see Problem 6.30). The simulation procedure
generates a finite sample of R asset price paths from t = 0 to t = N , where
the realization of the asset price of the kth price path is represented by the
sequence {S0(k), · · · , SN (k)}. Let dt denote the discount factor from t to t+1
and Dt be the discount factor from 0 to time t, so that Dt = d0d1 · · ·dt−1.
Let X be the strike price of the option. The backward induction procedure
starts at t = N − 1. At each t, t = 1, 2, · · · , N − 1, we proceed inductively
according to the following steps.
1. Sort the price paths by order of asset price by partitioning the ordered

paths in Q distinct bundles of P paths in each bundle (R = QP ). We
write Bt(k) as the set of price paths in the bundle containing path k at
time t. For each path k, compute the intrinsic value It(k) of the option.

2. Compute the option’s continuation value Ht(k), defined as the present
value of the expected one-period-ahead option value:

Ht(k) =
dt(k)

P

∑

∀j∈Bt(k)

Vk+1(j), (6.3.17)

where Vt+1(j) has been computed in the previous time step. In particular,
VN (j) = IN (j) for all j.

3. For each path k, compare Ht(k) to It(k) and decide “tentatively” whether
to exercise the option or to continue holding it. Define xt(k) as the “ten-
tative” exercise-or-hold indicator variable, where

xt(k) =
{

1 when It(k) ≥ Ht(k)
0 when It(k) < Ht(k) . (6.3.18a)

Here, “1” and “0” represent “exercise” and “hold”, respectively.
4. In general, there may be more than one bundle in which xt(k) = 1 for some

k ∈ Bt(k) but 0 for other paths within the same bundle. These bundles
have a “transition zone” in asset price from “hold” to “exercise” decision.
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The algorithm has to be refined by creating a sharp boundary between
the “hold” and “exercise” decisions. To achieve this goal, we examine the
sequence {xt(k) : k = 1, · · · , R}, and determine the sharp boundary as
the start of the first string of “1”s, the length of which exceeds the length
of every subsequent string of “0”s. The path index of the leading “1” is
called k∗

t . Next, we define the “update” exercise-or-hold indicator variable
yt(k) by

yt(k) =
{

1 when k ≥ k∗
t

0 when k < k∗
t

. (6.3.18b)

5. For each path k, define the current value Vt(k) of the option by

Vt(k) =
{

It(k) when yt(k) = 1
Ht(k) when yt(k) = 0 . (6.3.19)

The above procedure proceeds backwards from t = N −1 to t = 0. Lastly,
we define the exercise-or-hold indicator variable by

Zt(k) =
{

1 if yt(k) = 1 and ys(t) = 0 for all s < t
0 otherwise

. (6.3.20)

Once the exercise policy of each price path is established, the option price
estimator is given by

1
R

R∑

k=1

N∑

t=1

Zt(k)Dt(k)It(k).

For each path k, Zt(k) equals one at only one time instant and Dt(k)It(k)
gives the discount value of the option payoff of the path.

There are several major weaknesses in Tilley’s algorithm. The algorithm
is not computationally efficient since it requires storage of all simulated asset
price paths at all time steps. The bundling and sorting of all price paths pose
stringent requirement on storage and computation even when the number
of simulated paths is moderate. As shown by Tilley’s own numerical exper-
iments, there is no guarantee on the convergence of the algorithm to the
true option value. Also, the extension of the algorithm to multi-asset option
models can be very tedious (see Problem 6.31).

Grant-Vora-Weeks algorithm
The simulation algorithm proposed by Grant et al. (1996) attempts to first
identify the optimal exercise price S∗

ti
at selected instants ti, i = 1, 2, · · · , N−1

between the current t and expiration time T . The determination of the opti-
mal exercise prices is done by simulation at successive time steps proceeding
backwards in time. Once the exercise boundary is identified, the option value
can be estimated by the usual simulation procedure, respecting the early
exercise strategy as dictated by the known exercise boundary.

We illustrate the procedure by considering the valuation of an American
put option and choosing only three time steps between the current time t
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and expiration time T , where t0 = t and t3 = T . Assuming a constant

dividend yield q, the optimal exercise price at T is equal to min
(

r

q
X, X

)
,

where X is the strike price of the option and r is the riskless interest rate.
At time t2 which is one time period prior to expiration, the put value is
X − St2 when St2 ≤ S∗

t2 , and E[PT ]e−r(T−t2) when St2 > S∗
t2 . Here, PT =

max(X−ST , 0) denotes the put option value at expiration time T . Obviously,
E[PT ] is dependent on St2 . For a given value of St2 , one can perform a
sufficient number of simulations to estimate E[PT ]. The optimal exercise
price S∗

t2 is identified by finding the appropriate value of St2 such that

X − S∗
t2 = e−r(T−t2)E[PT |S∗

t2 ]. (6.3.21)

