MATH 571 Mathematical Models of Financial Derivatives

Homework Three

Course Instructor: Prof. Y.K. Kwok

- 1. Consider the sample space $\Omega = \{-3, -2, -1, 1, 2, 3\}$ and the algebra $\mathcal{F} = \{\phi, \{-3, -2\}, \{-1, 1\}, \{2, 3\}, \{-3, -2, -1, 1\}, \{-3, -2, 2, 3\}, \{-1, 1, 2, 3\}, \Omega\}$. For each of the following random variables, determine whether it is \mathcal{F} -measurable:
 - (i) $X(\omega) = \omega^2$, (ii) $X(\omega) = \max(\omega, 2)$.

Find a random variable that is \mathcal{F} -measurable.

- 2. Let X, X_1, \dots, X_n be random variables defined on (Ω, \mathcal{F}, P) and $\mathcal{F}_1 \subset \mathcal{F}_2$ are sub-algebras of \mathcal{F} . Prove the following properties on conditional expectations:
 - (a) $E[XI_B] = E[I_B E[X|\mathcal{F}]]$ for all $B \in \mathcal{F}$,
 - (b) $E[\max(X_1, \dots, X_n)|\mathcal{F}] \ge \max(E[X_1|\mathcal{F}], \dots, E[X_n|\mathcal{F}]).$
- 3. Let $X = \{X_t; t = 0, 1, \dots, T\}$ be a stochastic process adapted to the filtration $\mathbb{F} = \{\mathcal{F}_t; t = 0, 1, \dots, T\}$. Does the property: $E[X_{t+1} - X_t | \mathcal{F}_t] = 0, t = 0, 1, \dots, T-1$ imply that X is a martingale?
- 4. Consider the binomial experiment with probability of success $p, 0 . We let <math>N_k$ denote the number of successes after k independent trials. Define the discrete process Y_k by $N_k - kp$, the excess number of successes above the mean kp. Show that Y_k is a martingale.
- 5. Consider the two-period securities model in the lecture note of Topic 3, p.15. Suppose the riskless interest rate r violates the restriction r < 0.2, say, r = 0.3. Construct an arbitrage opportunity associated with the securities model.
- 6. Deduce the price formula for a European put option with terminal payoff $\max(X S, 0)$ for the *n*-period binomial model.