The numerical procedures try to find the simulation estimate of e−r(T−t2)E[PT ]
as a function of St2 by starting with St2 close to but smaller than S∗

T (since
S∗

t2 must be less that S∗
T ) and repeating the simulation process for a series

of St2 which decreases systematically. Once the functional dependence of the
discounted expectation value e−r(T−t2)E[PT ] in St2 is available, one can find
a good estimate of S∗

t2 such that Eq. (6.3.21) is satisfied.
Proceeding backwards in time, we continue to estimate the optimal exer-

cise price at time t1. The simulation now starts at t1. The initial asset value
St1 is first chosen with a value slightly less than S∗

t2 and simulation is re-
peated with decreasing St1 . Again, we would like to find the estimate of the
discounted expectation value of holding the put, and this expectation value is
a function of St1 . In a typical simulation run, an asset value St2 is generated
at t2 with an initial asset value St1 . We then determine whether St2 falls
in the stopping region or otherwise. If the answer is yes, the estimated put
value for that simulated path is the present value of the early exercise value;
otherwise, the simulation continues by generating an asset value at expira-
tion T . The put value for this simulation path then equals the present value
of the corresponding terminal payoff. This simulation procedure is repeated
sufficient number of times so that an estimate of the discounted expectation
value can be obtained. In a similar manner, we determine S∗

t1 such that when
St1 is chosen to be S∗

t1 , the intrinsic value X −S∗
t1 equals the estimate of the

discounted expectation value of holding the put.
Once the optimal exercise prices at t1 and t2 are available, one can mimic

the above numerical procedure to find the estimate of the discounted ex-
pectation value of holding the put at time t0 by performing simulation runs
with an initial asset value St0 . The put value at time t0 for a given St0 is
the maximum of the estimate of the discounted expectation value obtained
from simulation (taking into account the early exercise strategy as already
determined at t1 and t2) and the intrinsic value X − St0 from early exercise.

Broadie-Glasserman algorithm
The stochastic mesh algorithm of Broadie and Glasserman (1997) produces
two estimators for the true option value, one biased high and the other biased
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low, but both asymptotically unbiased as the number of simulations tends to
infinity. The two estimates together provide a conservative confidence interval
for the option value.

First, a random tree with b branches per node is constructed (see Fig. 6.7
for b = 3) and the asset values at the nodes at time tj are denoted by

S
i1i2···ij

j , j = 1, 2, · · · , N, 1 ≤ i1, · · · , ij ≤ b,

where N is the total number of time steps. The total number of nodes at
time tj will be bj . Here, S0 is the fixed initial state and each sequence
S0, S

i1
1 , Si1i2

2 , · · · , Si1i2···iN

N is a realization of the Markov process for the asset
price, and two such sequences evolve independently of each other once they
differ in some ij .

Fig. 6.7 A simulation tree with three branches and two
time steps..

Let θ
i1···ij

high,j and θ
i1···ij

low,j denote, respectively, the high and low estimators of
the option value at the (i1, · · · , ij)th node at time tj. Also, let hj(s) be the
payoff from exercise at time tj in state s and 1/Rj+1 be the discount factor
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from tj to tj+1. Broadie and Glasserman defined the high estimator for the
option value at the (i1, · · · , ij) node at time tj to be the maximum of the
early exercise payoff and the estimate of the continuation value from the b
successor nodes, namely,

θ
i1···ij

high, j = max


hj

(
S

i1···ij

j

)
,
1
b

b∑

ij+1=1

1
Rj+1

θ
i1···ijij+1
high, j+1


 . (6.3.22)

Simple arguments can be used to explain why the above estimate is biased
high. If the asset prices at the nodes at time tj+1 turn out to be too high in the
simulation process, the above dynamic programming procedure will choose
not to exercise and take a value higher than the optimal decision to exercise.
On the other hand, if the simulated asset prices at tj+1 turn out to be too
low, the dynamic programming procedure will choose to exercise even when
the optimal decision is not to exercise. The option value is over-estimated
since we have taken advantage of knowledge of the future.

The numerical algorithm for the low estimator is slightly more compli-
cated. At each node, one branch is used to estimate the continuation value
and the other b − 1 branches are used to estimate the exercise decision. The
same procedure is repeated b times, where each branch is chosen in turn. To
explain the procedure in more detail, suppose the kth branch is chosen to
estimate the continuation value while the other b−1 branches are used to es-
timate the exercise decision. Early exercise is chosen if the payoff hj

(
S

i1···ij

j

)

is greater than or equal to the expectation of the continuation value. This
expectation is computed by taking the average among b − 1 branches of the

discounted values
1

Rj+1
θ

i1···ij+1
low,j+1 , ij+1 = 1, · · · , b, ij+1 6= k. If early exercise is

chosen, then the estimate η
i1···ijk
j takes the payoff value hj(S

i1···ij

j ), otherwise,

it takes the continuation value
1

Rj+1
θ

i1···ijk
low,j+1. Thus b estimates are obtained

in these b steps of calculations and they are then averaged to determine the
option value estimate at the node. The procedure can be succinctly described
as follows. Write

η
i1···ijk
j =





hj

(
S

i1···ij

j

)
, if hj

(
S

i1···ij

j

)
≥ 1

b − 1

b∑

ij+1=1
ij+1 6=k

1
Rj+1

θ
i1···ij ij+1
low, j+1

1
Rj+1

θ
i1···ijk
low, j+1, if hj

(
S

i1···ij

j

)
<

1
b − 1

b∑

ij+1=1
ij+1 6=k

1
Rj+1

θ
i1···ij ij+1
low, j+1 ,

k = 1, · · · , b, (6.3.23a)

then
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θ
i1···ij

low, j =
1
b

b∑

k=1

η
i1···ijk
j . (6.3.23b)

The explanation why the above procedure gives a biased low estimator is
relegated to an exercise (see Problem 6.35).

Both algorithms (6.3.22) and (6.3.23a,b) are backward induction, that is,
knowing estimates at time tj+1, we compute estimates at tj one period earlier.
For both high and low biased estimators, the starting iterates at expiration
time T = tN are both given by the following terminal payoff function

θi1···iN

N = hN

(
Si1···iN

N

)
. (6.3.24)

The Broadie-Glasserman algorithm can be extended to deal with multi-
asset options, and the computation can be made parallelized to work on a
cluster of workstations. Variance reduction techniques can also be employed
to fasten the rate of convergence. The algorithm can allow multiple decisions
other than the two-fold decision: exercise or hold.

Linear regression method via basis functions
Under the discrete assumption of exercise opportunities, the option values
satisfy the following dynamic programming equations

Vn = max(hn(S), Hn(S)), n = 0, 1, · · ·, N − 1, (6.3.25)

where Hn(S) is the continuation value at time tn, S(tn) = S, hn(S) is the
exercise payoff. At maturity date tN = T , we have VN (S) = hN (S) [for nota-
tional convenience, we set HN (S) = 0]. The continuation values at different
time instants are given by the following recursive scheme

Hn(S) = E [max(hn+1(S(tn+1)), Hn+1(S(tn+1))|S(tn) = S] . (6.3.26)

The difficulty of estimating the above conditional expectations may be re-
solved by considering an approximation of the form

Hn(S) ≈
M∑

m=0

αnmφnm(S), (6.3.27)

for some choice of basis functions φnm(S). Longstaff and Schwartz (2001)
propose to determine the coefficients αnm through least squares projection
onto the span of basis functions. Their chosen basis functions are the Laguerre
polynomials defined by

Lm(S) = e−S/2 eS

m!
dm

dSm

(
Sme−S

)
, m = 0, 1, 2, · · ·. (6.3.28)

The first few members are L0(S) = e−S/2, L1(S) = e−S/2(1 − S), L2(S) =

e−S/2

(
1 − 2S +

S2

2

)
.
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Following the description of the algorithm by Longstaff and Schwartz
(2001), we use C(ω, s; t, T ) to denote the path of cash flows generated by the
option, conditional on the option not being exercised at or prior to time t.
Here, ω represents a sample path and T is option’s maturity date. The holder
is assumed to follow the optimal stopping strategy for all subsequent times
s, where t < s ≤ T . Recall that the value of an American option is given by
maximizing the discounted cash flows from the option, where the maximum
is taken over all stopping times. We seek for a pathwise approximation to the
optimal stopping rule associated with the early exercise right in the American
option. Like other simulation algorithms, the key is to identity the conditional
expected value of continuation.

Let Hn(ω; tn) denote the continuation value at time tn. By no arbitrage
principle, Hn(ω) is given by the expectation of the remaining discounted cash
flows under the risk neutral measure. At time tn, Hn(ω) is given by

Hn(ω; tn) = E




N∑

j=n+1

e−r(tj−tn)C(ω, tj; tn, T )


 , (6.3.29)

where the expectation is taken under the risk neutral measure conditional
on the filtration at time tn. Suppose we have chosen M basis functions,
then Hn(ω) is estimated by regressing the discounted cash flow onto the
basis functions for the paths where the option is in-the-money at time tn.
Longstaff and Schwartz propose that only in-the-money paths are used in
the estimation since the exercise decision is relevant only in the in-the-money
regime. Once the functional form of the estimated continuation value Ĥn(ω) is
obtained from linear regression, we can calculate the estimated continuation
value from the known asset price at time tn for that path ω.

Our goal is to solve for the stopping rule that maximizes the option value
at every time point along each asset price path. We start from the maturity
date tN , and proceed backwards in time. At tN , the cash flows are given by
the terminal payoff function and thus they are readily known. At one time
step backward, we search for those paths that are in-the-meney at tN−1. From
these paths, we compute the discounted cash flow received at time tN given
that the option remains alive at time tN−1. Consider path k, its asset price at
tN−1 and tN are denoted by S

(k)
N−1 and S

(k)
N , respectively, k = 1, · · · , K, where

K is the total number of paths that are in-the-money at tN−1. The discounted
cash flow at tN−1 for path k is given by e−r(tN−tN−1)hN (S(k)

N ), where hN is
the terminal payoff function of the option. Using the information of these K
data points and choosing M basis functions, we estimate the continuation
value Ĥ

(k)
N−1 by regressing the discounted cash flow at tN−1 with respect to

the asset price at tN−1. Early exercise at time tN−1 is optimal for an in-
the-money path ω if the immediate exercise value is greater than or equal to
the estimated continuation value. In this case, the cash flow at tN−1 is set
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equal the exercise value. A numerical example illustrating the details of this
regression procedure can be found in Longstaff-Schwartz’s paper (2001).

Once the cash flow paths and stopping rule at tN−1 have been determined,
we then proceed recursively in the same manner to the earlier time points
tN−2, · · · , t1. As a result, we obtain the optimal stopping rule at all time
points for every path. Once the cash flows generated by the option for all
paths are identified, we can compute an estimate of the option value by
discounting each cash flow back to the issue date and averaging over all
sample price paths.

6.4 Problems

6.1 Instead of the tree-symmetry condition: u = 1/d [see Eq. (6.1.1c)],
Jarrow and Rudd (1983) choose the third condition to be p = 1/2. By
solving the above condition together with Eqs. (6.1.1a,b), show that

u = R(1 +
√

eσ2∆t − 1), d = R(1 −
√

eσ2∆t − 1) and p =
1
2
.

6.2 Suppose the underlying asset is paying a continuous dividend yield at
the rate q, the two governing equations for u, d and p are modified as

pu + (1 − p)d = e(r−q)∆t

pu2 + (1 − p)d2 = e2(r−q)∆teσ2∆t.

Show that the parameter values in the binomial model are modified by
replacing the growth factor of the asset price under the risk neutral
measure er∆t by the new factor e(r−q)∆t while the discount factor in
the binomial formula remains to be e−r∆t.

6.3 Show that

lim
n→∞

Φ(n, k, p′) = N (d1)

where p′ = ue−r∆tp and d1 =
ln S

X +
(
r + σ2

2

)
τ

σ
√

τ
.

Hint: Note that

1 − Φ(n, j, p′)

= P

[
j − np′√
np′(1 − p′)

<
ln X

S − n
(
p′ ln u

d + ln d
)
− α ln u

d√
np′(1 − p′) ln u

d

]
,

0 < α ≤ 1.
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By considering the Taylor expansion of n
(
p′ ln

u

d
+ lnd

)
and

np′(1 − p′)
(
ln

u

d

)2

in power of ∆t, show that

lim
n→∞

n
(
p′ ln

u

d
+ ln d

)
=
(

r +
σ2

2

)
τ

lim
n→∞

np′(1 − p′)
(
ln

u

d

)2

= σ2τ,

where n∆t = τ .

6.4 Consider the modified binomial formula employed for the numerical
valuation of an American put on a non-dividend paying asset [see Eq.
(6.1.26)], deduce the optimal exercise price at time close to expiry from
the binomial formula. Compare the result with that of the continuous
model by taking the limit ∆t → 0.

6.5 Consider the nodes in the binomial tree employed for the numerical
valuation of an American put option on a non-dividend paying asset.
The (n, j)th node corresponds to the node which is n time steps from
the current time and has j upward moves. The put value at the (n, j)th

node is denoted by P n
j . Similar to the continuous models, we define the

stopping region S and continuation region C by

S =
{
(n, j)|P n

j = X − Sujdn−j
}

C =
{
(n, j)|P n

j > X − Sujdn−j
}

,

that is S (C) represents the set of nodes where the put is dead (alive).
Let N be the total number of time steps in the tree. Prove the following
properties of S and C (Kim and Byun, 1994):
(i) Suppose both (n + 1, j) and (n + 1, j + 1) belong to S, then

(n, j) ∈ S for 0 ≤ n ≤ N − 1, 0 ≤ j ≤ n.
(ii) Suppose (n+2, j +1) ∈ C, then (n, j) ∈ C for 0 ≤ n ≤ N −2, 0 ≤

j ≤ n.
(iii) Suppose (n, j) ∈ S, then both (n, j − 1) and (n − 1, j − 1) ∈ S;

also, suppose (n, j) ∈ C, then (n, j + 1) ∈ C and (n − 1, j) ∈ C,
for 1 ≤ n ≤ N, 1 ≤ j ≤ n − 1.

6.6 Consider the pricing of the callable American call option by binomial
calculations, let us write

Ccont =
pCn+1

j+1 + (1 − p)Cn+1
j

R
.

In the continuation region, we must have S ≤ K + X. Show that bino-
mial scheme (6.1.27) can be simplified to become

Cn
j = min(K, max(Ccont, S

n
j − X)).
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6.7 Another possible binomial algorithm for pricing the callable American
call option can be constructed as follow

Cn
j = max(min(Ccont, K), Sn

j − X).

The added procedure min(Ccont, K) compares Ccont and K to test
whether the position on the issuer can be improved by calling the op-
tion. Show that the above scheme is equivalent to binomial scheme
(6.1.27).

6.8 Show that the total number of multiplications and additions in perform-
ing n steps of numerical calculations using the trinomial and binomial
schemes are given by

Scheme Number of multiplications Number of additions
trinomial 3n2 2n2

binomial n2 + n
1
2
(n2 + n)

6.9 Suppose we let p2 = 0 and write p1 = −p3 = p in the trinomial scheme.
By matching the mean and variance of ζ(t) and ζa(t) accordingly

E[ζa(t)] = 2pv − v =
(

r − σ2

2

)
4t

var(ζa(t)) = v2 − E[ζa(t)]2 = σ24t,

show that the parameters v and p obtained by solving the above pair
of equations are found to be

v =

√(
r − σ2

2

)2

4t2 + σ24t

p =
1
2


1 +

(
r − σ2

2

)
4t

√
σ24t +

(
r − σ2

2

)2 4t2


 .

6.10 Boyle (1988) proposes the following three-jump process for the approx-
imation of the asset price movement over one period:

nature of jump probability asset price
up p1 uS

horizontal p2 S
down p3 dS

where S is the current asset price. The middle jump ratio m is chosen
to be 1. There are five parameters in Boyle’s trinomial model. The
governing equations for the parameters can be obtained by
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(i) setting sum of probabilities to be 1

p1 + p2 + p3 = 1,

(ii) equating the first two moments of the approximating discrete
distribution and the corresponding continuous lognormal distri-
bution of the Black-Scholes model

p1u + p2 + p3d = er4t = R

p1u
2 + p2 + p3d

2 − (p1u + p2 + p3d)2 = e2r4t (eσ24t − 1).

The last equation can be simplified as

p1u
2 + p2 + p3d

2 = e2r4t eσ24t.

The remaining two conditions can be chosen freely. They are chosen by
Boyle to be

ud = 1

and
u = eλσ

√
4t, λ is a free parameter.

By solving the five equations together, show that p1 and p3:

p1 =
(W − R)u − (R − 1)

(u − 1)(u2 − 1)
, p3 =

(W − R)u2 − (R − 1)u3

(u − 1)(u2 − 1)
,

where W = R2eσ2∆t. Also show that Boyle’s trinomial model reduces
to the Cox-Ross-Rubinstein binomial scheme when λ = 1.

6.11 Suppose we let y = lnS, the Kamrad-Ritchken trinomial scheme can
be expressed as

c(y, t −4t) = [p1c(y + v, t) + p2c(y, t) + p3(y − v, t)] e−r4t.

Show that the Taylor expansion of the above trinomial scheme is given
by

− c(y, t −4t) + [p1c(y + v, t) + p2c(y, t) + p3(y − v, t)] e−r4t

= 4t
∂c

∂t
(y, t) − ∆t2

2
∂2c

∂t2
(y, t) + · · ·+ (1 − e−r4t)c(y, t)

+ e−r4t

[
(p1 − p3)v

∂c

∂y
+

1
2
(p1 + p3)v2 ∂2c

∂y2

+
1
6
(p1 − p3)v3 ∂3c

∂y3
+ · · ·

]
.

Given the probability values in Eqs. (6.1.33a,b,c), show that c(y, t)
satisfies
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0 =
∂c

∂t
(y, t) +

(
r − σ2

2

)
∂c

∂y
(y, t) +

σ2

2
∂2c

∂y2
(y, t) − rc(y, t) + O(4t).

6.12 Show that the width of the domain of dependence of the trinomial
scheme (see Figure 6.5) increases as

√
n, where n is the number of time

steps to expiry.

6.13 Consider the 5-point multinomial scheme defined in Eq. (6.1.37a-e) and
the corresponding 4-point scheme (obtained by setting λ = 1), show
that the total number of multiplications and additions in performing n
steps of the schemes are given by (Kamrad and Ritchken, 1991)

Scheme Number of multiplications Number of additions

5-point
5
3
(2n3 + n)

4
3
(2n3 + n)

4-point
2
3
(2n3 + 3n2 + n)

1
2
(2n3 + 3n2 + n)

6.14 Consider a three-state option model where the logarithmic return pro-
cesses of the underlying assets are given by

ln
S∆t

i

Si
= ζi, i = 1, 2, 3.

Here, ζi denotes a normal random variable with mean
(

r − σ2
i

2

)
∆t

and variance σ2
i ∆t, i = 1, 2, 3. Let ρij denote the instantaneous cor-

relation coefficient between ζi and ζj , i, j = 1, 2, 3, i 6= j. Suppose the
approximating multi-variate distribution ξa

i , i = 1, 2, 3, is taken to be

ζa
1 ζa

2 ζa
3 probability

v1 v2 v3 p1

v1 v2 −v3 p2

v1 −v2 v3 p3

v1 −v2 −v3 p4

−v1 v2 v3 p5

−v1 v2 −v3 p6

−v1 −v2 v3 p7

−v1 −v2 −v3 p8

0 0 0 p9
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where vi = λσi

√
∆t, i = 1, 2, 3. Following the Kamrad-Ritchken ap-

proach, find the probability values so that the approximating discrete
distribution converges to the continuous multi-variate distribution as
∆t → 0.
Hint: The first and the last probability values are given by

p1 =
1
8

{
1
λ2

+

√
∆t

λ

(
r − σ2

1
2

σ1
+

r − σ2
2
2

σ2
+

r − σ2
3
2

σ3

)
,

+
ρ12 + ρ13 + ρ23

λ2

}

p9 = 1 − 1
λ2

.

6.15 The consecutive Parisian feature counts the number of consecutive
breaching occurences that the asset price process stays in the knock-out
region. The count is reset to zero once the asset price moves out from
the knock-out region. Let V n

j,k denote the option value of a consecutive
Parisian option at the (n, j)th node on a trinomial tree, where the index
k counts the number of consecutive breaching occurrences. Construct
the corresponding forward shooting grid algorithm for pricing options
with the consecutive Parisian feature (Kwok and Lau, 2001a).

6.16 Consider the window Parisian feature, a moving window is defined with
m̂ consecutive monitoring instants at or before the current time. The
option is knocked out when the asset price falls within the knock-out re-
gion exactly m times, m ≤ m̂, within the window. Under what condition
does the window Parisian feature reduce to the consecutive Parisian fea-
ture? How to construct the corresponding discrete grid function gwin?
Hint: We define a binary string A = a1a2 · · ·am̂

to represent the his-
tory of asset price path falling within or outside the knock-out
region within the window. For the window Parisian feature, the
associated path dependence state vector has binary strings as
elements (Kwok and Lau, 2001a).

6.17 Construct the FSG scheme for pricing the continuously monitored Eu-
ropean style floating strike lookback call option. In particular, describe
how to define the terminal payoff values. How to modify the FSG
scheme in order to incorporate the American early exercise feature?

6.18 Consider the European put option with the automatic strike reset fea-
ture, where the strike price is reset to the prevailing asset price on a
pre-specified reset date if the option is out-of-the-money on that date.
The strike price is not known aprior, rather it depends on the actual re-
alization of the asset price on those prespecified reset dates. Construct
the FSG scheme that prices the strike reset put option (Kwok and Lau,
2001a).
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Hint: Let t`, ` = 1, 2, · · ·, m be the prespecified reset dates, and let X`

denote the strike price reset at t`. Explain why

X` = max(X, X`−1, S(t`)),

where X is the original strike price.

6.19 Suppose we would like to approximate
df

dx
at x0 up to O(∆x2) using

function values at x0, x0 − ∆x and x − 2∆x, that is,

df

dx

∣∣∣∣
x0

= α−2f(x0 − 2∆x) + α−1f(x0 − ∆x) + α0f(x0) + O(∆x2),

where α−2, α−1 and α0 are unknown coefficients to be determined.
Show that these coefficients are obtained by solving




1 1 1
−2 −1 0
4 1 0






α−2

α−1

α0


 =




0
1
0


 .

6.20 Consider the following difference operators, show that they approxi-
mate the corresponding differential operator up to second order accu-
racy

(i)
d2f

dx2

∣∣∣∣
x0

=
2f(x0) − 5f(x0 − ∆x) + 4f(x − 2∆x) − f(x0 − 3∆x)

∆x2

+ O(∆x2)

(ii)
∂2f

∂x∂y
= [f(x0 + ∆x, y0 + ∆y) − f(x0 + ∆x, y0 − ∆y)

− f(x0 − ∆x), y0 + ∆y) + f(x0 − ∆x, y0 − ∆y)]/(4∆x∆y)
+ O(∆x2) + O(∆y2).

6.21 Show that the leading truncation error terms of the Crank-Nicolson
scheme

V n+1
j − V n

j

∆τ
=

σ2

4

(
V n

j+1 − 2V n
j + V n

j−1

∆x2
+

V n+1
j+1 − 2V n+1

j + V n+1
j−1

∆x2

)

+
1
2

(
r − σ2

2

)(
V n

j+1 − V n
j−1

2∆x
+

V n+1
j+1 − V n+1

j−1

2∆x

)

− r

2
(V n

j + V n+1
j )

are O(∆τ2, ∆x2).

Hint: Perform the Taylor expansion at
(

j∆x,

(
n +

1
2

)
∆τ

)
.

6.22 Consider the following form of the Black-Scholes equation:



362 6 Numerical Schemes for Pricing Options

∂W

∂τ
=

σ2

2
∂2W

∂x2
+
(

r − q − σ2

2

)
∂W

∂x
, W = e−rτ V and x = ln S,

where V (S, τ ) is the option price and S is the asset price. The two-level
six-point implicit compact scheme is given by

a1W
n+1
j+1 + a0W

n+1
j + a−1W

n+1
j−1 = b1W

n
j+1 + b0W

n
j + b−1W

n
j−1

where

c =
(

r − q − σ2

2

)
∆τ

∆x
, µ = σ2 ∆τ

∆x2
,

a1 = 1 − 3µ − 3c − c2

µ
+

c

µ
, a0 = 10 + 6µ +

2c2

µ
,

a−1 = 1 − 3µ + 3c − c2

µ
− c

µ
, b1 = 1 + 3µ + 3c +

c2

µ
+

c

µ
,

b0 = 10− 6µ − 2c2

µ
, b−1 = 1 + 3µ − 3c +

c2

µ
− c

µ
.

Show that the compact scheme is second order time accurate and fourth
order space accurate.

6.23 Use the Fourier method to deduce the von Neumann stability condition
for (i) Jarrow-Rudd binomial scheme (see Problem 6.1), (ii) Kamrad-
Ritchken trinomial scheme, (iii) explicit FTCS scheme.

6.24 Let p(S, M, t) denote the price function of the floating strike lookback

put option. Define x = ln
M

S
and V (x, t) =

p(S, M, t)
S

. The pricing

formulation of V (x, t) is given by

∂V

∂t
+

σ2

2
∂2V

∂x2
+
(

q − r − σ2

2

)
∂V

∂x
− qV = 0, x > 0, 0 < t < T.

The final and boundary conditions are

V (x, T ) = ex − 1 and
∂V

∂x
(0, t) = 0,

respectively. By writing α =
1
2

+
∆x

2

(
r − q

σ2
+

1
2

)
and setting ∆x =

σ
√

∆t, the binomial scheme takes the form

V n
j =

1
1 + q∆t

[
αV n+1

j−1 + (1 − α)V n+1
j+1

]
, j ≥ 0.

Suppose the boundary condition at x = 0 is approximated by

V n+1
−1 = V n+1

0 ,
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then the numerical boundary value is given by

V n
0 =

1
1 + q∆t

[
αV n+1

0 + (1 − α)V n
1

]
.

Let T n
0 denote the truncation error at j = 0 of the above binomial

scheme, show that (Dai, 2001)

T n
0 = − 1

1 + q∆t

σ2

4
∂2V

∂x2

∣∣∣∣
x=0

+ O(∆x).

Therefore, the proposed binomial scheme is not consistent.

6.25 To obtain a consistent binomial scheme for the floating strike lookback
put option, we derive the binomial discretization at j = 0 using the
finite volume approach (Dai, 2001). First, we integrate the governing

differential equation from x = 0 to x =
∆x

2
to obtain

0 =
∫ ∆x

2

0

(
∂V

∂t
− qV

)
dx +

σ2

2

[
∂V

∂x

∣∣∣∣
∆x
2

−
∂V

∂x

∣∣∣∣
0

]

+
(

q − r − σ2

2

)(
V∆x

2
− V0

)
.

Suppose we adopt the following approximations:
∫ ∆x

2

0

(
∂V

∂t
− qV

)
dx ≈

(
V n+1

0 − V n
0

∆t
− qV n

0

)
∆x

∂V

∂x

∣∣∣∣
∆x
2

≈ V n+1
1 − V n+1

0

∆x
, V∆x

2
≈ V n+1

1 + V n+1
0

2
,

show that the binomial approximation at j = 0 is given by

V n
0 =

1
1 + q∆t

[
(2α − 1)V n+1

0 + 2(1 − α)V n+1
1

]
.

Examine the consistency of the above binomial approximation.

6.26 Suppose we use the FTCS scheme to solve the Black-Scholes equation
so that

V n+1
j − V n

j

∆τ
=

σ2

2
S2

j

V n
j+1 − 2V n

j + V n
j−1

∆S2
+ rSj

V n
j+1 − V n

j−1

2∆S
− rV n

j .

Show that the sufficient conditions for non-appearance of spurious os-
cillations in the numerical scheme are given by (Zvan et al ., 1998)

∆S <
σ2Si

r
and

1
∆τ

>
σ2S2

i

∆S2
+ r.
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6.27 A sequential barrier option has two-sided barriers. Unlike the usual
double barrier options, the order of breaching of the barrier is specified.
The second barrier is activated only after the first barrier has been hit
earlier, and the option is knocked out only if both barriers have been hit
in the pre-specified order. Construct the explicit finite difference scheme
for pricing this sequential barrier option under the Black-Scholes pricing
framework (Kwok et al ., 2001).

6.28 The penalty method is characterized by the replacement of the linear
complementarity formulation of the American option by appending a
non-linear penalty term in the Black-Scholes equation. Let V ∗(S, τ ) de-
note the exercise payoff of an American option. The non-linear penalty
term takes the form ρ max(V ∗ − V, 0), where ρ is the positive penalty
parameter and V (S, τ ) is the option price function. It can be shown
that when ρ → ∞, the solution of the following equation

∂V

∂τ
=

σ2

2
S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV + ρ max(V ∗ − V, 0)

gives the solution of the American option price function. Discuss the
construction of the Crank-Nicolson scheme for solving the above non-
linear differential equation, paying special attention to the solution of
the resulting non-linear algebraic system of equations. Note that the
non-linearity stems from the penalty term (Forsyth and Vetzal, 2002).

6.29 Consider the antithetic variates method [see Eqs. (6.3.7a,b)], explain
why

var
(

ci + c̃i

2

)
=

1
2

[var(ci) + cov(ci, c̃i)] .

Note that the amount of computational work to generate c̄AV [see Eq.
(6.3.8)] is about twice the work to generate ĉ. By applying inequality
(6.3.5), show that the antithetic variates method improves efficiency
provided that

cov(ci, c̃i) ≤ 0.

Give a statistical justification why the above negative correlation prop-
erty is in general valid (Boyle et al., 1997).

6.30 Consider the Bermudan option pricing problem, where the Bermudan
option has d exercise opportunities at times t1 < t2 < · · · < td = T ,
with t1 ≥ 0. Here, the issue date and maturity date of the Bermudan
option are taken to be 0 and T , respectively. Let Mt denote the value
at time t of $1 invested in the riskless money market account at time 0.
Let ht denote the payoff from exercise at time t and τ∗ be a stopping
time taking values in {t1, t2, · · · , td}. The value of the Bermudan option
at time 0 is given by
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V0 = sup
τ∗

E0

[
hτ

Mτ

]
.

Consider the quantity defined by (Andersen and Broadie, 2004)

Qti = max
(

hti , Eti

[
Mti

Mti+1

Qti+1

])
, i = 1, 2, · · · , d− 1,

explain why Qti gives the value of a Bermudan option newly issued at
time ti. Is it the same as the value at ti of a Bermudan option issued
at time 0? If not, explain why?

6.31 It has been generally believed that the extension of the Tilley algorithm
to multi-asset American options is not straightforward. Discuss the
modifications on the bundling and sorting procedure required in the
path grouping of all the asset price paths of the n assets, n > 1. Also,
think about how to determine the exercise-or-hold indicator variables
when the exercise boundary is defined by a high-dimensional surface
(Fu et al ., 2001).

6.32 Discuss how to implement the secant method in the root-finding pro-
cedure of solving the optimal exercise price S∗

ti
from the following al-

gebraic equation

X − S∗
ti

= e−r(T−ti)E

[
Pi+1

∣∣∣∣Sti = S∗
ti

]

in the Grant-Vora-Weeks algorithm (Fu et al ., 2001).

6.33 Judge whether the simulation estimator on the option price given by
the Grant-Vora-Weeks algorithm is biased high or low or unbiased.

6.34 Explain why the estimator θ
i1···ij

low,j defined by Eqs. (6.3.23a,b) is biased
low.
Hint: Upward bias is eliminated since the continuation value and the

early exercise decision are determined from independent informa-
tion sets. The early exercise decision is always suboptimal with
a finite sample.


